

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	93
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs250-2pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 V Voltage Regulator

The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-31 shows the hook-up of the 1.5 V voltage regulator to an external pass transistor.

Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported is 0.5 A. Transistors with different gain can also be used for different current requirements.

Table 2-18 • Electrical Characteristics

Symbol	Parameter	Condition		Min	Typical	Max	Units
VOUT	Output Voltage	Tj = 25°C		1.425	1.5	1.575	V
ICC33A	Operation Current	Tj = 25⁰C	ILOAD = 1 mA		11		mA
			ILOAD = 100 mA		11		mA
			ILOAD = 0.5 A		30		mA
∆VOUT	Load Regulation	Tj = 25°C	ILOAD = 1 mA to 0.5 A		90		mV
	Line Regulation	Tj = 25°C	VCC33A = 2.97 V to 3.63 V				
			ILOAD = 1 mA		10.6		mV/V
			VCC33A = 2.97 V to 3.63 V				
			ILOAD = 100 mA		12.1		mV/V
∆VOUT			VCC33A = 2.97 V to 3.63 V				
			ILOAD = 500 mA		10.6		mV/V
	Dropout Voltage*	Tj = 25⁰C	ILOAD = 1 mA		0.63		V
			ILOAD = 100 mA		0.84		V
			ILOAD = 0.5 A		1.35		V
IPTBASE	PTBase Current	Tj = 25°C	ILOAD = 1 mA		48		μA
			ILOAD = 100 mA		736		μA
			ILOAD = 0.5 A		12	20	mA

VCC33A = 3.3 V

Note: *Data collected with 2N2222A.

Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal. FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation

Write operations are initiated with the assertion of the WEN signal. Figure 2-35 on page 2-45 illustrates the multiple Write operations.

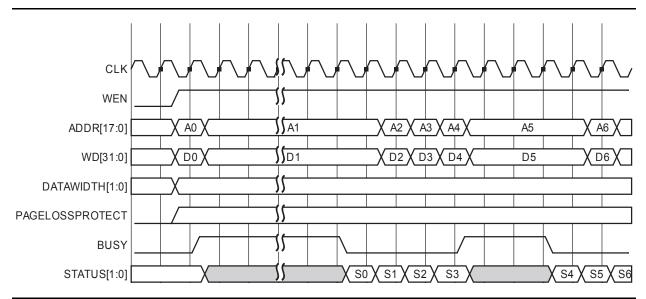


Figure 2-35 • FB Write Waveform

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a block from the array into the block register (5 cycles) and then write the block register to the page buffer (1 cycle) and if necessary, when the copy is complete, reading the block being written from the page buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS indicates that an error was detected during the operation and the write was not performed. Note that the STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before saving it to nonvolatile memory.

Write errors include the following:

- 1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not performed.
- 2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled (STATUS = '11'). The write is not performed.

The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

WIDTHA1, WIDTHA0	WIDTHB1, WIDTHB0	D×W					
00	00	4k×1					
01	01	2k×2					
10	10	1k×4					
11	11	512×9					
Note: The aspect ratio settings are constant and cannot be changed on the fly.							

BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, the corresponding port's outputs hold the previous value.

WENA and WENB

These signals switch the RAM between read and write mode for the respective ports. A Low on these signals indicates a write operation, and a High indicates a read.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

PIPEA and PIPEB

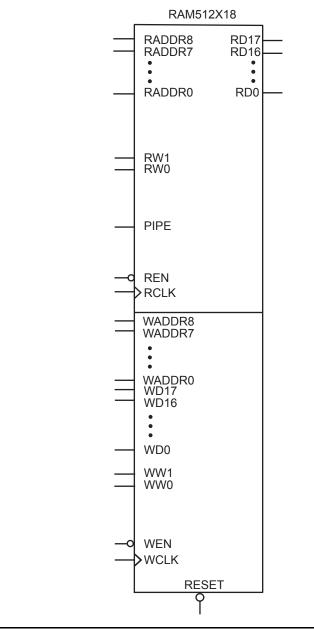
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB

These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on these signals makes the output retain data from the previous read. A High indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

RESET

This active low signal resets the output to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.


ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W	ADDRx				
	Unused	Used			
4k×1	None	[11:0]			
2k×2	[11]	[10:0]			
1k×4	[11:10]	[9:0]			
512×9	[11:9]	[8:0]			

Note: The "x" in ADDRx implies A or B.

RAM512X18 Description

Figure 2-49 • RAM512X18

Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of one. An Ideal Prescaler will have offset equal to $\frac{1}{2}$ of LSB voltage. Offset error is a positive or negative when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In the example shown in Figure 2-68, the Total Channel Error would be a negative number.

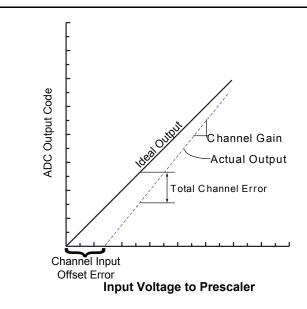


Figure 2-68 • Total Channel Error Example

Current Monitor

The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to monitor current across an external sense resistor (Figure 2-70). To support this current monitor function, a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be configured for use as a direct voltage input or scaled through the AV prescaler independently of it's use as an input to the AC pad's differential amplifier.

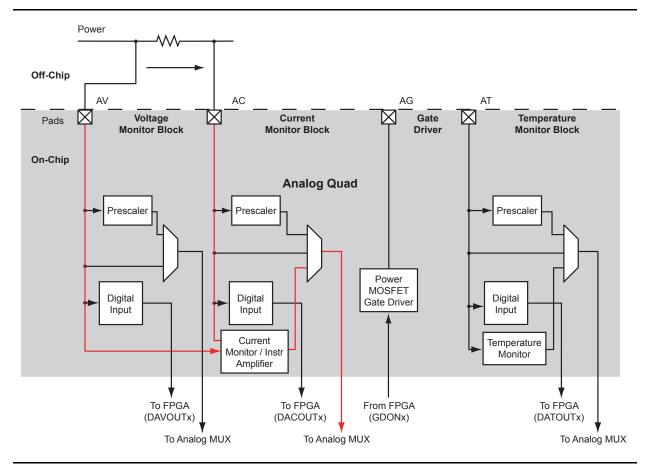


Figure 2-70 • Analog Quad Current Monitor Configuration

To initiate a current measurement, the appropriate Current Monitor Strobe (CMSTB) signal on the AB macro must be asserted low for at least t_{CMSLO} in order to discharge the previous measurement. Then CMSTB must be asserted high for at least t_{CMSET} prior to asserting the ADCSTART signal. The CMSTB must remain high until after the SAMPLE signal is de-asserted by the AB macro. Note that the minimum sample time cannot be less than t_{CMSHI} . Figure 2-71 shows the timing diagram of CMSTB in relationship with the ADC control signals.

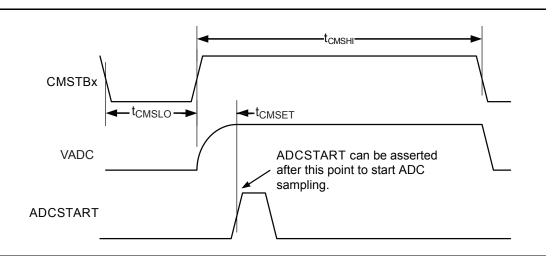


Figure 2-71 • Timing Diagram for Current Monitor Strobe

Figure 2-72 illustrates positive current monitor operation. The differential voltage between AV and AC goes into the 10× amplifier and is then converted by the ADC. For example, a current of 1.5 A is drawn from a 10 V supply and is measured by the voltage drop across a 0.050 Ω sense resistor, The voltage drop is amplified by ten times by the amplifier and then measured by the ADC. The 1.5 A current creates a differential voltage across the sense resistor of 75 mV. This becomes 750 mV after amplification. Thus, the ADC measures a current of 1.5 A as 750 mV. Using an ADC with 8-bit resolution and VAREF of 2.56 V, the ADC result is decimal 75. EQ 3 shows how to compute the current from the ADC result.

$$||| = (ADC \times V_{AREF}) / (10 \times 2^{N} \times R_{sense})$$

EQ 3

where

I is the current flowing through the sense resistor

ADC is the result from the ADC

VAREF is the Reference voltage

N is the number of bits

Rsense is the resistance of the sense resistor

Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in Figure 2-77.

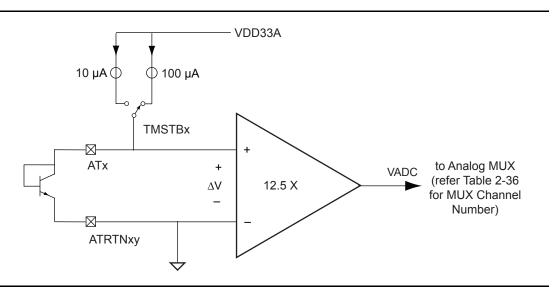
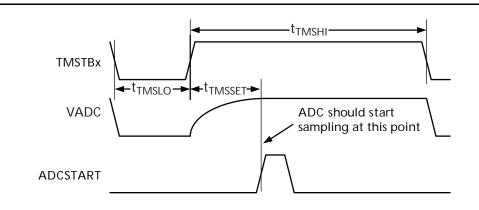
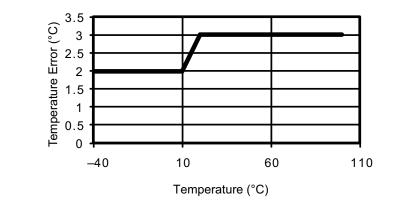
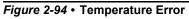



Figure 2-77 • Block Diagram for Temperature Monitor Circuit

The Fusion approach to measuring temperature is forcing two different currents through the diode with a ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the setup time. Figure 2-78 shows the timing diagram.




Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive strength ceases and becomes a 1 µA sink into the Fusion device.

Typical Performance Characteristics

Temperature Errror vs. Die Temperature

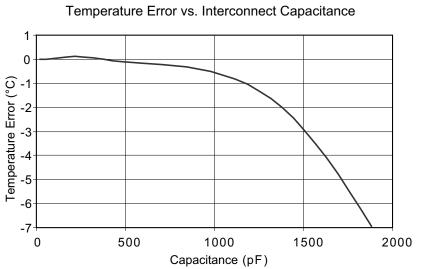


Figure 2-95 • Effect of External Sensor Capacitance

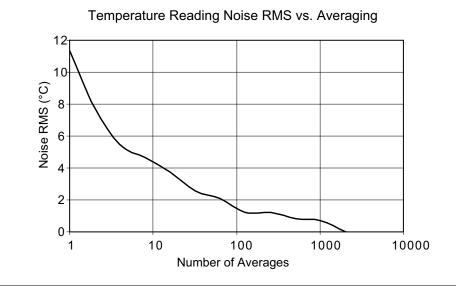


Figure 2-96 • Temperature Reading Noise When Averaging is Used

Analog System Characteristics

Table 2-49 • Analog Channel Specifications

Commercial Temperature Range Conditions, T_J = 85°C (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Voltage Monit	tor Using Analog Pads AV,	AC and AT (using prescaler)			1	
	Input Voltage (Prescaler)	Refer to Table 3-2 on page 3-3				
VINAP	Uncalibrated Gain and Offset Errors	Refer to Table 2-51 on page 2-122				
	Calibrated Gain and Offset Errors	Refer to Table 2-52 on page 2-123				
	Bandwidth1				100	KHz
	Input Resistance	Refer to Table 3-3 on page 3-4				
	Scaling Factor	Prescaler modes (Table 2-57 on page 2-130)				
	Sample Time		10			μs
Current Moni	tor Using Analog Pads AV	and AC				
VRSM ¹	Maximum Differential Input Voltage				VAREF / 10	mV
	Resolution	Refer to "Current Monitor" section				
	Common Mode Range				- 10.5 to +12	V
CMRR	Common Mode Rejection Ratio	DC – 1 KHz		60		dB
		1 KHz - 10 KHz		50		dB
		> 10 KHz		30		dB
t _{CMSHI}	Strobe High time		ADC conv. time		200	μs
t _{CMSHI}	Strobe Low time		5			μs
t _{CMSHI}	Settling time		0.02			μs
	Accuracy	Input differential voltage > 50 mV			-2 -(0.05 x VRSM) to +2 + (0.05 x VRSM)	mV

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

- 3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.
- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Fusion Family of Mixed Signal FPGAs

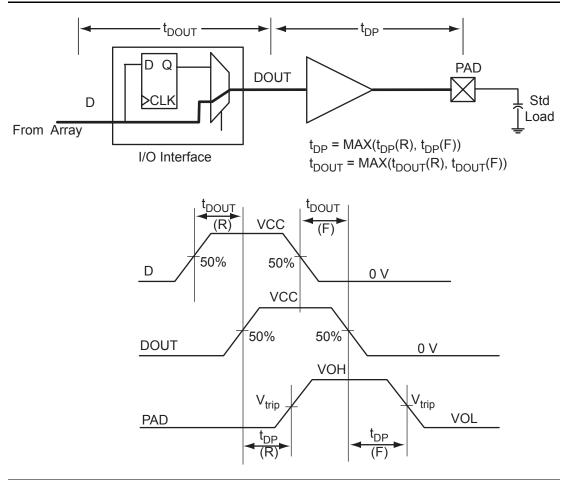


Figure 2-117 • Output Buffer Model and Delays (example)

Device Architecture

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
Applicable to Standard I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

vcci	R _{(WEAK F} (oh	PULL-UP) ms)	R _(WEAK PULL-DOWN) ² (ohms)		
	Min.	Max.	Min.	Max.	
3.3 V	10 k	45 k	10 k	45 k	
2.5 V	11 k	55 k	12 k	74 k	
1.8 V	18 k	70 k	17 k	110 k	
1.5 V	19 k	90 k	19 k	140 k	

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_{WEAK PULL-UP-MIN}
 R_(WEAK PULL-DOWN-MAX) = VOLspec / I_{WEAK PULL-DOWN-MIN}

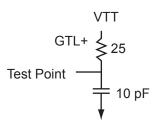
Device Architecture

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-144 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	181	268	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-126 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-146 • 3.3 V GTL+

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.56	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.49	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings¹ (continued)

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Differential			•	•
LVDS	-	2.5	7.74	88.92
LVPECL	-	3.3	19.54	166.52
Applicable to Standard I/O Ban	s			
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	_	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.

2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

Example of Power Calculation

This example considers a shift register with 5,000 storage tiles, including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.

The device used is a commercial AFS600 device operating in typical conditions.

The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

Global Clock Contribution—P_{CLOCK}

 F_{CLK} = 50 MHz Number of sequential VersaTiles: N_{S-CELL} = 5,000 Estimated number of Spines: N_{SPINES} = 5 Estimated number of Rows: N_{ROW} = 313

Operating Mode

$$\begin{split} & \mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{PAC1} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{PAC2} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{PAC3} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{PAC4}) * \mathsf{F}_{\mathsf{CLK}} \\ & \mathsf{P}_{\mathsf{CLOCK}} = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50 \\ & \mathsf{P}_{\mathsf{CLOCK}} = 41.28 \ \mathsf{mW} \end{split}$$

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions— P_{S-CELL} , P_{C-CELL} , and P_{NET}

 $\label{eq:F_CLK} \ensuremath{\mathsf{F_{CLK}}}\xspace = 50 \ensuremath{\,\mathsf{MHz}}\xspace \\ \ensuremath{\mathsf{Number}}\xspace of sequential VersaTiles: \ensuremath{\mathsf{N}_{S-CELL}}\xspace = 5,000 \\ \ensuremath{\mathsf{Number}}\xspace of versaTiles: \ensuremath{\mathsf{N}_{C-CELL}}\xspace = 6,000 \\ \ensuremath{\mathsf{Estimated}}\xspace toggle rate of VersaTile outputs: \ensuremath{\alpha_1}\xspace = 0.1 \ensuremath{\,(10\%)}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{$

Operating Mode

$$\begin{split} \mathsf{P}_{S\text{-}CELL} &= \mathsf{N}_{S\text{-}CELL} * (\mathsf{P}_{\mathsf{AC5}}\text{+} (\alpha_1 \, / \, 2) * \mathsf{PAC6}) * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{S\text{-}CELL} &= 5,000 * (0.00007 + (0.1 \, / \, 2) * 0.00029) * 50 \\ \mathsf{P}_{S\text{-}CELL} &= 21.13 \text{ mW} \end{split}$$

 $P_{C-CELL} = N_{C-CELL}^* (\alpha_1 / 2) * PAC7 * F_{CLK}$ $P_{C-CELL} = 6,000 * (0.1 / 2) * 0.00029 * 50$ $P_{C-CELL} = 4.35 \text{ mW}$

$$\begin{split} \mathsf{P}_{\mathsf{NET}} &= (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 \,/\, 2) * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{NET}} &= (5,000 + 6,000) * (0.1 \,/\, 2) * 0.0007 * 50 \\ \mathsf{P}_{\mathsf{NET}} &= 19.25 \text{ mW} \end{split}$$

 $P_{LOGIC} = P_{S-CELL} + P_{C-CELL} + P_{NET}$ $P_{LOGIC} = 21.13 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW}$ $P_{LOGIC} = 44.73 \text{ mW}$

Standby Mode and Sleep Mode

PLL/CCC Contribution—P_{PLL}

PLL is not used in this application.

 $P_{PLL} = 0 W$

Nonvolatile Memory—P_{NVM}

Nonvolatile memory is not used in this application.

 $P_{NVM} = 0 W$

Crystal Oscillator—P_{XTL-OSC}

The application utilizes standby mode. The crystal oscillator is assumed to be active.

Operating Mode

P_{XTL-OSC} = PAC18

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Standby Mode

P_{XTL-OSC} = PAC18

P_{XTL-OSC} = 0.63 mW

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator—P_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

 $P_{RC-OSC} = 3.30 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System—P_{AB}

Number of Quads used: N_{QUADS} = 4

Operating Mode

P_{AB} = PAC20

 P_{AB} = 3.00 mW

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB} P_{DYN} = 41.28 mW + 21.1 mW + 4.35 mW + 19.25 mW + 1.30 mW + 47.47 mW + 1.38 mW + 0 + 0 + 0 + 0.63 mW + 3.30 mW + 3.00 mW

P_{DYN} = 143.06 mW

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$ $P_{DYN} = 0.63 \text{ mW}$

Sleep Mode

 $P_{DYN} = 0 W$

	QN180		QN180			
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function	
B9	XTAL2	XTAL2	B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0	
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	B46	GNDQ	GNDQ	
B11	GEB2/IO42PDB3V0	IO60NDB3V0	B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0	
B12	VCC	VCC	B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0	
B13	VCCNVM	VCCNVM	B49	VCC	VCC	
B14	VCC15A	VCC15A	B50	GBC0/IO25RSB0V0	IO31RSB0V0	
B15	NCAP	NCAP	B51	IO23RSB0V0	IO28RSB0V0	
B16	VCC33N	VCC33N	B52	IO20RSB0V0	IO25RSB0V0	
B17	GNDAQ	GNDAQ	B53	VCC	VCC	
B18	AC0	AC0	B54	IO11RSB0V0	IO14RSB0V0	
B19	AT0	AT0	B55	IO08RSB0V0	IO11RSB0V0	
B20	AT1	AT1	B56	GAC1/IO05RSB0V0	IO08RSB0V0	
B21	AV1	AV1	B57	VCCIB0	VCCIB0	
B22	AC2	AC2	B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0	
B23	ATRTN1	ATRTN1	B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0	
B24	AG3	AG3	B60	VCCPLA	VCCPLA	
B25	AV3	AV3	C1	NC	NC	
B26	AG4	AG4	C2	NC	VCCIB3	
B27	ATRTN2	ATRTN2	C3	GND	GND	
B28	NC	AC5	C4	NC	GFC2/IO69PPB3V0	
B29	VCC33A	VCC33A	C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0	
B30	VAREF	VAREF	C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0	
B31	PUB	PUB	C7	VCCIB3	NC	
B32	PTEM	PTEM	C8	GND	GND	
B33	GNDNVM	GNDNVM	C9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	
B34	VCC	VCC	C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0	
B35	ТСК	ТСК	C11	NC	GEA2/IO58PSB3V0	
B36	TMS	TMS	C12	NC	NC	
B37	TRST	TRST	C13	GND	GND	
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0	C14	NC	NC	
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0	C15	NC	NC	
B40	VCCIB1	VCCIB1	C16	GNDA	GNDA	
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0	C17	NC	NC	
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0	C18	NC	NC	
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0	C19	NC	NC	
B44	VCC	VCC	C20	NC	NC	

Package Pin Assignments

	FG484		FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
L17	VCCIB2	VCCIB2	N8	GND	GND	
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND	
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC	
L20	VCCIB2	VCCIB2	N11	GND	GND	
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC	
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND	
M1	NC	IO103PDB4V0	N14	VCC	VCC	
M2	XTAL1	XTAL1	N15	GND	GND	
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0	
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0	
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND	
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0	
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0	
M8	VCCIB4	VCCIB4	N21	GND	GND	
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0	
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0	
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0	
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0	
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0	
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0	
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0	
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0	
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4	
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC	
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND	
M20	VCCIB2	VCCIB2	P11	VCC	VCC	
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND	
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC	
N1	NC	IO103NDB4V0	P14	GND	GND	
N2	GND	GND	P15	VCCIB2	VCCIB2	
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0	
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0	
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0	
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0	
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0	

	FG484		FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
P21	IO51PDB2V0	IO73PDB2V0	T12	AV5	AV5	
P22	IO49NDB2V0	IO71NDB2V0	T13	AC5	AC5	
R1	IO69PDB4V0	IO102PDB4V0	T14	NC	NC	
R2	IO69NDB4V0	IO102NDB4V0	T15	GNDA	GNDA	
R3	VCCIB4	VCCIB4	T16	NC	IO77PPB2V0	
R4	IO64PDB4V0	IO91PDB4V0	T17	NC	IO74PDB2V0	
R5	IO64NDB4V0	IO91NDB4V0	T18	VCCIB2	VCCIB2	
R6	NC	IO92PDB4V0	T19	IO55NDB2V0	IO82NDB2V0	
R7	GND	GND	T20	GDA2/IO55PDB2V0	GDA2/IO82PDB2V0	
R8	GND	GND	T21	GND	GND	
R9	VCC33A	VCC33A	T22	GDC1/IO52PDB2V0	GDC1/IO79PDB2V0	
R10	GNDA	GNDA	U1	IO67PDB4V0	IO98PDB4V0	
R11	VCC33A	VCC33A	U2	IO67NDB4V0	IO98NDB4V0	
R12	GNDA	GNDA	U3	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0	
R13	VCC33A	VCC33A	U4	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0	
R14	GNDA	GNDA	U5	GND	GND	
R15	VCC	VCC	U6	VCCNVM	VCCNVM	
R16	GND	GND	U7	VCCIB4	VCCIB4	
R17	NC	IO74NDB2V0	U8	VCC15A	VCC15A	
R18	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	U9	GNDA	GNDA	
R19	GDB0/IO53NDB2V0	GDB0/IO80NDB2V0	U10	AC4	AC4	
R20	VCCIB2	VCCIB2	U11	VCC33A	VCC33A	
R21	IO50NDB2V0	IO75NDB2V0	U12	GNDA	GNDA	
R22	IO50PDB2V0	IO75PDB2V0	U13	AG5	AG5	
T1	NC	IO100PPB4V0	U14	GNDA	GNDA	
T2	GND	GND	U15	PUB	PUB	
Т3	IO66PDB4V0	IO95PDB4V0	U16	VCCIB2	VCCIB2	
T4	IO66NDB4V0	IO95NDB4V0	U17	TDI	TDI	
Т5	VCCIB4	VCCIB4	U18	GND	GND	
Т6	NC	IO92NDB4V0	U19	IO57NDB2V0	IO84NDB2V0	
Τ7	GNDNVM	GNDNVM	U20	GDC2/IO57PDB2V0	GDC2/IO84PDB2V0	
Т8	GNDA	GNDA	U21	NC	IO77NPB2V0	
Т9	NC	NC	U22	GDC0/IO52NDB2V0	GDC0/IO79NDB2V0	
T10	AV4	AV4	V1	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0	
T11	NC	NC	V2	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0	