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Fusion Device Family Overview
The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part. Another
feature allows the inclusion of static data for system version control. Data for the FlashROM can be
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with
differing FlashROM contents.

SRAM and FIFO
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be written through a 4-bit port
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via
the device JTAG port (ROM emulation mode), using the UJTAG macro. 

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control
unit contains the counters necessary for the generation of the read and write address pointers. The
SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)
Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the
Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a
PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with
dedicated CCC block connections.

The CCC block has the following key features:

• Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz

• Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz

• Clock phase adjustment via programmable and fixed delays from –6.275 ns to +8.75 ns

• Clock skew minimization (PLL)

• Clock frequency synthesis (PLL)

• On-chip analog clocking resources usable as inputs:

– 100 MHz on-chip RC oscillator

– Crystal oscillator

Additional CCC specifications:

• Internal phase shift = 0°, 90°, 180°, and 270° 

• Output duty cycle = 50% ± 1.5%

• Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:

– 70 ps at 350 MHz

– 90 ps at 100 MHz

– 180 ps at 24 MHz

– Worst case < 2.5% × clock period

• Maximum acquisition time = 150 µs 

• Low power consumption of 5 mW
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2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a 
well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Device Architecture
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates
are measured from the lower left (0, 0). They can be used in region constraints for specific logic
groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

Table 2-3 provides array coordinates of core cells and memory blocks.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and edge core cells. In addition, the
I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3.
The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates
are used for placement constraints. However, I/O placement is easier by package pin assignment. 

Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use
array coordinates for region/placement constraints, see the Designer User's Guide or online help
(available in the software) for Fusion software tools.

Table 2-3 • Array Coordinates 

Device

VersaTiles Memory Rows All

Min. Max. Bottom Top Min. Max.

x y x y (x, y) (x, y) (x, y) (x, y)

AFS090 3 2 98 25 None (3, 26) (0, 0) (101, 29)

AFS250 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AFS600 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AFS1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 129)

Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 2-7 • Array Coordinates for AFS600
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Device Architecture
RC Oscillator 
The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as
a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL
and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency
and phase.

The Fusion RC oscillator is very accurate at ±1% over commercial temperature ranges and and ±3%
over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the
user. It requires only that the power and GNDOSC pins be connected; no external components are
required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Table 2-9 • Electrical Characteristics of RC Oscillator

Parameter Description Conditions Min. Typ. Max. Units

FRC

Operating Frequency 100 MHz

Accuracy Temperature: 0°C to 85°C

Voltage: 3.3 V ± 5%

1 %

Temperature: –40°C to 125°C

Voltage: 3.3 V ± 5%

3 %

Output Jitter Period Jitter (at 5 k cycles) 100 ps

Cycle–Cycle Jitter (at 5 k cycles) 100 ps

Period Jitter (at 5 k cycles) with 1 KHz / 300 mV
peak-to-peak noise on power supply

150 ps

Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz /
300 mV peak-to-peak noise on power supply

150 ps

Output Duty Cycle 50 %

IDYNRC Operating Current 1 mA
2-19 Revision 6



Fusion Family of Mixed Signal FPGAs
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured
based on the user's required frequencies.

Figure 2-23 • PLL Block
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Device Architecture
Real-Time Counter (part of AB macro)
The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The
clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be
configured to reset itself when a count value reaches the match value set in the Match Register.

The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration
MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A,
so the RTC can be used in standby mode when the 1.5 V supply is not present.

The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The
count from the 40-bit counter can be read through the same set of address space. The count comes from
a Read-Hold Register to avoid data changing during read. When the counter value equals the Match
Register value, all Match Bits Register values will be 0xFFFFFFFFFF. The RTCMATCH and
RTCPSMMATCH signals will assert. The 40-bit counter can be configured to automatically reset to
0x0000000000 when the counter value equals the Match Register value. The automatic reset does not
apply if the Match Register value is 0x0000000000. The RTCCLK has a prescaler to divide the clock by
128 before it is used for the 40-bit counter. Below is an example of how to calculate the OFF time.

Figure 2-29 • RTC Block Diagram

Table 2-14 • RTC Signal Description

Signal Name Width Direction Function

RTCCLK 1 In Must come from CLKOUT of XTLOSC.

RTCXTLMODE[1:0] 2 Out Controlled by xt_mode in CTRL_STAT. Signal must connect to the
RTC_MODE signal in XTLOSC, as shown in Figure 2-27.

RTCXTLSEL 1 Out Controlled by xtal_en from CTRL_STAT register. Signal must connect to
RTC_MODE signal in XTLOSC in Figure 2-27.

RTCMATCH 1 Out Match signal for FPGA

0 – Counter value does not equal the Match Register value.

1 – Counter value equals the Match Register value.

RTCPSMMATCH 1 Out Same signal as RTCMATCH. Signal must connect to RTCPSMMATCH in
VRPSM, as shown in Figure 2-27.
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Device Architecture
Table 2-16 • RTC Control/Status Register

Bit Name Description
Default 
Value

7 rtc_rst RTC Reset

1 – Resets the RTC

0 – Deassert reset on after two ACM_CLK cycle.

6 cntr_en Counter Enable

1 – Enables the counter; rtc_rst must be deasserted as well. First counter increments
after 64 RTCCLK positive edges.

0 – Disables the crystal prescaler but does not reset the counter value. Counter value
can only be updated when the counter is disabled.

0

5 vr_en_mat Voltage Regulator Enable on Match

1 – Enables RTCMATCH and RTCPSMMATCH to output 1 when the counter value
equals the Match Register value. This enables the 1.5 V voltage regulator when
RTCPSMMATCH connects to the RTCPSMMATCH signal in VRPSM.

0 – RTCMATCH and RTCPSMMATCH output 0 at all times.

0

4:3 xt_mode[1:0] Crystal Mode

Controls RTCXTLMODE[1:0]. Connects to RTC_MODE signal in XTLOSC.
XTL_MODE uses this value when xtal_en is 1. See the "Crystal Oscillator" section on
page 2-20 for mode configuration.

00

2 rst_cnt_omat Reset Counter on Match

1 – Enables the sync clear of the counter when the counter value equals the Match
Register value. The counter clears on the rising edge of the clock. If all the Match
Registers are set to 0, the clear is disabled.

0 – Counter increments indefinitely

0

1 rstb_cnt Counter Reset, active Low

0 - Resets the 40-bit counter value

0

0 xtal_en Crystal Enable

Controls RTCXTLSEL. Connects to SELMODE signal in XTLOSC.

0 – XTLOSC enables control by FPGA_EN; xt_mode is not used. Sleep mode requires
this bit to equal 0.

1 – Enables XTLOSC, XTL_MODE control by xt_mode

Standby mode requires this bit to be set to 1.

See the "Crystal Oscillator" section on page 2-20 for further details on SELMODE
configuration.

0

2-35 Revision 6



Device Architecture
FlashROM
Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core
fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each
bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-
45). 

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a
synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address
from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM
address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-26 on page 2-54. Figure 2-46 shows the
timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the
clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

If the address unchanged for three cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

• D0 becomes invalid tCK2Q ns after the third rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the third falling edge.

tSUPGLOSSPRO Page Loss Protect Setup Time for the Control Logic 1.69 1.93 2.27  ns 

tHDPGLOSSPRO Page Loss Protect Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUPGSTAT Page Status Setup Time for the Control Logic 2.49 2.83 3.33  ns 

tHDPGSTAT Page Status Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUOVERWRPG Over Write Page Setup Time for the Control Logic 1.88 2.14 2.52  ns 

tHDOVERWRPG Over Write Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSULOCKREQUEST Lock Request Setup Time for the Control Logic 0.87 0.99 1.16  ns 

tHDLOCKREQUEST Lock Request Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tRECARNVM Reset Recovery Time 0.94 1.07 1.25 ns

tREMARNVM Reset Removal Time 0.00 0.00 0.00 ns

tMPWARNVM 
Asynchronous Reset Minimum Pulse Width for the
Control Logic 

10.00 12.50 12.50  ns 

tMPWCLKNVM Clock Minimum Pulse Width for the Control Logic 4.00 5.00 5.00  ns 

tFMAXCLKNVM

Maximum Frequency for Clock for the Control Logic – for
AFS1500/AFS600

80.00 80.00 80.00 MHz

Maximum Frequency for Clock for the Control Logic – for
AFS250/AFS090

100.00 80.00 80.00 MHz

Table 2-25 • Flash Memory Block Timing (continued)
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std. 
 

Units 
2-53 Revision 6



Fusion Family of Mixed Signal FPGAs
The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W
ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
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Device Architecture
SRAM Characteristics
Timing Waveforms      

Figure 2-50 • RAM Read for Flow-Through Output. Applicable to both RAM4K9 and RAM512x18.

Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
Digital Input using Analog Pads AV, AC and AT

VIND2,3 Input Voltage Refer to Table 3-2 on page 3-3

VHYSDIN Hysteresis 0.3 V

VIHDIN Input High 1.2 V

VILDIN Input Low 0.9 V

VMPWDIN Minimum Pulse With 50 ns

FDIN Maximum Frequency 10 MHz

ISTBDIN Input Leakage Current 2 µA

IDYNDIN Dynamic Current 20 µA

tINDIN Input Delay 10 ns

Gate Driver Output Using Analog Pad AG

VG Voltage Range Refer to Table 3-2 on page 3-3

IG Output Current Drive High Current Mode6 at 1.0 V ±20 mA

Low Current Mode: ±1 µA 0.8 1.0 1.3 µA

Low Current Mode: ±3 µA 2.0 2.7 3.3 µA

Low Current Mode: ± 10 µA 7.4 9.0 11.5 µA

Low Current Mode: ± 30 µA 21.0 27.0 32.0 µA

IOFFG Maximum Off Current 100 nA

FG Maximum switching rate High Current Mode6 at 1.0 V, 1 
k resistive load

1.3 MHz

Low Current Mode: 
±1 µA, 3 M resistive load

3 KHz

Low Current Mode: 
±3 µA, 1 M resistive load

7 KHz

Low Current Mode: 
±10 µA, 300 k resistive load

25 KHz

Low Current Mode: 
±30 µA, 105 k resistive load

78 KHz

Table 2-49 • Analog Channel Specifications  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
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Device Architecture
Table 2-121 • 1.8 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

2 mA  Std. 0.66 12.10 0.04 1.45 1.91 0.43 9.59 12.10 2.78 1.64 11.83 14.34  ns 

 –1 0.56 10.30 0.04 1.23 1.62 0.36 8.16 10.30 2.37 1.39 10.06 12.20  ns 

 –2 0.49 9.04 0.03 1.08 1.42 0.32 7.16 9.04 2.08 1.22 8.83 10.71  ns 

4 mA  Std. 0.66 7.05 0.04 1.45 1.91 0.43 6.20 7.05 3.25 2.86 8.44 9.29  ns 

 –1 0.56 6.00 0.04 1.23 1.62 0.36 5.28 6.00 2.76 2.44 7.18 7.90  ns 

 –2 0.49 5.27 0.03 1.08 1.42 0.32 4.63 5.27 2.43 2.14 6.30 6.94  ns 

8 mA  Std. 0.66 4.52 0.04 1.45 1.91 0.43 4.47 4.52 3.57 3.47 6.70 6.76  ns 

 –1 0.56 3.85 0.04 1.23 1.62 0.36 3.80 3.85 3.04 2.95 5.70 5.75  ns 

 –2 0.49 3.38 0.03 1.08 1.42 0.32 3.33 3.38 2.66 2.59 5.00 5.05  ns 

12 mA  Std. 0.66 4.12 0.04 1.45 1.91 0.43 4.20 3.99 3.63 3.62 6.43 6.23  ns 

 –1 0.56 3.51 0.04 1.23 1.62 0.36 3.57 3.40 3.09 3.08 5.47 5.30  ns 

 –2 0.49 3.08 0.03 1.08 1.42 0.32 3.14 2.98 2.71 2.71 4.81 4.65  ns 

16 mA  Std. 0.66 3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32  ns 

 –1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53  ns 

 –2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Output Register

Timing Characteristics 

Figure 2-140 • Output Register Timing Diagram
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Table 2-177 • Output Data Register Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOCLKQ Clock-to-Q of the Output Data Register 0.59 0.67 0.79 ns

tOSUD Data Setup Time for the Output Data Register 0.31 0.36 0.42 ns

tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOSUE Enable Setup Time for the Output Data Register 0.44 0.50 0.59 ns

tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.80 0.91 1.07 ns

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.80 0.91 1.07 ns

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.22 0.25 0.30 ns

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.22 0.25 0.30 ns

tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns

tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data
Register

0.22 0.25 0.30 ns

tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns

tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Output DDR

Figure 2-144 • Output DDR Timing Model

Table 2-181 • Parameter Definitions

Parameter Name Parameter Definition Measuring Nodes (From, To)

tDDROCLKQ Clock-to-Out B, E

tDDROCLR2Q Asynchronous Clear-to-Out C, E

tDDROREMCLR Clear Removal C, B

tDDRORECCLR Clear Recovery C, B

tDDROSUD1 Data Setup Data_F A, B

tDDROSUD2 Data Setup Data_R D, B

tDDROHD1 Data Hold Data_F A, B

tDDROHD2 Data Hold Data_R D, B

Data_F
(from core)

CLK

CLKBUF

Out

FF2

INBUF
CLR

DDR_OUT

FF1

0

1

A

B

D

E
C

C

B

OUTBUF
Data_R
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Fusion Family of Mixed Signal FPGAs
Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

Parameter Definition

Power Supply
Device-Specific 

Dynamic Contributions

UnitsName Setting AFS1500 AFS600 AFS250 AFS090

PAC1 Clock contribution of a Global
Rib

VCC 1.5 V 14.5 12.8 11 11 µW/MHz

PAC2 Clock contribution of a Global
Spine

VCC 1.5 V 2.5 1.9 1.6 0.8 µW/MHz

PAC3 Clock contribution of a VersaTile
row

VCC 1.5 V 0.81 µW/MHz

PAC4 Clock contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.11 µW/MHz

PAC5 First contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.07 µW/MHz

PAC6 Second contribution of a
VersaTile used as a sequential
module

VCC 1.5 V 0.29 µW/MHz

PAC7 Contribution of a VersaTile used
as a combinatorial module

VCC 1.5 V 0.29 µW/MHz

PAC8 Average contribution of a routing
net

VCC 1.5 V 0.70 µW/MHz

PAC9 Contribution of an I/O input pin
(standard dependent)

VCCI See Table 3-12 on page 3-18

PAC10 Contribution of an I/O output pin
(standard dependent)

VCCI See Table 3-13 on page 3-20

PAC11 Average contribution of a RAM
block during a read operation

VCC 1.5 V 25 µW/MHz

PAC12 Average contribution of a RAM
block during a write operation

VCC 1.5 V 30 µW/MHz

PAC13 Dynamic Contribution for PLL VCC 1.5 V 2.6 µW/MHz

PAC15 Contribution of NVM block during
a read operation (F < 33MHz)

VCC 1.5 V 358 µW/MHz

PAC16 1st contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 12.88 mW

PAC17 2nd contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 4.8 µW/MHz

PAC18 Crystal Oscillator contribution VCC33A 3.3 V 0.63 mW

PAC19 RC Oscillator contribution VCC33A 3.3 V 3.3 mW

PAC20 Analog Block dynamic power
contribution of ADC

VCC 1.5 V 3 mW
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DC and Power Characteristics
PS-CELL = 0 W

PC-CELL = 0 W

PNET = 0 W

PLOGIC = 0 W

I/O Input and Output Buffer Contribution—PI/O
This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA–capable, configured with high
output slew and driving a 35 pF output load.

FCLK = 50 MHz

Number of input pins used: NINPUTS = 30

Number of output pins used: NOUTPUTS = 40

Estimated I/O buffer toggle rate: 2 = 0.1 (10%)

Estimated IO buffer enable rate: 1 = 1 (100%)

Operating Mode

PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK

PINPUTS = 30 * (0.1 / 2) * 0.01739 * 50

PINPUTS = 1.30 mW

POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK

POUTPUTS = 40 * (0.1 / 2) * 1 * 0.4747 * 50

POUTPUTS = 47.47 mW

PI/O = PINPUTS + POUTPUTS

PI/O = 1.30 mW + 47.47 mW

PI/O = 48.77 mW

Standby Mode and Sleep Mode

PINPUTS = 0 W

POUTPUTS = 0 W

PI/O = 0 W

RAM Contribution—PMEMORY
Frequency of Read Clock: FREAD-CLOCK = 10 MHz

Frequency of Write Clock: FWRITE-CLOCK = 10 MHz

Number of RAM blocks: NBLOCKS = 20

Estimated RAM Read Enable Rate: 2 = 0.125 (12.5%)

Estimated RAM Write Enable Rate: 3 = 0.125 (12.5%)

Operating Mode

PMEMORY = (NBLOCKS * PAC11 * 2 * FREAD-CLOCK) + (NBLOCKS * PAC12 * 3 * FWRITE-CLOCK)

PMEMORY = (20 * 0.025 * 0.125 * 10) + (20 * 0.030 * 0.125 * 10)

PMEMORY = 1.38 mW

Standby Mode and Sleep Mode

PMEMORY = 0 W
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Package Pin Assignments
E9 NC IO08PDB0V1

E10 GND GND

E11 IO15NDB1V0 IO22NDB1V0

E12 IO15PDB1V0 IO22PDB1V0

E13 GND GND

E14 NC IO32PPB1V1

E15 NC IO36NPB1V2

E16 VCCIB1 VCCIB1

E17 GND GND

E18 NC IO47NPB2V0

E19 IO33PDB2V0 IO49PDB2V0

E20 VCCIB2 VCCIB2

E21 IO32NDB2V0 IO46NDB2V0

E22 GBC2/IO32PDB2V0 GBC2/IO46PDB2V0

F1 IO80NDB4V0 IO118NDB4V0

F2 IO80PDB4V0 IO118PDB4V0

F3 NC IO119NSB4V0

F4 IO84NDB4V0 IO124NDB4V0

F5 GND GND

F6 VCOMPLA VCOMPLA

F7 VCCPLA VCCPLA

F8 VCCIB0 VCCIB0

F9 IO08NDB0V1 IO12NDB0V1

F10 IO08PDB0V1 IO12PDB0V1

F11 VCCIB0 VCCIB0

F12 VCCIB1 VCCIB1

F13 IO22NDB1V0 IO30NDB1V1

F14 IO22PDB1V0 IO30PDB1V1

F15 VCCIB1 VCCIB1

F16 NC IO36PPB1V2

F17 NC IO38NPB1V2

F18 GND GND

F19 IO33NDB2V0 IO49NDB2V0

F20 IO34PDB2V0 IO50PDB2V0

F21 IO34NDB2V0 IO50NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

F22 IO35PDB2V0 IO51PDB2V0

G1 IO77PDB4V0 IO115PDB4V0

G2 GND GND

G3 IO78NDB4V0 IO116NDB4V0

G4 IO78PDB4V0 IO116PDB4V0

G5 VCCIB4 VCCIB4

G6 NC IO117PDB4V0

G7 VCCIB4 VCCIB4

G8 GND GND

G9 IO04NDB0V0 IO06NDB0V1

G10 IO04PDB0V0 IO06PDB0V1

G11 IO12NDB0V1 IO16NDB0V2

G12 IO12PDB0V1 IO16PDB0V2

G13 NC IO28NDB1V1

G14 NC IO28PDB1V1

G15 GND GND

G16 NC IO38PPB1V2

G17 NC IO53PDB2V0

G18 VCCIB2 VCCIB2

G19 IO36PDB2V0 IO52PDB2V0

G20 IO36NDB2V0 IO52NDB2V0

G21 GND GND

G22 IO35NDB2V0 IO51NDB2V0

H1 IO77NDB4V0 IO115NDB4V0

H2 IO76PDB4V0 IO113PDB4V0

H3 VCCIB4 VCCIB4

H4 IO79NDB4V0 IO114NDB4V0

H5 IO79PDB4V0 IO114PDB4V0

H6 NC IO117NDB4V0

H7 GND GND

H8 VCC VCC

H9 VCCIB0 VCCIB0

H10 GND GND

H11 VCCIB0 VCCIB0

H12 VCCIB1 VCCIB1

FG484

Pin 
Number AFS600 Function AFS1500 Function
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