
E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	93
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs250-pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – Fusion Device Family Overview

Introduction

The Fusion mixed signal FPGA satisfies the demand from system architects for a device that simplifies design and unleashes their creativity. As the world's first mixed signal programmable logic family, Fusion integrates mixed signal analog, flash memory, and FPGA fabric in a monolithic device. Fusion devices enable designers to quickly move from concept to completed design and then deliver feature-rich systems to market. This new technology takes advantage of the unique properties of Microsemi flash-based FPGAs, including a high-isolation, triple-well process and the ability to support high-voltage transistors to meet the demanding requirements of mixed signal system design.

Fusion mixed signal FPGAs bring the benefits of programmable logic to many application areas, including power management, smart battery charging, clock generation and management, and motor control. Until now, these applications have only been implemented with costly and space-consuming discrete analog components or mixed signal ASIC solutions. Fusion mixed signal FPGAs present new capabilities for system development by allowing designers to integrate a wide range of functionality into a single device, while at the same time offering the flexibility of upgrades late in the manufacturing process or after the device is in the field. Fusion devices provide an excellent alternative to costly and

time-consuming mixed signal ASIC designs. In addition, when used in conjunction with the ARM Cortex-M1 processor, Fusion technology represents the definitive mixed signal FPGA platform.

Flash-based Fusion devices are Instant On. As soon as system power is applied and within normal operating specifications, Fusion devices are working. Fusion devices have a 128-bit flash-based lock and industry-leading AES decryption, used to secure programmed intellectual property (IP) and configuration data. Fusion devices are the most comprehensive single-chip analog and digital programmable logic solution available today.

To support this new ground-breaking technology, Microsemi has developed a series of major tool innovations to help maximize designer productivity. Implemented as extensions to the popular Microsemi Libero[®] System-on-Chip (SoC) software, these new tools allow designers to easily instantiate and configure peripherals within a design, establish links between peripherals, create or import building blocks or reference designs, and perform hardware verification. This tool suite will also add comprehensive hardware/software debug capability as well as a suite of utilities to simplify development of embedded soft-processor-based solutions.

General Description

The Fusion family, based on the highly successful ProASIC[®]3 and ProASIC3E flash FPGA architecture, has been designed as a high-performance, programmable, mixed signal platform. By combining an advanced flash FPGA core with flash memory blocks and analog peripherals, Fusion devices dramatically simplify system design and, as a result, dramatically reduce overall system cost and board space.

The state-of-the-art flash memory technology offers high-density integrated flash memory blocks, enabling savings in cost, power, and board area relative to external flash solutions, while providing increased flexibility and performance. The flash memory blocks and integrated analog peripherals enable true mixed-mode programmable logic designs. Two examples are using an on-chip soft processor to implement a fully functional flash MCU and using high-speed FPGA logic to offer system and power supervisory capabilities. Instant On, and capable of operating from a single 3.3 V supply, the Fusion family is ideally suited for system management and control applications.

The devices in the Fusion family are categorized by FPGA core density. Each family member contains many peripherals, including flash memory blocks, an analog-to-digital-converter (ADC), high-drive outputs, both RC and crystal oscillators, and a real-time counter (RTC). This provides the user with a high level of flexibility and integration to support a wide variety of mixed signal applications. The flash memory block capacity ranges from 2 Mbits to 8 Mbits. The integrated 12-bit ADC supports up to 30 independently configurable input channels.

VersaTile Characteristics

Sample VersaTile Specifications—Combinatorial Module

The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the *IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide*.

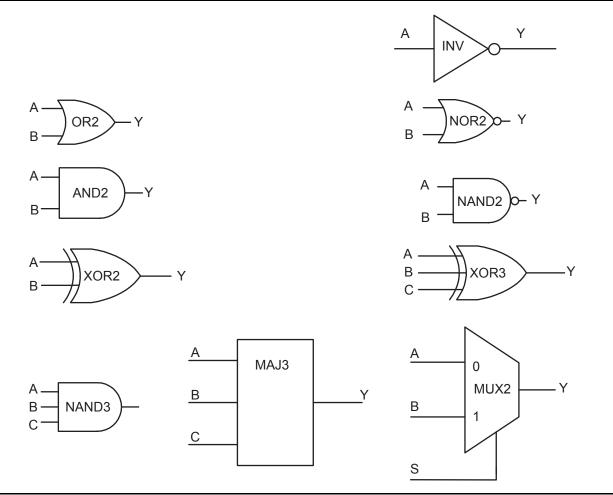


Figure 2-3 • Sample of Combinatorial Cells

Read Operation

Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status registers. Read operations support a normal read and a read-ahead mode (done by asserting READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode (Figure 2-39) reads of the flash memory block interface.

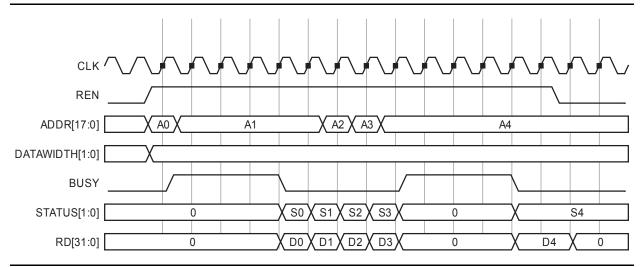


Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

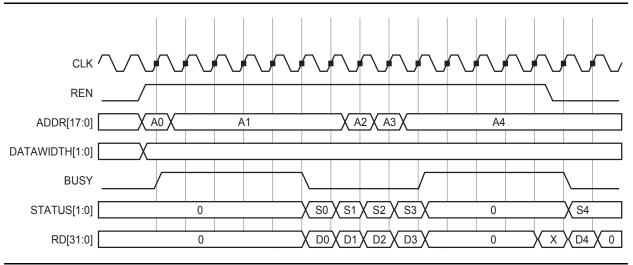


Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)

Device Architecture

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-29).

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.

Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W	DINx/DOUTx					
	Unused	Used				
4k×1	[8:1]	[0]				
2k×2	[8:2]	[1:0]				
1k×4	[8:4]	[3:0]				
512×9	None	[8:0]				

Note: The "x" in DINx and DOUTx implies A or B.

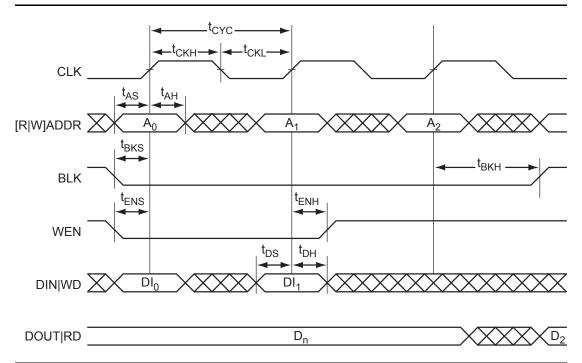


Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.

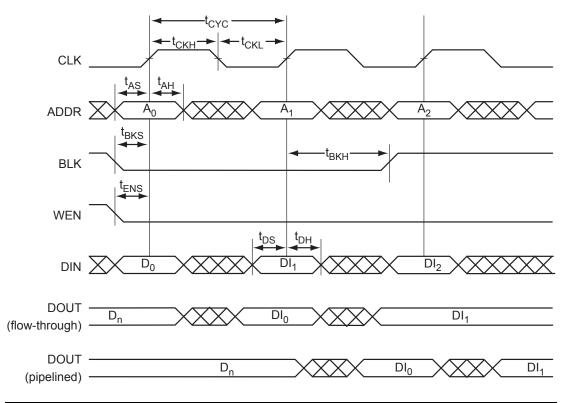
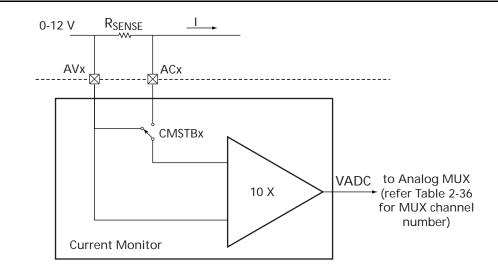



Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10× amplification, the maximum measurable difference between the AV and AC pads is V_{AREF} / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power (P = I² × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1 – 2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05
> 4 A – 8 A	0.0125 – 0.025
> 8 A – 12 A	0.00625 – 0.02

Table 2-37 • Recommended Resistor for Different Current Range Measurement

EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

EQ 16

EQ 17

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)): (VIN – 0.5 × LSB Value) = VIN(1 – $e^{-t/RC}$)

$$1 - e^{-e^{-1}}$$

Solving EQ 17:

EQ 18

where $R = Z_{INAD} + R_{SOURCE}$ and $C = C_{INAD}$. Calculate the value of STC by using EQ 19.

t_{SAMPLE} = (2 + STC) x (1 / ADCCLK) or t_{SAMPLE} = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

where VIN is the ADC reference voltage (VREF)

 t_{SAMPLE} = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (t_{SAMPLE} / (1 / 10 MHz)) - 2 = 4.49 - 2 = 2.49.

You must round up to 3 to accommodate the minimum sample time.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF							
Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (μs)							
8	10	0.449					
10	2.5	0.549					
12	0.625	0.649					

VIN = 3.3V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF							
Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)							
8	12.891	0.449					
10	3.223	0.549					
12	0.806	0.649					

Sample Phase

A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20. When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or Temperature Monitor, the minimum sample time for each must be obeyed.

Analog System Characteristics

Table 2-49 • Analog Channel Specifications

Commercial Temperature Range Conditions, T_J = 85°C (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Voltage Monit	tor Using Analog Pads AV,	AC and AT (using prescaler)			1	
	Input Voltage (Prescaler)	Refer to Table 3-2 on page 3-3				
VINAP	Uncalibrated Gain and Offset Errors	Refer to Table 2-51 on page 2-122				
	Calibrated Gain and Offset Errors	Refer to Table 2-52 on page 2-123				
	Bandwidth1				100	KHz
	Input Resistance	Refer to Table 3-3 on page 3-4				
	Scaling Factor	Prescaler modes (Table 2-57 on page 2-130)				
	Sample Time		10			μs
Current Moni	tor Using Analog Pads AV	and AC				
VRSM ¹	Maximum Differential Input Voltage				VAREF / 10	mV
	Resolution	Refer to "Current Monitor" section				
	Common Mode Range				- 10.5 to +12	V
CMRR	Common Mode Rejection Ratio	DC – 1 KHz		60		dB
		1 KHz - 10 KHz		50		dB
		> 10 KHz		30		dB
t _{CMSHI}	Strobe High time		ADC conv. time		200	μs
t _{CMSHI}	Strobe Low time		5			μs
t _{CMSHI}	Settling time		0.02			μs
	Accuracy	Input differential voltage > 50 mV			-2 -(0.05 x VRSM) to +2 + (0.05 x VRSM)	mV

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

- 3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.
- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

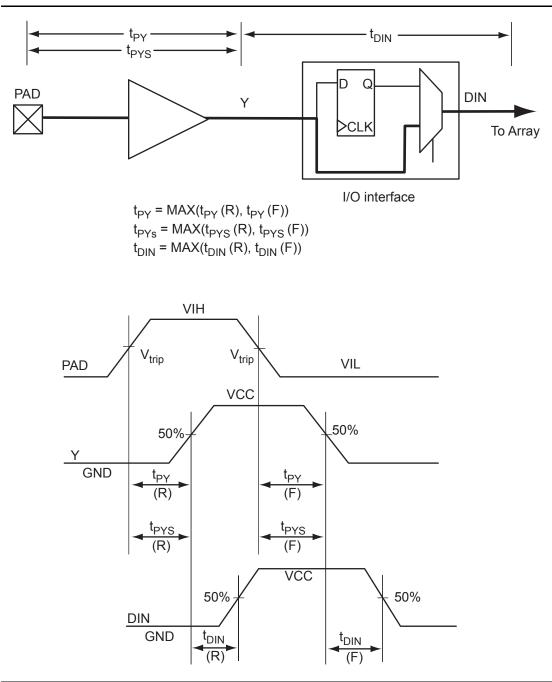
Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

			OUT_DR	IVE (mA)		
I/O Standards	2	4	6	8	Sle	ew .
LVTTL/LVCMOS 3.3 V	3	3	3	3	High	Low
LVCMOS 2.5 V	3	3	3	3	High	Low
LVCMOS 1.8 V	3	3	-	-	High	Low
LVCMOS 1.5 V	3	-	-	-	High	Low

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

	OUT_DRIVE (mA)							
I/O Standards	2	4	6	8	12	16	Sle	ew 🛛
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V	3	3	3	3	3	-	High	Low
LVCMOS 1.8 V	3	3	3	3	-	-	High	Low
LVCMOS 1.5 V	3	3	_	_	-	_	High	Low

	OUT_DRIVE (mA)								
I/O Standards	2	4	6	8	12	16	24	Sle	w
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V/5.0 V	3	3	3	3	3	3	3	High	Low
LVCMOS 1.8 V	3	3	3	3	3	3	-	High	Low
LVCMOS 1.5 V	3	3	3	3	3	-	_	High	Low



Device Architecture

I/O Standard	Input/Output Supply Voltage (VCCI_TYP)	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_TYP)
LVTTL/LVCMOS 3.3 V	3.30 V	-	-
LVCMOS 2.5 V	2.50 V	_	-
LVCMOS 2.5 V / 5.0 V Input	2.50 V	-	-
LVCMOS 1.8 V	1.80 V	_	-
LVCMOS 1.5 V	1.50 V	_	-
PCI 3.3 V	3.30 V	_	_
PCI-X 3.3 V	3.30 V	_	_
GTL+ 3.3 V	3.30 V	1.00 V	1.50 V
GTL+ 2.5 V	2.50 V	1.00 V	1.50 V
GTL 3.3 V	3.30 V	0.80 V	1.20 V
GTL 2.5 V	2.50 V	0.80 V	1.20 V
HSTL Class I	1.50 V	0.75 V	0.75 V
HSTL Class II	1.50 V	0.75 V	0.75 V
SSTL3 Class I	3.30 V	1.50 V	1.50 V
SSTL3 Class II	3.30 V	1.50 V	1.50 V
SSTL2 Class I	2.50 V	1.25 V	1.25 V
SSTL2 Class II	2.50 V	1.25 V	1.25 V
LVDS, BLVDS, M-LVDS	2.50 V	-	-
LVPECL	3.30 V	-	-

Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages

Figure 2-116 • Input Buffer Timing Model and Delays (example)

Device Architecture

Table 2-113 • 2.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.60	8.82	0.04	1.51	1.66	0.43	8.13	8.82	2.72	2.29	10.37	11.05	ns
	-1	0.51	7.50	0.04	1.29	1.41	0.36	6.92	7.50	2.31	1.95	8.82	9.40	ns
	-2	0.45	6.58	0.03	1.13	1.24	0.32	6.07	6.58	2.03	1.71	7.74	8.25	ns
8 mA	Std.	0.60	5.27	0.04	1.51	1.66	0.43	5.27	5.27	3.10	3.03	7.50	7.51	ns
	-1	0.51	4.48	0.04	1.29	1.41	0.36	4.48	4.48	2.64	2.58	6.38	6.38	ns
	-2	0.45	3.94	0.03	1.13	1.24	0.32	3.93	3.94	2.32	2.26	5.60	5.61	ns
12 mA	Std.	0.66	3.74	0.04	1.51	1.66	0.43	3.81	3.49	3.37	3.49	6.05	5.73	ns
	-1	0.56	3.18	0.04	1.29	1.41	0.36	3.24	2.97	2.86	2.97	5.15	4.87	ns
	-2	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
16 mA	Std.	0.66	3.53	0.04	1.51	1.66	0.43	3.59	3.12	3.42	3.62	5.83	5.35	ns
	-1	0.56	3.00	0.04	1.29	1.41	0.36	3.06	2.65	2.91	3.08	4.96	4.55	ns
	-2	0.49	2.63	0.03	1.13	1.24	0.32	2.68	2.33	2.56	2.71	4.35	4.00	ns
24 mA	Std.	0.66	3.26	0.04	1.51	1.66	0.43	3.32	2.48	3.49	4.11	5.56	4.72	ns
	-1	0.56	2.77	0.04	1.29	1.41	0.36	2.83	2.11	2.97	3.49	4.73	4.01	ns
	-2	0.49	2.44	0.03	1.13	1.24	0.32	2.48	1.85	2.61	3.07	4.15	3.52	ns

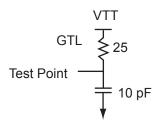
Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

Table 2-141 • Minimum and Maximum DC Input and Output Levels

2.5 GTL		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	124	169	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-125 • AC Loading

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-143 • 2.5 V GTL

```
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.56	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.49	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

3 – DC and Power Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-3.

Symbol	Parameter	Commercial	Industrial	Units		
VCC	DC core supply voltage	-0.3 to 1.65	-0.3 to 1.65	V		
VJTAG	JTAG DC voltage	-0.3 to 3.75	-0.3 to 3.75	V		
VPUMP	Programming voltage	-0.3 to 3.75	-0.3 to 3.75	V		
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	-0.3 to 1.65	V		
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	-0.3 to 3.75	V		
VI	I/O input voltage ¹	enabled) –0.3 V to (VCCI + 1	-0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is			
VCC33A	+3.3 V power supply	-0.3 to 3.75 ²	-0.3 to 3.75 ²	V		
VCC33PMP	+3.3 V power supply	-0.3 to 3.75 ²	-0.3 to 3.75 ²	V		
VAREF	Voltage reference for ADC	-0.3 to 3.75	-0.3 to 3.75	V		
VCC15A	Digital power supply for the analog system	-0.3 to 1.65	-0.3 to 1.65	V		
VCCNVM	Embedded flash power supply	-0.3 to 1.65	-0.3 to 1.65	V		
VCCOSC	Oscillator power supply	-0.3 to 3.75	-0.3 to 3.75	V		

Table 3-1 • Absolute Maximum Ratings

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

Product Grade	Storage Temperature	Element	Grade Programming Cycles	Retention
Commercial	Min. T _J = 0°C	FPGA/FlashROM	500	20 years
	Max. T _J = 85°C	Embedded Flash	< 1,000	20 years
			< 10,000	10 years
			< 15,000	5 years
Industrial	Min. T _J = –40°C	FPGA/FlashROM	500	20 years
	Max. T _J = 100°C	Embedded Flash	< 1,000	20 years
			< 10,000	10 years
			< 15,000	5 years

Table 3-5 • FPGA Programming, Storage, and Operating Limits

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every Fusion device. These circuits ensure easy transition from the powered off state to the powered up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1 on page 3-6.

There are five regions to consider during power-up.

Fusion I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 3-1).
- 2. VCCI > VCC 0.75 V (typical).
- 3. Chip is in the operating mode.

V_{CCI} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V

Ramping down: 0.5 V < trip_point_down < 1.1 V

V_{CC} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V

Ramping down: 0.5 V < trip_point_down < 1 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels. The V_{CC} activation level is specified as 1.1 V worst-case (see Figure 3-1 on page 3-6 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost.

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min.	Тур.	Max.	Unit
IJTAG	JTAG I/O quiescent	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
	current	VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP	Programming supply	Non-programming mode,	T _J = 25°C		39	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		40	80	μA
			T _J = 100°C		40	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM	Reset asserted, V _{CCNVM} = 1.575 V	T _J = 25°C		50	150	μA
	current		T _J =85°C		50	150	μA
			T _J = 100°C		50	150	μA
ICCPLL	1.5 V PLL quiescent	Operational standby	T _J = 25°C		130	200	μA
	current	, VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-8	• AFS1500 Quiescent Supply Current Characteristics (continued)
-----------	--

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

	FG256							
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
R5	AV0	AV0	AV2	AV2				
R6	AT0	AT0	AT2	AT2				
R7	AV1	AV1	AV3	AV3				
R8	AT3	AT3	AT5	AT5				
R9	AV4	AV4	AV6	AV6				
R10	NC	AT5	AT7	AT7				
R11	NC	AV5	AV7	AV7				
R12	NC	NC	AT9	AT9				
R13	NC	NC	AG9	AG9				
R14	NC	NC	AC9	AC9				
R15	PUB	PUB	PUB	PUB				
R16	VCCIB1	VCCIB1	VCCIB2	VCCIB2				
T1	GND	GND	GND	GND				
T2	NCAP	NCAP	NCAP	NCAP				
Т3	VCC33N	VCC33N	VCC33N	VCC33N				
T4	NC	NC	ATRTN0	ATRTN0				
T5	AT1	AT1	AT3	AT3				
Т6	ATRTN0	ATRTN0	ATRTN1	ATRTN1				
T7	AT2	AT2	AT4	AT4				
Т8	ATRTN1	ATRTN1	ATRTN2	ATRTN2				
Т9	AT4	AT4	AT6	AT6				
T10	ATRTN2	ATRTN2	ATRTN3	ATRTN3				
T11	NC	NC	AT8	AT8				
T12	NC	NC	ATRTN4	ATRTN4				
T13	GNDA	GNDA	GNDA	GNDA				
T14	VCC33A	VCC33A	VCC33A	VCC33A				
T15	VAREF	VAREF	VAREF	VAREF				
T16	GND	GND	GND	GND				

Package Pin Assignments

	FG484		FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
A1	GND	GND	AA14	AG7	AG7			
A2	VCC	NC	AA15	AG8	AG8			
A3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	AA16	GNDA	GNDA			
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	AA17	AG9	AG9			
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	AA18	VAREF	VAREF			
A6	IO07NDB0V1	IO07NDB0V1	AA19	VCCIB2	VCCIB2			
A7	IO07PDB0V1	IO07PDB0V1	AA20	PTEM	PTEM			
A8	IO10PDB0V1	IO09PDB0V1	AA21	GND	GND			
A9	IO14NDB0V1	IO13NDB0V2	AA22	VCC	NC			
A10	IO14PDB0V1	IO13PDB0V2	AB1	GND	GND			
A11	IO17PDB1V0	IO24PDB1V0	AB2	VCC	NC			
A12	IO18PDB1V0	IO26PDB1V0	AB3	NC	IO94NSB4V0			
A13	IO19NDB1V0	IO27NDB1V1	AB4	GND	GND			
A14	IO19PDB1V0	IO27PDB1V1	AB5	VCC33N	VCC33N			
A15	IO24NDB1V1	IO35NDB1V2	AB6	AT0	AT0			
A16	IO24PDB1V1	IO35PDB1V2	AB7	ATRTN0	ATRTN0			
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	AB8	AT1	AT1			
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	AB9	AT2	AT2			
A19	IO29NDB1V1	IO43NDB1V2	AB10	ATRTN1	ATRTN1			
A20	IO29PDB1V1	IO43PDB1V2	AB11	AT3	AT3			
A21	VCC	NC	AB12	AT6	AT6			
A22	GND	GND	AB13	ATRTN3	ATRTN3			
AA1	VCC	NC	AB14	AT7	AT7			
AA2	GND	GND	AB15	AT8	AT8			
AA3	VCCIB4	VCCIB4	AB16	ATRTN4	ATRTN4			
AA4	VCCIB4	VCCIB4	AB17	AT9	AT9			
AA5	PCAP	PCAP	AB18	VCC33A	VCC33A			
AA6	AG0	AG0	AB19	GND	GND			
AA7	GNDA	GNDA	AB20	NC	IO76NPB2V0			
AA8	AG1	AG1	AB21	VCC	NC			
AA9	AG2	AG2	AB22	GND	GND			
AA10	GNDA	GNDA	B1	VCC	NC			
AA11	AG3	AG3	B2	GND	GND			
AA12	AG6	AG6	B3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0			
AA13	GNDA	GNDA	B4	GND	GND			

	FG484		FG484				
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function		
P21	IO51PDB2V0	IO73PDB2V0	T12	AV5	AV5		
P22	IO49NDB2V0	IO71NDB2V0	T13	AC5	AC5		
R1	IO69PDB4V0	IO102PDB4V0	T14	NC	NC		
R2	IO69NDB4V0	IO102NDB4V0	T15	GNDA	GNDA		
R3	VCCIB4	VCCIB4	T16	NC	IO77PPB2V0		
R4	IO64PDB4V0	IO91PDB4V0	T17	NC	IO74PDB2V0		
R5	IO64NDB4V0	IO91NDB4V0	T18	VCCIB2	VCCIB2		
R6	NC	IO92PDB4V0	T19	IO55NDB2V0	IO82NDB2V0		
R7	GND	GND	T20	GDA2/IO55PDB2V0	GDA2/IO82PDB2V0		
R8	GND	GND	T21	GND	GND		
R9	VCC33A	VCC33A	T22	GDC1/IO52PDB2V0	GDC1/IO79PDB2V0		
R10	GNDA	GNDA	U1	IO67PDB4V0	IO98PDB4V0		
R11	VCC33A	VCC33A	U2	IO67NDB4V0	IO98NDB4V0		
R12	GNDA	GNDA	U3	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0		
R13	VCC33A	VCC33A	U4	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0		
R14	GNDA	GNDA	U5	GND	GND		
R15	VCC	VCC	U6	VCCNVM	VCCNVM		
R16	GND	GND	U7	VCCIB4	VCCIB4		
R17	NC	IO74NDB2V0	U8	VCC15A	VCC15A		
R18	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	U9	GNDA	GNDA		
R19	GDB0/IO53NDB2V0	GDB0/IO80NDB2V0	U10	AC4	AC4		
R20	VCCIB2	VCCIB2	U11	VCC33A	VCC33A		
R21	IO50NDB2V0	IO75NDB2V0	U12	GNDA	GNDA		
R22	IO50PDB2V0	IO75PDB2V0	U13	AG5	AG5		
T1	NC	IO100PPB4V0	U14	GNDA	GNDA		
T2	GND	GND	U15	PUB	PUB		
Т3	IO66PDB4V0	IO95PDB4V0	U16	VCCIB2	VCCIB2		
T4	IO66NDB4V0	IO95NDB4V0	U17	TDI	TDI		
Т5	VCCIB4	VCCIB4	U18	GND	GND		
Т6	NC	IO92NDB4V0	U19	IO57NDB2V0	IO84NDB2V0		
Τ7	GNDNVM	GNDNVM	U20	GDC2/IO57PDB2V0	GDC2/IO84PDB2V0		
Т8	GNDA	GNDA	U21	NC	IO77NPB2V0		
Т9	NC	NC	U22	GDC0/IO52NDB2V0	GDC0/IO79NDB2V0		
T10	AV4	AV4	V1	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0		
T11	NC	NC	V2	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.