

Welcome to <u>E-XFL.COM</u>

#### Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Deta | ils |
|------|-----|
|      |     |

| Details                        |                                                              |
|--------------------------------|--------------------------------------------------------------|
| Product Status                 | Obsolete                                                     |
| Number of LABs/CLBs            | ·                                                            |
| Number of Logic Elements/Cells | ·                                                            |
| Total RAM Bits                 | 36864                                                        |
| Number of I/O                  | 93                                                           |
| Number of Gates                | 250000                                                       |
| Voltage - Supply               | 1.425V ~ 1.575V                                              |
| Mounting Type                  | Surface Mount                                                |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                              |
| Package / Case                 | 208-BFQFP                                                    |
| Supplier Device Package        | 208-PQFP (28x28)                                             |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microsemi/afs250-1pq208 |
|                                |                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- · 3 phase selectors
- 6 programmable delays and 1 fixed delay
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

#### **CCC Programming**

The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register, dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of parameters such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.



Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block

# 1.5 V Voltage Regulator

The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-31 shows the hook-up of the 1.5 V voltage regulator to an external pass transistor.

Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported is 0.5 A. Transistors with different gain can also be used for different current requirements.

# Table 2-18 • Electrical Characteristics

| Symbol  | Parameter         | Condition |                           | Min   | Typical | Max   | Units |
|---------|-------------------|-----------|---------------------------|-------|---------|-------|-------|
| VOUT    | Output Voltage    | Tj = 25°C |                           | 1.425 | 1.5     | 1.575 | V     |
| ICC33A  | Operation Current | Tj = 25°C | ILOAD = 1 mA              |       | 11      |       | mA    |
|         |                   |           | ILOAD = 100 mA            |       | 11      |       | mA    |
|         |                   |           | ILOAD = 0.5 A             |       | 30      |       | mA    |
| ∆VOUT   | Load Regulation   | Tj = 25°C | ILOAD = 1 mA to 0.5 A     |       | 90      |       | mV    |
|         | Line Regulation   | Tj = 25°C | VCC33A = 2.97 V to 3.63 V |       |         |       |       |
|         |                   |           | ILOAD = 1 mA              |       | 10.6    |       | mV/V  |
|         |                   |           | VCC33A = 2.97 V to 3.63 V |       |         |       |       |
|         |                   |           | ILOAD = 100 mA            |       | 12.1    |       | mV/V  |
| ∆VOUT   |                   |           | VCC33A = 2.97 V to 3.63 V |       | 10.0    |       |       |
|         |                   |           | ILOAD = 500 mA            |       | 10.6    |       | mV/V  |
|         | Dropout Voltage*  | Tj = 25⁰C | ILOAD = 1 mA              |       | 0.63    |       | V     |
|         |                   |           | ILOAD = 100 mA            |       | 0.84    |       | V     |
|         |                   |           | ILOAD = 0.5 A             |       | 1.35    |       | V     |
| IPTBASE | PTBase Current    | Tj = 25°C | ILOAD = 1 mA              |       | 48      |       | μA    |
|         |                   |           | ILOAD = 100 mA            |       | 736     |       | μA    |
|         |                   |           | ILOAD = 0.5 A             |       | 12      | 20    | mA    |

### VCC33A = 3.3 V

Note: \*Data collected with 2N2222A.



# **Embedded Memories**

Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.

# **Flash Memory Block**

Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The flash memory block macro is illustrated in Figure 2-32. The port pin name and descriptions are detailed on Table 2-19 on page 2-40. All flash memory block signals are active high, except for CLK and active low RESET. All flash memory operations are synchronous to the rising edge of CLK.



Figure 2-32 • Flash Memory Block





Figure 2-54 • One Port Write / Other Port Read Same



Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18.





Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion





Figure 2-73 • Negative Current Monitor

#### Terminology

#### Accuracy

The accuracy of Fusion Current Monitor is  $\pm 2 \text{ mV}$  minimum plus 5% of the differential voltage at the input. The input accuracy can be translated to error at the ADC output by using EQ 4. The 10 V/V gain is the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-86. For 8-bit mode, N = 8,  $V_{AREF} = 2.56$  V, zero differential voltage between AV and AC, the Error ( $E_{ADC}$ ) is equal to 2 LSBs.

$$E_{ADC} = (2mV + 0.05 |V_{AV} - V_{AC}|) \times (10V) / V \times \frac{2^N}{V_{AREF}}$$

EQ 4

where

N is the number of bits

 $V_{AREF}$  is the Reference voltage

 $V_{AV}$  is the voltage at AV pad

V<sub>AC</sub> is the voltage at AC pad



Device Architecture

# ADC Description

The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models. Figure 2-80 shows a block diagram of the Fusion ADC.

- · Configurable resolution: 8-bit, 10-bit, and 12-bit mode
- DNL: 0.6 LSB for 10-bit mode
- INL: 0.4 LSB for 10-bit mode
- No missing code
- Internal VAREF = 2.56 V
- Maximum Sample Rate = 600 Ksps
- Power-up calibration and dynamic calibration after every sample to compensate for temperature drift over time



Figure 2-80 • ADC Simplified Block Diagram

# ADC Theory of Operation

An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and provide a discrete binary representation of the signal. Analog-to-digital converters are generally characterized in three ways:

- Input voltage range
- Resolution
- Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to 2.56 V.

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter. Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each second. The bandwidth of an ADC is constrained by its architecture and several key performance characteristics.

#### INL – Integral Non-Linearity

INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain errors, the straight line is either a best-fit straight line or a line drawn between the end points of the transfer function (Figure 2-85).



Figure 2-85 • Integral Non-Linearity (INL)

#### LSB – Least Significant Bit

In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by  $2^N$ , where N is the converter's resolution.

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

EQ 13

#### **No Missing Codes**

An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal applied to the analog input.



Device Architecture

Refer to Table 2-46 on page 2-109 and the "Acquisition Time or Sample Time Control" section on page 2-107

$$t_{sample} = (2 + STC) \times t_{ADCCLK}$$

EQ 20

STC: Sample Time Control value (0–255)

t<sub>SAMPLE</sub> is the sample time

Table 2-46 • STC Bits Function

| Name | Bits  | Function            |
|------|-------|---------------------|
| STC  | [7:0] | Sample time control |

Sample time is computed based on the period of ADCCLK.

#### **Distribution Phase**

The second phase is called the distribution phase. During distribution phase, the ADC computes the equivalent digital value from the value stored in the input capacitor. In this phase, the output signal SAMPLE goes back to '0', indicating the sample is completed; but the BUSY signal remains '1', indicating the ADC is still busy for distribution. The distribution time depends strictly on the number of bits. If the ADC is configured as a 10-bit ADC, then 10 ADCCLK cycles are needed. EQ 8 describes the distribution time.

$$t_{distrib} = N \times t_{ADCCLK}$$

EQ 21

N: Number of bits

#### **Post-Calibration Phase**

The last phase is the post-calibration phase. This is an optional phase. The post-calibration phase takes two ADCCLK cycles. The output BUSY signal will remain '1' until the post-calibration phase is completed. If the post-calibration phase is skipped, then the BUSY signal goes to '0' after distribution phase. As soon as BUSY signal goes to '0', the DATAVALID signal goes to '1', indicating the digital result is available on the RESULT output signals. DATAVAILD will remain '1' until the next ADCSTART is asserted. Microsemi recommends enabling post-calibration to compensate for drift and temperature-dependent effects. This ensures that the ADC remains consistent over time and with temperature. The post-calibration phase is enabled by bit 3 of the Mode register. EQ 9 describes the post-calibration time.

$$t_{post-cal} = MODE[3] \times (2 \times t_{ADCCLK})$$

EQ 22

EQ 23

MODE[3]: Bit 3 of the Mode register, described in Table 2-41 on page 2-106.

The calculation for the conversion time for the ADC is summarized in EQ 23.

 $t_{conv} = t_{sync\_read} + t_{sample} + t_{distrib} + t_{post-cal} + t_{sync\_write}$ 

t<sub>conv</sub>: conversion time

 $t_{sync\_read}$ : maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the worst case is a period of SYSCLK,  $t_{SYSCLK}$ .

t<sub>sample</sub>: Sample time

t<sub>distrib</sub>: Distribution time

tpost-cal: Post-calibration time

 $t_{sync\_write}$ : Maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the worst case is a period of SYSCLK,  $t_{SYSCLK}$ .



The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in Table 2-47:

#### Table 2-47 • Optimal Setting at 66 MHz in 10-Bit Mode

| TVC[7:0]  | = 1      | = 0x01 |
|-----------|----------|--------|
| STC[7:0]  | = 3      | = 0x03 |
| MODE[3:0] | = b'0100 | = 0x4* |

*Note:* No power-down after every conversion is chosen in this case; however, if the application is power-sensitive, the MODE[2] can be set to '0', as described above, and it will not affect any performance.

### **Timing Diagrams**



Note: \*Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, t<sub>ADCCLK</sub>.

Figure 2-89 • Power-Up Calibration Status Signal Timing Diagram



Figure 2-102 • DDR Output Support in Fusion Devices



# Selectable Skew between Output Buffer Enable/Disable Time

The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion (disable) time.







Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)



Figure 2-109 • Timing Diagram (option 2: enables skew circuit)

# **Overview of I/O Performance** Summary of I/O DC Input and Output Levels – Default I/O Software Settings

#### Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Pro I/Os

|                               |                    |              |           | VIL         | VIH           |            | VOL         | VOH         | IOL | IOH |
|-------------------------------|--------------------|--------------|-----------|-------------|---------------|------------|-------------|-------------|-----|-----|
| I/O Standard                  | Drive<br>Strength  | Slew<br>Rate | Min.<br>V | Max.<br>V   | Min.<br>V     | Max.<br>V  | Max.<br>V   | Min.<br>V   | mA  | mA  |
| 3.3 V LVTTL /<br>3.3 V LVCMOS | 12 mA              | High         | -0.3      | 0.8         | 2             | 3.6        | 0.4         | 2.4         | 12  | 12  |
| 2.5 V LVCMOS                  | 12 mA              | High         | -0.3      | 0.7         | 1.7           | 3.6        | 0.7         | 1.7         | 12  | 12  |
| 1.8 V LVCMOS                  | 12 mA              | High         | -0.3      | 0.35 * VCCI | 0.65 * VCCI   | 3.6        | 0.45        | VCCI - 0.45 | 12  | 12  |
| 1.5 V LVCMOS                  | 12 mA              | High         | -0.3      | 0.35 * VCCI | 0.65 * VCCI   | 3.6        | 0.25 * VCCI | 0.75 * VCCI | 12  | 12  |
| 3.3 V PCI                     |                    | •            | •         |             | Per PCI Spec  | ification  |             |             |     |     |
| 3.3 V PCI-X                   |                    |              |           |             | Per PCI-X Spe | cification |             |             |     |     |
| 3.3 V GTL                     | 20 mA <sup>2</sup> | High         | -0.3      | VREF-0.05   | VREF + 0.05   | 3.6        | 0.4         | -           | 20  | 20  |
| 2.5 V GTL                     | 20 mA <sup>2</sup> | High         | -0.3      | VREF-0.05   | VREF + 0.05   | 3.6        | 0.4         | -           | 20  | 20  |
| 3.3 V GTL+                    | 35 mA              | High         | -0.3      | VREF – 0.1  | VREF + 0.1    | 3.6        | 0.6         | -           | 35  | 35  |
| 2.5 V GTL+                    | 33 mA              | High         | -0.3      | VREF – 0.1  | VREF + 0.1    | 3.6        | 0.6         | -           | 33  | 33  |
| HSTL (I)                      | 8 mA               | High         | -0.3      | VREF – 0.1  | VREF + 0.1    | 3.6        | 0.4         | VCCI – 0.4  | 8   | 8   |
| HSTL (II)                     | 15 mA <sup>2</sup> | High         | -0.3      | VREF – 0.1  | VREF + 0.1    | 3.6        | 0.4         | VCCI – 0.4  | 15  | 15  |
| SSTL2 (I)                     | 15 mA              | High         | -0.3      | VREF – 0.2  | VREF + 0.2    | 3.6        | 0.54        | VCCI-0.62   | 15  | 15  |
| SSTL2 (II)                    | 18 mA              | High         | -0.3      | VREF – 0.2  | VREF + 0.2    | 3.6        | 0.35        | VCCI-0.43   | 18  | 18  |
| SSTL3 (I)                     | 14 mA              | High         | -0.3      | VREF – 0.2  | VREF + 0.2    | 3.6        | 0.7         | VCCI – 1.1  | 14  | 14  |
| SSTL3 (II)                    | 21 mA              | High         | -0.3      | VREF – 0.2  | VREF + 0.2    | 3.6        | 0.5         | VCCI – 0.9  | 21  | 21  |

#### Notes:

1. Currents are measured at 85°C junction temperature.

2. Output drive strength is below JEDEC specification.

3. Output slew rate can be extracted by the IBIS models.

#### Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Advanced I/Os

|                               |                   |              | VIL       |                        | VIH           |                          | VOL         | VOH         | IOL | ЮН |  |  |  |  |  |  |
|-------------------------------|-------------------|--------------|-----------|------------------------|---------------|--------------------------|-------------|-------------|-----|----|--|--|--|--|--|--|
| I/O Standard                  | Drive<br>Strength | Slew<br>Rate | Min.<br>V | Max.<br>V              | Min.<br>V     | Max.<br>V                | Max.<br>V   | Min.<br>V   | mA  | mA |  |  |  |  |  |  |
| 3.3 V LVTTL /<br>3.3 V LVCMOS | 12 mA             | High         | -0.3      | 0.8                    | 2             | 3.6                      | 0.4         | 2.4         | 12  | 12 |  |  |  |  |  |  |
| 2.5 V LVCMOS                  | 12 mA             | High         | -0.3      | 0.7                    | 1.7           | 2.7                      | 0.7         | 1.7         | 12  | 12 |  |  |  |  |  |  |
| 1.8 V LVCMOS                  | 12 mA             | High         | -0.3      | 0.35 * VCCI            | 0.65 * VCCI   | 1.9                      | 0.45        | VCCI-0.45   | 12  | 12 |  |  |  |  |  |  |
| 1.5 V LVCMOS                  | 12 mA             | High         | -0.3      | 0.35 * VCCI            | 0.65 * VCCI   | 1.575                    | 0.25 * VCCI | 0.75 * VCCI | 12  | 12 |  |  |  |  |  |  |
| 3.3 V PCI                     |                   |              |           | Per PCI specifications |               |                          |             |             |     |    |  |  |  |  |  |  |
| 3.3 V PCI-X                   |                   |              |           | Р                      | er PCI-X spec | Per PCI-X specifications |             |             |     |    |  |  |  |  |  |  |

*Note:* Currents are measured at 85°C junction temperature.

#### Table 2-122 • 1.8 V LVCMOS Low Slew

Commercial Temperature Range Conditions:  $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/Os

| Drive<br>Strength | Speed<br>Grade  | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|-------------------|-----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA              | Std.            | 0.66              | 15.53           | 0.04             | 1.31            | 0.43              | 14.11           | 15.53           | 2.78            | 1.60            | 16.35            | 17.77            | ns    |
|                   | -1              | 0.56              | 13.21           | 0.04             | 1.11            | 0.36              | 12.01           | 13.21           | 2.36            | 1.36            | 13.91            | 15.11            | ns    |
|                   | -2 <sup>2</sup> | 0.49              | 11.60           | 0.03             | 0.98            | 0.32              | 10.54           | 11.60           | 2.07            | 1.19            | 12.21            | 13.27            | ns    |
| 4 mA              | Std.            | 0.66              | 10.48           | 0.04             | 1.31            | 0.43              | 10.41           | 10.48           | 3.23            | 2.73            | 12.65            | 12.71            | ns    |
|                   | -1              | 0.56              | 8.91            | 0.04             | 1.11            | 0.36              | 8.86            | 8.91            | 2.75            | 2.33            | 10.76            | 10.81            | ns    |
|                   | -2              | 0.49              | 7.82            | 0.03             | 0.98            | 0.32              | 7.77            | 7.82            | 2.41            | 2.04            | 9.44             | 9.49             | ns    |
| 8 mA              | Std.            | 0.66              | 8.05            | 0.04             | 1.31            | 0.43              | 8.20            | 7.84            | 3.54            | 3.27            | 10.43            | 10.08            | ns    |
|                   | -1              | 0.56              | 6.85            | 0.04             | 1.11            | 0.36              | 6.97            | 6.67            | 3.01            | 2.78            | 8.88             | 8.57             | ns    |
|                   | -2              | 0.49              | 6.01            | 0.03             | 0.98            | 0.32              | 6.12            | 5.86            | 2.64            | 2.44            | 7.79             | 7.53             | ns    |
| 12 mA             | Std.            | 0.66              | 7.50            | 0.04             | 1.31            | 0.43              | 7.64            | 7.30            | 3.61            | 3.41            | 9.88             | 9.53             | ns    |
|                   | -1              | 0.56              | 6.38            | 0.04             | 1.11            | 0.36              | 6.50            | 6.21            | 3.07            | 2.90            | 8.40             | 8.11             | ns    |
|                   | -2              | 0.49              | 5.60            | 0.03             | 0.98            | 0.32              | 5.71            | 5.45            | 2.69            | 2.55            | 7.38             | 7.12             | ns    |
| 16 mA             | Std.            | 0.66              | 7.29            | 0.04             | 1.31            | 0.43              | 7.23            | 7.29            | 3.71            | 3.95            | 9.47             | 9.53             | ns    |
|                   | -1              | 0.56              | 6.20            | 0.04             | 1.11            | 0.36              | 6.15            | 6.20            | 3.15            | 3.36            | 8.06             | 8.11             | ns    |
|                   | -2              | 0.49              | 5.45            | 0.03             | 0.98            | 0.32              | 5.40            | 5.45            | 2.77            | 2.95            | 7.07             | 7.12             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.



# Voltage Referenced I/O Characteristics

#### 3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

| 3.3 V GTL          |           | VIL VIH     |             | I         | VOL       | VOH       | IOL | IOH | IOSL                    | IOSH                    | IIL¹            | IIH <sup>2</sup> |
|--------------------|-----------|-------------|-------------|-----------|-----------|-----------|-----|-----|-------------------------|-------------------------|-----------------|------------------|
| Drive<br>Strength  | Min.<br>V | Max.<br>V   | Min.<br>V   | Max.<br>V | Max.<br>V | Min.<br>V | mA  | mA  | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup> | μA <sup>4</sup>  |
| 20 mA <sup>3</sup> | -0.3      | VREF – 0.05 | VREF + 0.05 | 3.6       | 0.4       | _         | 20  | 20  | 181                     | 268                     | 10              | 10               |

Table 2-138 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.



#### Figure 2-124 • AC Loading

#### Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|-----------------|----------------|------------------------|
| VREF – 0.05   | VREF + 0.05    | 0.8                  | 0.8             | 1.2            | 10                     |

Note: \*Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

#### Timing Characteristics

Table 2-140 • 3.3 V GTL

```
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.08            | 0.04             | 2.93            | 0.43              | 2.04            | 2.08            |                 |                 | 4.27             | 4.31             | ns    |
| -1             | 0.56              | 1.77            | 0.04             | 2.50            | 0.36              | 1.73            | 1.77            |                 |                 | 3.63             | 3.67             | ns    |
| -2             | 0.49              | 1.55            | 0.03             | 2.19            | 0.32              | 1.52            | 1.55            |                 |                 | 3.19             | 3.22             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

#### SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

| SSTL2 Class II | VIL       |            | VIH        |           | VOL       | VOH         | IOL | IOH | IOSL                    | IOSH                    | IIL¹            | IIH <sup>2</sup> |
|----------------|-----------|------------|------------|-----------|-----------|-------------|-----|-----|-------------------------|-------------------------|-----------------|------------------|
| Drive Strength | Min.<br>V | Max.<br>V  | Min.<br>V  | Max.<br>V | Max.<br>V | Min.<br>V   | mA  | mA  | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup> | μA <sup>4</sup>  |
| 18 mA          | -0.3      | VREF – 0.2 | VREF + 0.2 | 3.6       | 0.35      | VCCI – 0.43 | 18  | 18  | 124                     | 169                     | 10              | 10               |

Table 2-159 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.



#### Figure 2-131 • AC Loading

#### Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|-----------------|----------------|------------------------|
| VREF – 0.2    | VREF + 0.2     | 1.25                 | 1.25            | 1.25           | 30                     |

Note: \*Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

#### Timing Characteristics

#### Table 2-161 • SSTL 2 Class II Commercial Temperature Range Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.17            | 0.04             | 1.33            | 0.43              | 2.21            | 1.77            |                 |                 | 4.44             | 4.01             | ns    |
| -1             | 0.56              | 1.84            | 0.04             | 1.14            | 0.36              | 1.88            | 1.51            |                 |                 | 3.78             | 3.41             | ns    |
| -2             | 0.49              | 1.62            | 0.03             | 1.00            | 0.32              | 1.65            | 1.32            |                 |                 | 3.32             | 2.99             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.



Device Architecture

# **Output DDR**



## Figure 2-144 • Output DDR Timing Model

### Table 2-181 • Parameter Definitions

| Parameter Name          | Parameter Definition      | Measuring Nodes (From, To) |
|-------------------------|---------------------------|----------------------------|
| t <sub>DDROCLKQ</sub>   | Clock-to-Out              | B, E                       |
| t <sub>DDROCLR2Q</sub>  | Asynchronous Clear-to-Out | C, E                       |
| t <sub>DDROREMCLR</sub> | Clear Removal             | С, В                       |
| t <sub>DDRORECCLR</sub> | Clear Recovery            | С, В                       |
| t <sub>DDROSUD1</sub>   | Data Setup Data_F         | А, В                       |
| t <sub>DDROSUD2</sub>   | Data Setup Data_R         | D, B                       |
| t <sub>DDROHD1</sub>    | Data Hold Data_F          | А, В                       |
| t <sub>DDROHD2</sub>    | Data Hold Data_R          | D, B                       |

# **Power Consumption**

### Table 3-18 • Power Consumption

| Parameter          | Description                           | Condition         | Min. | Typical                            | Max. | Units                              |  |
|--------------------|---------------------------------------|-------------------|------|------------------------------------|------|------------------------------------|--|
| Crystal Oscillator |                                       |                   |      |                                    |      |                                    |  |
| ISTBXTAL           | Standby Current of Crystal Oscillator |                   |      | 10                                 |      | μΑ                                 |  |
| IDYNXTAL           | Operating Current                     | RC                |      | 0.6                                |      | mA                                 |  |
|                    |                                       | 0.032–0.2         |      | 0.19                               |      | mA                                 |  |
|                    |                                       | 0.2–2.0           |      | 0.6                                |      | mA                                 |  |
|                    |                                       | 2.0–20.0          |      | 0.6                                |      | mA                                 |  |
| RC Oscillator      |                                       |                   |      |                                    |      |                                    |  |
| IDYNRC             | Operating Current                     |                   |      | 1                                  |      | mA                                 |  |
| АСМ                |                                       |                   |      |                                    |      | •                                  |  |
|                    | Operating Current (fixed clock)       |                   |      | 200                                |      | µA/MHz                             |  |
|                    | Operating Current (user clock)        |                   |      | 30                                 |      | μΑ                                 |  |
| NVM System         |                                       |                   |      |                                    |      |                                    |  |
|                    | NVM Array Operating Power             | Idle              |      | 795                                |      | μA                                 |  |
|                    |                                       | Read<br>operation |      | See<br>Table 3-15 on<br>page 3-23. |      | See<br>Table 3-15 on<br>page 3-23. |  |
|                    |                                       | Erase             |      | 900                                |      | μA                                 |  |
|                    |                                       | Write             |      | 900                                |      | μA                                 |  |
| PNVMCTRL           | NVM Controller Operating Power        |                   |      | 20                                 |      | µW/MHz                             |  |

Fusion Family of Mixed Signal FPGAs

| Revision                    | Changes                                                                                                                                                                                                                                    | Page            |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Advance v0.8<br>(continued) | This sentence was updated in the "No-Glitch MUX (NGMUX)" section to delete GLA:<br>The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC).                                             |                 |  |  |
|                             | In Table 2-13 • NGMUX Configuration and Selection Table, 10 and 11 were deleted.                                                                                                                                                           | 2-32            |  |  |
|                             | The method to enable sleep mode was updated for bit 0 in Table 2-16 • RTC Control/Status Register.                                                                                                                                         |                 |  |  |
|                             | S2 was changed to D2 in Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access) for RD[31:0] was updated.                                                                                                                                   |                 |  |  |
|                             | The definitions for bits 2 and 3 were updated in Table 2-24 • Page Status Bit Definition.                                                                                                                                                  |                 |  |  |
|                             | Figure 2-46 • FlashROM Timing Diagram was updated.                                                                                                                                                                                         |                 |  |  |
|                             | Table 2-26 • FlashROM Access Time is new.                                                                                                                                                                                                  | 2-58            |  |  |
|                             | Figure 2-55 • Write Access After Write onto Same Address, Figure 2-56 • Read Access After Write onto Same Address, and Figure 2-57 • Write Access After Read onto Same Address are new.                                                    | 2-68–<br>2-70   |  |  |
|                             | Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.                                                                                                                                                                               | 2-71, 2-72      |  |  |
|                             | The VAREF and SAMPLE functions were updated in Table 2-36 • Analog Block Pin Description.                                                                                                                                                  |                 |  |  |
|                             | The title of Figure 2-72 • Timing Diagram for Current Monitor Strobe was updated to add the word "positive."                                                                                                                               |                 |  |  |
|                             | The "Gate Driver" section was updated to give information about the switching rate in High Current Drive mode.                                                                                                                             |                 |  |  |
|                             | The "ADC Description" section was updated to include information about the SAMPLE and BUSY signals and the maximum frequencies for SYSCLK and ADCCLK. EQ 2 was updated to add parentheses around the entire expression in the denominator. |                 |  |  |
|                             | Table 2-46 $\cdot$ Analog Channel Specifications and Table 2-47 $\cdot$ ADC Characteristics in Direct Input Mode were updated.                                                                                                             | 2-118,<br>2-121 |  |  |
|                             | The note was removed from Table 2-55 • Analog Multiplexer Truth Table—AV ( $x = 0$ ), AC ( $x = 1$ ), and AT ( $x = 3$ ).                                                                                                                  | 2-131           |  |  |
|                             | Table 2-63 • Internal Temperature Monitor Control Truth Table is new.                                                                                                                                                                      |                 |  |  |
|                             | The "Cold-Sparing Support" section was updated to add information about cases where current draw can occur.                                                                                                                                |                 |  |  |
|                             | Figure 2-104 • Solution 4 was updated.                                                                                                                                                                                                     | 2-147           |  |  |
|                             | Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings was updated.                                                                                                                                                                 | 2-153           |  |  |
|                             | The "GNDA Ground (analog)" section and "GNDAQ Ground (analog quiet)" section were updated to add information about maximum differential voltage.                                                                                           | 2-224           |  |  |
|                             | The "V <sub>AREF</sub> Analog Reference Voltage" section and "VPUMP Programming Supply Voltage" section were updated.                                                                                                                      | 2-226           |  |  |
|                             | The "V_{CCPLA/B} PLL Supply Voltage" section was updated to include information about the east and west PLLs.                                                                                                                              | 2-225           |  |  |
|                             | The V <sub>COMPLF</sub> pin description was deleted.                                                                                                                                                                                       | N/A             |  |  |
|                             | The "Axy Analog Input/Output" section was updated with information about grounding and floating the pin.                                                                                                                                   | 2-226           |  |  |

Fusion Family of Mixed Signal FPGAs

| Revision     | Changes                                                                                                                               | Page  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Advance v0.3 | The "Temperature Monitor" section was updated.                                                                                        |       |  |  |
| (continued)  | EQ 2 is new.                                                                                                                          |       |  |  |
|              | The "ADC Description" section was updated.                                                                                            |       |  |  |
|              | Figure 2-16 • Fusion Clocking Options was updated.                                                                                    |       |  |  |
|              | Table 2-46 · Analog Channel Specifications was updated.                                                                               |       |  |  |
|              | The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.              |       |  |  |
|              | The "Simultaneously Switching Outputs and PCB Layout" section is new.                                                                 |       |  |  |
|              | LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.               |       |  |  |
|              | LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.                                 |       |  |  |
|              | The "Timing Model" was updated.                                                                                                       | 2-161 |  |  |
|              | All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.                                             |       |  |  |
|              | All Timing Characteristic tables were updated                                                                                         |       |  |  |
|              | Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated. |       |  |  |
|              | Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.                                           |       |  |  |
|              | Table 2-93 • I/O Output Buffer Maximum Resistances <sup>1</sup> was updated.                                                          | 2-171 |  |  |
|              | The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.                              |       |  |  |
|              | The "CoreMP7 and Cortex-M1 Software Tools" section is new.                                                                            |       |  |  |
|              | Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated. |       |  |  |
|              | Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.                                           |       |  |  |
|              | Table 2-93 • I/O Output Buffer Maximum Resistances <sup>1</sup> was updated.                                                          |       |  |  |
|              | The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.                              |       |  |  |
|              | The "108-Pin QFN" table for the AFS090 device is new.                                                                                 |       |  |  |
|              | The "180-Pin QFN" table for the AFS090 device is new.                                                                                 |       |  |  |
|              | The "208-Pin PQFP" table for the AFS090 device is new.                                                                                |       |  |  |
|              | The "256-Pin FBGA" table for the AFS090 device is new.                                                                                |       |  |  |
|              | The "256-Pin FBGA" table for the AFS250 device is new.                                                                                | 3-12  |  |  |