

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	5
Details	•

Details	
Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	·
Total RAM Bits	110592
Number of I/O	95
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs600-1pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-10 • Very-Long-Line Resources

Unprotect Page Operation

An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on ADDR.

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-42.

Figure 2-42 • FB Unprotected Page Waveform

The Unprotect Page operation can incur the following error conditions:

- 1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable error in the data, it will report a STATUS = '01'.
- 2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is not loaded into the Page Buffer.
- 3. If the copy of the page to the Page Buffer determines that at least one block in the page has a double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation

If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the operation has completed.

Figure 2-43 • FB Discard Page Waveform

RAM4K9 Description

Figure 2-48 • RAM4K9

Figure 2-57 • FIFO Read

Figure 2-73 • Negative Current Monitor

Terminology

Accuracy

The accuracy of Fusion Current Monitor is $\pm 2 \text{ mV}$ minimum plus 5% of the differential voltage at the input. The input accuracy can be translated to error at the ADC output by using EQ 4. The 10 V/V gain is the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-86. For 8-bit mode, N = 8, $V_{AREF} = 2.56$ V, zero differential voltage between AV and AC, the Error (E_{ADC}) is equal to 2 LSBs.

$$E_{ADC} = (2mV + 0.05 |V_{AV} - V_{AC}|) \times (10V) / V \times \frac{2^N}{V_{AREF}}$$

EQ 4

where

N is the number of bits

 V_{AREF} is the Reference voltage

 V_{AV} is the voltage at AV pad

V_{AC} is the voltage at AC pad

Gate Driver

The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74). Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive levels: 1 μ A, 3 μ A, 10 μ A, and 30 μ A (Figure 2-75 on page 2-91). The AG also supports a High Current Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with 100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDON*x* pin in the Analog Block macro, where *x* is the number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).

The gate-to-source voltage (V_{gs}) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 5).

$$V_{gs} \le I_g \times (R_{pullup} \text{ or } R_{pulldown})$$

EQ 5

Terminology

Resolution

Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For ADC configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode, the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.

Offset

The Fusion Temperature Monitor has a systematic offset (Table 2-49 on page 2-117), excluding error due to board resistance and ideality factor of the external diode. Microsemi provides an IP block (CalibIP) that is required in order to mitigate the systematic temperature offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

ADC Interface Timing

Table 2-48 • ADC Interface Timing Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUMODE}	Mode Pin Setup Time	0.56	0.64	0.75	ns
t _{HDMODE}	Mode Pin Hold Time	0.26	0.29	0.34	ns
t _{SUTVC}	Clock Divide Control (TVC) Setup Time	0.68	0.77	0.90	ns
t _{HDTVC}	Clock Divide Control (TVC) Hold Time	0.32	0.36	0.43	ns
t _{SUSTC}	Sample Time Control (STC) Setup Time	1.58	1.79	2.11	ns
t _{HDSTC}	Sample Time Control (STC) Hold Time	1.27	1.45	1.71	ns
t _{SUVAREFSEL}	Voltage Reference Select (VAREFSEL) Setup Time	0.00	0.00	0.00	ns
t _{HDVAREFSEL}	Voltage Reference Select (VAREFSEL) Hold Time	0.67	0.76	0.89	ns
t _{SUCHNUM}	Channel Select (CHNUMBER) Setup Time	0.90	1.03	1.21	ns
t _{HDCHNUM}	Channel Select (CHNUMBER) Hold Time	0.00	0.00	0.00	ns
t _{SUADCSTART}	Start of Conversion (ADCSTART) Setup Time	0.75	0.85	1.00	ns
t _{HDADCSTART}	Start of Conversion (ADCSTART) Hold Time	0.43	0.49	0.57	ns
t _{CK2QBUSY}	Busy Clock-to-Q	1.33	1.51	1.78	ns
t _{CK2QCAL}	Power-Up Calibration Clock-to-Q	0.63	0.71	0.84	ns
t _{CK2QVAL}	Valid Conversion Result Clock-to-Q	3.12	3.55	4.17	ns
t _{CK2QSAMPLE}	Sample Clock-to-Q	0.22	0.25	0.30	ns
t _{CK2QRESULT}	Conversion Result Clock-to-Q	2.53	2.89	3.39	ns
t _{CLR2QBUSY}	Busy Clear-to-Q	2.06	2.35	2.76	ns
t _{CLR2QCAL}	Power-Up Calibration Clear-to-Q	2.15	2.45	2.88	ns
t _{CLR2QVAL}	Valid Conversion Result Clear-to-Q	2.41	2.74	3.22	ns
t _{CLR2QSAMPLE}	Sample Clear-to-Q	2.17	2.48	2.91	ns
t _{CLR2QRESULT}	Conversion result Clear-to-Q	2.25	2.56	3.01	ns
t _{RECCLR}	Recovery Time of Clear	0.00	0.00	0.00	ns
t _{REMCLR}	Removal Time of Clear	0.63	0.72	0.84	ns
t _{MPWSYSCLK}	Clock Minimum Pulse Width for the ADC	4.00	4.00	4.00	ns
t _{FMAXSYSCLK}	Clock Maximum Frequency for the ADC	100.00	100.00	100.00	MHz

Device Architecture

Table 2-49 • Analog Channel Specifications (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Digital Input usi	ing Analog Pads AV, AC	and AT		1 1		
VIND ^{2,3}	Input Voltage	Refer to Table 3-2 on page 3-3				
VHYSDIN	Hysteresis			0.3		V
VIHDIN	Input High			1.2		V
VILDIN	Input Low			0.9		V
VMPWDIN	Minimum Pulse With		50			ns
F _{DIN}	Maximum Frequency				10	MHz
ISTBDIN	Input Leakage Current			2		μA
IDYNDIN	Dynamic Current			20		μA
t _{INDIN}	Input Delay			10		ns
Gate Driver Out	put Using Analog Pad A	G	•			
VG	Voltage Range	Refer to Table 3-2 on page 3-3				
IG	Output Current Drive	High Current Mode ⁶ at 1.0 V			±20	mA
		Low Current Mode: ±1 µA	0.8	1.0	1.3	μA
		Low Current Mode: ±3 µA	2.0	2.7	3.3	μA
		Low Current Mode: ± 10 µA	7.4	9.0	11.5	μA
		Low Current Mode: ± 30 µA	21.0	27.0	32.0	μA
IOFFG	Maximum Off Current				100	nA
F _G	Maximum switching rate	High Current Mode ⁶ at 1.0 V, 1 k Ω resistive load		1.3		MHz
		Low Current Mode: ±1 μA, 3 MΩ resistive load		3		KHz
		Low Current Mode: ±3 μA, 1 MΩ resistive load		7		KHz
		Low Current Mode: $\pm 10 \ \mu$ A, 300 k Ω resistive load		25		KHz
		Low Current Mode: $\pm 30 \ \mu$ A, 105 k Ω resistive load		78		KHz

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.

- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Table 2-50 • ADC Characteristics in Direct Input ModeCommercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Direct Input	using Analog Pad AV, AC, A	Г				
VINADC	Input Voltage (Direct Input)	Refer to Table 3-2 on page 3-3				
CINADC	Input Capacitance	Channel not selected		7		pF
		Channel selected but not sampling		8		pF
		Channel selected and sampling		18		pF
ZINADC	Input Impedance	8-bit mode		2		kΩ
		10-bit mode		2		kΩ
		12-bit mode		2		kΩ
Analog Refe	erence Voltage VAREF					
VAREF	Accuracy	T _J = 25°C	2.537	2.56	2.583	V
	Temperature Drift of Internal Reference			65		ppm / °C
	External Reference		2.527		VCC33A + 0.05	V
ADC Accura	acy (using external reference) 1,2				
DC Accurac	y					
TUE	Total Unadjusted Error	8-bit mode		0.2	29	LSB
		10-bit mode		0.7	72	LSB
		12-bit mode		1.	8	LSB
INL	Integral Non-Linearity	8-bit mode		0.20	0.25	LSB
		10-bit mode		0.32	0.43	LSB
		12-bit mode		1.71	1.80	LSB
DNL	Differential Non-Linearity (no missing code)	8-bit mode		0.20	0.24	LSB
		10-bit mode		0.60	0.65	LSB
		12-bit mode		2.40	2.48	LSB
	Offset Error	8-bit mode		0.01	0.17	LSB
		10-bit mode		0.05	0.20	LSB
		12-bit mode		0.20	0.40	LSB
	Gain Error	8-bit mode		0.0004	0.003	LSB
		10-bit mode		0.002	0.011	LSB
		12-bit mode		0.007	0.044	LSB
	Gain Error (with internal reference)	All modes		2		% FSR

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Fusion Family of Mixed Signal FPGAs

For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion I/Os need to have 10 k Ω (or lower) output drive resistance at hot insertion, and 1 k Ω (or lower) output drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the following sequence:

- 1. Grounds
- 2. Powers, I/Os, other pins

Cold-Sparing Support

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.

Pro I/O banks and standard I/O banks fully support cold-sparing.

For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each advanced I/O pin to 0 V.

If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power supply to ground should be provided. This can be done with a discharge resistor or a switched resistor. This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.

If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground every time there is an interruption of power to the device.

I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across the input pin divided by the pull resistor. Please refer to Table 2-95 on page 2-169, Table 2-96 on page 2-169, and Table 2-97 on page 2-171 for the specific pull resistor value for the corresponding I/O standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45 k Ω and the resulting current is equal to 3.3 V / 45 k Ω = 73 µA for the I/O pin. This is true also when a weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is used.

In Active and Static modes, this current draw can occur in the following cases:

- Input buffers with pull-up, driven low
- Input buffers with pull-down, driven high
- Bidirectional buffers with pull-up, driven low
- · Bidirectional buffers with pull-down, driven high
- Output buffers with pull-up, driven low
- Output buffers with pull-down, driven high
- Tristate buffers with pull-up, driven low
- · Tristate buffers with pull-down, driven high

Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks

Device Architecture

Table 2-98 • I/O Short Currents IOSH/IOSL (continued)

	Drive Strength	IOSH (mA)*	IOSL (mA)*
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109
Applicable to Standard I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16

Note: $^{*}T_{J} = 100^{\circ}C$

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Device Architecture

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable	to Pro I	/O Banks								1		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Adva	inced I/O Ban	iks						-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	Applicable to Pro I/O Banks											
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

Figure 3-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Power Supply		Dy				
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	14.5	12.8	11	11	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	2.5	1.9	1.6	0.8	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V		0.8	1		µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.1	1		µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.0	7		µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.2	9		µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V		0.2	9		µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V		0.7	0		µW/MHz
PAC9	Contribution of an I/O input pin (standard dependent)	VCCI		See	Table 3-12	on page 3	-18	
PAC10	Contribution of an I/O output pin (standard dependent)	VCCI		See	Table 3-13	on page 3	-20	
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25	5		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30)		µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.6	6		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < $33MHz$)	VCC	1.5 V		35	8		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	12.88			mW	
PAC17	2nd contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	5 V 4.8				µW/MHz
PAC18	Crystal Oscillator contribution	VCC33A	3.3 V	3 V 0.63				mW
PAC19	RC Oscillator contribution	VCC33A	3.3 V		3.3	3		mW
PAC20	Analog Block dynamic power contribution of ADC	VCC	1.5 V	.5 V 3				mW

FG256						
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function		
E13	VCCIB1	VCCIB1	VCCIB2	VCCIB2		
E14	GCC2/IO33NDB1V0	IO42NDB1V0	IO32NDB2V0	IO46NDB2V0		
E15	GCB2/IO33PDB1V0	GBC2/IO42PDB1V0	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0		
E16	GND	GND	GND	GND		
F1	NC	NC	IO79NDB4V0	IO111NDB4V0		
F2	NC	NC	IO79PDB4V0	IO111PDB4V0		
F3	GFB1/IO48PPB3V0	IO72NDB3V0	IO76NDB4V0	IO112NDB4V0		
F4	GFC0/IO49NDB3V0	IO72PDB3V0	IO76PDB4V0	IO112PDB4V0		
F5	NC	NC	IO82PSB4V0	IO120PSB4V0		
F6	GFC1/IO49PDB3V0	GAC2/IO74PPB3V0	GAC2/IO83PPB4V0	GAC2/IO123PPB4V0		
F7	NC	IO09RSB0V0	IO04PPB0V0	IO05PPB0V1		
F8	NC	IO19RSB0V0	IO08NDB0V1	IO11NDB0V1		
F9	NC	NC	IO20PDB1V0	IO27PDB1V1		
F10	NC	IO29RSB0V0	IO23NDB1V1	IO37NDB1V2		
F11	NC	IO43NDB1V0	IO36NDB2V0	IO50NDB2V0		
F12	NC	IO43PDB1V0	IO36PDB2V0	IO50PDB2V0		
F13	NC	IO44NDB1V0	IO39NDB2V0	IO59NDB2V0		
F14	NC	GCA2/IO44PDB1V0	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0		
F15	GCC1/IO34PDB1V0	GCB2/IO45PDB1V0	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0		
F16	GCC0/IO34NDB1V0	IO45NDB1V0	IO40NDB2V0	IO60NDB2V0		
G1	GEC0/IO46NPB3V0	IO70NPB3V0	IO74NPB4V0	IO109NPB4V0		
G2	VCCIB3	VCCIB3	VCCIB4	VCCIB4		
G3	GEC1/IO46PPB3V0	GFB2/IO70PPB3V0	GFB2/IO74PPB4V0	GFB2/IO109PPB4V0		
G4	GFA1/IO47PDB3V0	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0		
G5	GND	GND	GND	GND		
G6	GFA0/IO47NDB3V0	IO71NDB3V0	IO75NDB4V0	IO110NDB4V0		
G7	GND	GND	GND	GND		
G8	VCC	VCC	VCC	VCC		
G9	GND	GND	GND	GND		
G10	VCC	VCC	VCC	VCC		
G11	GDA1/IO37NDB1V0	GCC0/IO47NDB1V0	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0		
G12	GND	GND	GND	GND		
G13	IO37PDB1V0	GCC1/IO47PDB1V0	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0		
G14	GCB0/IO35NPB1V0	IO46NPB1V0	IO41NPB2V0	IO61NPB2V0		
G15	VCCIB1	VCCIB1	VCCIB2	VCCIB2		
G16	GCB1/IO35PPB1V0	GCC2/IO46PPB1V0	GCC2/IO41PPB2V0	GCC2/IO61PPB2V0		
H1	GEB1/IO45PDB3V0	GFC2/IO69PDB3V0	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0		
H2	GEB0/IO45NDB3V0	IO69NDB3V0	IO73NDB4V0	IO108NDB4V0		

Package Pin Assignments

FG676					
Pin Number	AFS1500 Function				
W25	NC				
W26	GND				
Y1	NC				
Y2	NC				
Y3	GEB1/IO89PDB4V0				
Y4	GEB0/IO89NDB4V0				
Y5	VCCIB4				
Y6	GEA1/IO88PDB4V0				
Y7	GEA0/IO88NDB4V0				
Y8	GND				
Y9	VCC33PMP				
Y10	NC				
Y11	VCC33A				
Y12	AG4				
Y13	AT4				
Y14	ATRTN2				
Y15	AT5				
Y16	VCC33A				
Y17	NC				
Y18	VCC33A				
Y19	GND				
Y20	TMS				
Y21	VJTAG				
Y22	VCCIB2				
Y23	TRST				
Y24	TDO				
Y25	NC				
Y26	NC				

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page
Revision 6 (March 2014)	Note added for the discontinuance of QN108 and QN180 packages to the "Package I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings" table (SAR 55113, PDN 1306).	II and IV
	Updated details about page programming time in the "Program Operation" section (SAR 49291).	2-46
	ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104).	2-104
Revision 5 (January 2014)	Calibrated offset values (AFS090, AFS250) of the external temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).	2-117
	Specifications for the internal temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).	2-117
Revision 4 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).	Ш
	The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42563).	2-28
	Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated offset values (AFS250) of the external and internal temperature monitors (SAR 43134).	2-117
	In Table 2-57 • Prescaler Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 20812).	2-130
	The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently interchanged. This has been rectified (SAR 38514).	2-220, 2-222
	Added description about what happens if a user connects VAREF to an external 3.3 V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).	2-225
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	3-3
	Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column from the table (SAR 43503).	3-7
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 42495).	NA
Devision 0	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	1 . 15.7
Revision 3 (August 2012)	Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.	I – IV
	A sentence pertaining to the analog I/Os was added to the "Specifying I/O States During Programming" section (SAR 34831).	1-9