

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	93
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs250-1pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Family Overview

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- · On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = $50\% \pm 1.5\%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 µs
- Low power consumption of 5 mW

Figure 2-9 • Efficient Long-Line Resources

Device Architecture

PLL Macro

The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL feedback loop can be driven either internally or externally. The PLL macro also provides power-down input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up. See Figure 2-19 on page 2-23 for more information.

Inputs:

- · CLKA: selected clock input
- POWERDOWN (active low): disables PLLs. The default state is power-down on (active low).

Outputs:

- LOCK (active high): indicates that PLL output has locked on the input reference signal
- GLA, GLB, GLC: outputs to respective global networks
- YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs. Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user. SmartGen allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from. SmartGen automatically instantiates the special macro, PLLINT, when needed.

Real-Time Counter System

The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce power consumption in many applications.

- Sleep mode, typical 10 µA
- · Standby mode (RTC running), typical 3 mA with 20 MHz

The RTC system is composed of five cores:

- RTC sub-block inside Analog Block (AB)
- Voltage Regulator and Power System Monitor (VRPSM)
- Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock Resources chapter of the *Fusion FPGA Fabric User Guide* for more detail.
- Crystal clock; does not require instantiation in RTL
- 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during standby mode. Figure 2-27 shows their connection.

Notes:

- 1. Signals are hardwired internally and do not exist in the macro core.
- 2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
 onto the RD bus in the same clock cycle following RA and REN valid. The read address is
 registered on the read port clock active edge, and data appears at RD after the RAM access time.
 Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock delay from the address to the data but enables operation at a much higher frequency. The read address is registered on the read port active clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.
- Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is High. The setup times of the write address, write enables, and write data are minimal with respect to the write clock. Write and read transfers are described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the "FIFO Characteristics" section on page 2-72.

RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-229 and the *Fusion SRAM/FIFO Blocks* application note). The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

Gate Driver

The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74). Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive levels: 1 μ A, 3 μ A, 10 μ A, and 30 μ A (Figure 2-75 on page 2-91). The AG also supports a High Current Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with 100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).

The gate-to-source voltage (V_{gs}) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 5).

$$V_{gs} \le I_g \times (R_{pullup} \text{ or } R_{pulldown})$$

EQ 5

Analog MUX Channel	Signal	Analog Quad Number
16	AV5	
17	AC5	Analog Quad 5
18	AT5	
19	AV6	
20	AC6	Analog Quad 6
21	AT6	
22	AV7	
23	AC7	Analog Quad 7
24	AT7	
25	AV8	
26	AC8	Analog Quad 8
27	AT8	
28	AV9	
29	AC9	Analog Quad 9
30	AT9	
31	Internal temperature monitor	

Table 2-40 • Analog MUX Channels (continued)

The ADC can be powered down independently of the FPGA core, as an additional control or for powersaving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the comparators in the ADC.

ADC Modes

The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion, and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-106.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's. In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Name	Bits	Function
MODE	3	0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion.
		1 – No calibration after every conversion
MODE	2	0 – Power-down after conversion
		1 – No Power-down after conversion
MODE	1:0	00 – 10-bit
		01 – 12-bit
		10 – 8-bit
		11 – Unused

Table 2-125 • 1.8 V LVCMOS High Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.7 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Device Architecture

Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosup	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		5	7.5	mA
		VCC = 1.575 V	T _J = 85°C		6.5	20	mA
			T _J = 100°C		14	48	mA
		Standby mode ⁵ or Sleep mode ⁶ , V _{CC} = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	12	mA
	current	VCC33 = 3.63 V	T _J = 85°C		9.8	12	mA
			T _J = 100°C		10.7	15	mA
		Operational standby, only	T _J = 25°C		0.30	2	mA
		Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 85°C		0.30	2	mA
		····	T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63 V	T _J = 25°C		2.9	2.9	mA
			T _J = 85°C		2.9	3.0	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		17	18	μA
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ , VCCIx = 3.63 V	T _J = 25°C		260	437	μA
			T _J = 85°C		260	437	μA
			T _J = 100°C		260	437	μA
IJTAG	JTAG I/O quiescent current Programming supply current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP		Non-programming mode, VPUMP = 3.63 V	T _J = 25°C		37	80	μA
			T _J = 85°C		37	80	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Static Power Consumption of Various Internal Resources

Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices

1								1
		Power	Device-Specific Static Contribution			ibutions		
Parameter	Definition	Supply		AFS1500	AFS600	AFS250	AFS090	Units
PDC1	Core static power contribution in operating mode	VCC	1.5 V	18	7.5	4.50	3.00	mW
PDC2	Device static power contribution in standby mode	VCC33A	3.3 V 0.66				mW	
PDC3	Device static power contribution in sleep mode	VCC33A	3.3 V	3 V 0.03			mW	
PDC4	NVM static power contribution	VCC	1.5 V	1.5 V 1.19			mW	
PDC5	Analog Block static power contribution of ADC	VCC33A	3.3 V 8.25				mW	
PDC6	Analog Block static power contribution per Quad	VCC33A	3.3 V 3.3			mW		
PDC7	Static contribution per input pin – standard dependent contribution	VCCI	See Table 3-12 on page 3-18					
PDC8	Static contribution per input pin – standard dependent contribution	VCCI	See Table 3-13 on page 3-20					
PDC9	Static contribution for PLL	VCC	1.5 V 2.55 n				mW	

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- The number of NVM blocks used in the design
- The number of Analog Quads used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on page 3-27.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate and write rate to the RAM—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

PLL/CCC Contribution—P_{PLL}

PLL is not used in this application.

 $P_{PLL} = 0 W$

Nonvolatile Memory—P_{NVM}

Nonvolatile memory is not used in this application.

 $P_{NVM} = 0 W$

Crystal Oscillator—P_{XTL-OSC}

The application utilizes standby mode. The crystal oscillator is assumed to be active.

Operating Mode

P_{XTL-OSC} = PAC18

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Standby Mode

P_{XTL-OSC} = PAC18

P_{XTL-OSC} = 0.63 mW

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator—P_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

 $P_{RC-OSC} = 3.30 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System—P_{AB}

Number of Quads used: N_{QUADS} = 4

Operating Mode

P_{AB} = PAC20

 P_{AB} = 3.00 mW

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB} P_{DYN} = 41.28 mW + 21.1 mW + 4.35 mW + 19.25 mW + 1.30 mW + 47.47 mW + 1.38 mW + 0 + 0 + 0 + 0.63 mW + 3.30 mW + 3.00 mW

P_{DYN} = 143.06 mW

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$ $P_{DYN} = 0.63 \text{ mW}$

Sleep Mode

 $P_{DYN} = 0 W$

Fusion Family of Mixed Signal FPGAs

PQ208			PQ208			
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Functior	
74	AV2	AV4	111	VCCNVM	VCCNVM	
75	AC2	AC4	112	VCC	VCC	
76	AG2	AG4	112	VCC	VCC	
77	AT2	AT4	113	VPUMP	VPUMP	
78	ATRTN1	ATRTN2	114	GNDQ	NC	
79	AT3	AT5	115	VCCIB1	ТСК	
80	AG3	AG5	116	ТСК	TDI	
81	AC3	AC5	117	TDI	TMS	
82	AV3	AV5	118	TMS	TDO	
83	AV4	AV6	119	TDO	TRST	
84	AC4	AC6	120	TRST	VJTAG	
85	AG4	AG6	121	VJTAG	IO57NDB2V0	
86	AT4	AT6	122	IO57NDB1V0	GDC2/IO57PDB2	
87	ATRTN2	ATRTN3	123	GDC2/IO57PDB1V0	IO56NDB2V0	
88	AT5	AT7	124	IO56NDB1V0	GDB2/IO56PDB2	
89	AG5	AG7	125	GDB2/IO56PDB1V0	IO55NDB2V0	
90	AC5	AC7	126	VCCIB1	GDA2/IO55PDB2	
91	AV5	AV7	127	GND	GDA0/IO54NDB2	
92	NC	AV8	128	IO55NDB1V0	GDA1/IO54PDB2	
93	NC	AC8	129	GDA2/IO55PDB1V0	VCCIB2	
94	NC	AG8	130	GDA0/IO54NDB1V0	GND	
95	NC	AT8	131	GDA1/IO54PDB1V0	VCC	
96	NC	ATRTN4	132	GDB0/IO53NDB1V0	GCA0/IO45NDB2	
97	NC	AT9	133	GDB1/IO53PDB1V0	GCA1/IO45PDB2	
98	NC	AG9	134	GDC0/IO52NDB1V0	GCB0/IO44NDB2	
99	NC	AC9	135	GDC1/IO52PDB1V0	GCB1/IO44PDB2	
100	NC	AV9	136	IO51NSB1V0	GCC0/IO43NDB2	
101	GNDAQ	GNDAQ			0	
102	VCC33A	VCC33A	137	VCCIB1	GCC1/IO43PDB2	
103	ADCGNDREF	ADCGNDREF	138	GND	IO42NDB2V0	
104	VAREF	VAREF	139	VCC	IO42PDB2V0	
105	PUB	PUB	140	IO50NDB1V0	IO41NDB2V0	
106	VCC33A	VCC33A	141	IO50PDB1V0	GCC2/IO41PDB2	
107	GNDA	GNDA	142	GCA0/IO49NDB1V0	VCCIB2	
108	PTEM	PTEM	143	GCA1/IO49PDB1V0	GND	
109	PTBASE	PTBASE	144	GCB0/IO48NDB1V0	VCC	
110	GNDNVM	GNDNVM	145	GCB1/IO48PDB1V0	IO40NDB2V0	
	<u>I</u>		146	GCC0/IO47NDB1V0	GCB2/IO40PDB2	

Package Pin Assignments

FG256						
Pin Number	AFS090 Function AFS250 Function		AFS600 Function	AFS1500 Function		
H3	XTAL2	XTAL2	XTAL2	XTAL2		
H4	XTAL1	XTAL1	XTAL1	XTAL1		
H5	GNDOSC	GNDOSC	GNDOSC	GNDOSC		
H6	VCCOSC	VCCOSC	VCCOSC	VCCOSC		
H7	VCC	VCC	VCC	VCC		
H8	GND	GND	GND	GND		
H9	VCC	VCC	VCC	VCC		
H10	GND	GND	GND	GND		
H11	GDC0/IO38NDB1V0	IO51NDB1V0	IO47NDB2V0	IO69NDB2V0		
H12	GDC1/IO38PDB1V0	IO51PDB1V0	IO47PDB2V0	IO69PDB2V0		
H13	GDB1/IO39PDB1V0	GCA1/IO49PDB1V0	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0		
H14	GDB0/IO39NDB1V0	GCA0/IO49NDB1V0	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0		
H15	GCA0/IO36NDB1V0	GCB0/IO48NDB1V0	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0		
H16	GCA1/IO36PDB1V0	GCB1/IO48PDB1V0	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0		
J1	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0		
J2	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0		
J3	IO43NDB3V0	GFB0/IO67NDB3V0	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0		
J4	GEC2/IO43PDB3V0	GFB1/IO67PDB3V0	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0		
J5	NC	GFC0/IO68NDB3V0	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0		
J6	NC	GFC1/IO68PDB3V0	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0		
J7	GND	GND	GND	GND		
J8	VCC	VCC	VCC	VCC		
J9	GND	GND	GND	GND		
J10	VCC	VCC	VCC	VCC		
J11	GDC2/IO41NPB1V0	IO56NPB1V0	IO56NPB2V0	IO83NPB2V0		
J12	NC	GDB0/IO53NPB1V0	GDB0/IO53NPB2V0	GDB0/IO80NPB2V0		
J13	NC	GDA1/IO54PDB1V0	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0		
J14	GDA0/IO40PDB1V0	GDC1/IO52PPB1V0	GDC1/IO52PPB2V0	GDC1/IO79PPB2V0		
J15	NC	IO50NPB1V0	IO51NSB2V0	IO77NSB2V0		
J16	GDA2/IO40NDB1V0	GDC0/IO52NPB1V0	GDC0/IO52NPB2V0	GDC0/IO79NPB2V0		
K1	NC	IO65NPB3V0	IO67NPB4V0	IO92NPB4V0		
K2	VCCIB3	VCCIB3	VCCIB4	VCCIB4		
K3	NC	IO65PPB3V0	IO67PPB4V0	IO92PPB4V0		
K4	NC	IO64PDB3V0	IO65PDB4V0	IO96PDB4V0		
K5	GND	GND	GND GND			
K6	NC	IO64NDB3V0	IO65NDB4V0 IO96NDB4V			
K7	VCC	VCC	VCC	VCC		
K8	GND	GND	GND	GND		

Package Pin Assignments

FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
L17	VCCIB2	VCCIB2	N8	GND	GND	
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND	
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC	
L20	VCCIB2	VCCIB2	N11	GND	GND	
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC	
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND	
M1	NC	IO103PDB4V0	N14	VCC	VCC	
M2	XTAL1	XTAL1	N15	GND	GND	
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0	
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0	
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND	
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0	
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0	
M8	VCCIB4	VCCIB4	N21	GND	GND	
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0	
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0	
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0	
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0	
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0	
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0	
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0	
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0	
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4	
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC	
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND	
M20	VCCIB2	VCCIB2	P11	VCC	VCC	
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND	
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC	
N1	NC	IO103NDB4V0	P14	GND	GND	
N2	GND	GND	P15	VCCIB2	VCCIB2	
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0	
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0	
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0	
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0	
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0	

🌜 Microsemi.

Package Pin Assignments

FG676			FG676	FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	
L17	VCCIB2	N1	NC	P11	VCC	
L18	GCB2/IO60PDB2V0	N2	NC	P12	GND	
L19	IO58NDB2V0	N3	IO108NDB4V0	P13	VCC	
L20	IO57NDB2V0	N4	VCCOSC	P14	GND	
L21	IO59NDB2V0	N5	VCCIB4	P15	VCC	
L22	GCC2/IO61PDB2V0	N6	XTAL2	P16	GND	
L23	IO55PPB2V0	N7	GFC1/IO107PDB4V0	P17	VCCIB2	
L24	IO56PDB2V0	N8	VCCIB4	P18	IO70NDB2V0	
L25	IO55NPB2V0	N9	GFB1/IO106PDB4V0	P19	VCCIB2	
L26	GND	N10	VCCIB4	P20	IO69NDB2V0	
M1	NC	N11	GND	P21	GCA0/IO64NDB2V0	
M2	VCCIB4	N12	VCC	P22	VCCIB2	
M3	GFC2/IO108PDB4V0	N13	GND	P23	GCB0/IO63NDB2V0	
M4	GND	N14	VCC	P24	GCB1/IO63PDB2V0	
M5	IO109NDB4V0	N15	GND	P25	IO66NDB2V0	
M6	IO110NDB4V0	N16	VCC	P26	IO67PDB2V0	
M7	GND	N17	VCCIB2	R1	NC	
M8	IO104NDB4V0	N18	IO70PDB2V0	R2	VCCIB4	
M9	IO111NDB4V0	N19	VCCIB2	R3	IO103NDB4V0	
M10	GND	N20	IO69PDB2V0	R4	GND	
M11	VCC	N21	GCA1/IO64PDB2V0	R5	IO101PDB4V0	
M12	GND	N22	VCCIB2	R6	IO100NPB4V0	
M13	VCC	N23	GCC0/IO62NDB2V0	R7	GND	
M14	GND	N24	GCC1/IO62PDB2V0	R8	IO99PDB4V0	
M15	VCC	N25	IO66PDB2V0	R9	IO97PDB4V0	
M16	GND	N26	IO65NDB2V0	R10	GND	
M17	GND	P1	NC	R11	GND	
M18	IO60NDB2V0	P2	NC	R12	VCC	
M19	IO58PDB2V0	P3	IO103PDB4V0	R13	GND	
M20	GND	P4	XTAL1	R14	VCC	
M21	IO68NPB2V0	P5	VCCIB4	R15	GND	
M22	IO61NDB2V0	P6	GNDOSC	R16	VCC	
M23	GND	P7	GFC0/IO107NDB4V0	R17	GND	
M24	IO56NDB2V0	P8	VCCIB4	R18	GDB2/IO83PDB2V0	
M25	VCCIB2	P9	GFB0/IO106NDB4V0	R19	IO78PDB2V0	
M26	IO65PDB2V0	P10	VCCIB4	R20	GND	

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "Fusion Device Status" table, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.