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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
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Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Fusion Family of Mixed Signal FPGAs
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash
technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip
solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level
unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA
design flows and tools.

Flash Advantages

Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. 
On-board security mechanisms prevent access to the programming information and enable remote
updates of the FPGA logic that are protected with high level security. Designers can perform remote in-
system reprogramming to support future design iterations and field upgrades, with confidence that
valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the 
industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device
architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family
a cost-effective ASIC replacement solution for applications in the consumer, networking and
communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external
bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of
reprogrammability and design security without external overhead, advantages that only an FPGA with
nonvolatile flash programming can offer. 

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a 
built-in AES decryption engine and a flash-based AES key that make Fusion devices the most
comprehensive programmable logic device security solution available today. Fusion devices with 
AES-based security provide a high level of protection for remote field updates over public networks, such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration
data of a programmed Fusion device cannot be read back, although secure design verification is
possible. During design, the user controls and defines both internal and external access to the flash
memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with 
industry-standard security, making remote ISP possible. A Fusion device provides the best available
security for programmable logic designs.

Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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Fusion Family of Mixed Signal FPGAs
VersaNet Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be
driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on
page 2-17 present minimum and maximum global clock delays within the device Minimum and maximum
delays are measured with minimum and maximum loading, respectively.

Timing Characteristics  

Table 2-5 • AFS1500 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.53 1.75 1.74 1.99 2.05 2.34 ns

tRCKH Input High Delay for Global Clock 1.53 1.79 1.75 2.04 2.05 2.40 ns

tRCKMPWH Minimum Pulse Width High for Global Clock ns

tRCKMPWL Minimum Pulse Width Low for Global Clock ns

tRCKSW Maximum Skew for Global Clock 0.26 0.29 0.34 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.27 1.49 1.44 1.70 1.69 2.00  ns 

tRCKH Input High Delay for Global Clock 1.26 1.54 1.44 1.75 1.69 2.06  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.31 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)
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Table 2-10 • XTLOSC Signals Descriptions

Signal Name Width Direction Function

XTL_EN* 1 Enables the crystal. Active high.

XTL_MODE* 2 Settings for the crystal clock for different frequency.

Value Modes Frequency Range

b'00 RC network 32 KHz to 4 MHz

b'01 Low gain 32 to 200 KHz

b'10 Medium gain 0.20 to 2.0 MHz

b'11 High gain 2.0 to 20.0 MHz

SELMODE 1 IN Selects the source of XTL_MODE and also enables the XTL_EN. Connect
from RTCXTLSEL from AB.

0 For normal operation or sleep mode, XTL_EN depends on
FPGA_EN, XTL_MODE depends on MODE

1 For Standby mode, XTL_EN is enabled, XTL_MODE depends on
RTC_MODE

RTC_MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
RTC_MODE when SELMODE is '1'.

MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.

FPGA_EN* 1 IN 0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC

XTL 1 IN Crystal Clock source

CLKOUT 1 OUT Crystal Clock output

Note: *Internal signal—does not exist in macro.
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Fusion Family of Mixed Signal FPGAs
Global Buffers with No Programmable Delays
The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro
driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not
use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards
supported by Fusion devices. The available CLKBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide.

Global Buffers with Programmable Delay
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes
the selected clock input and adds a user-defined delay element. This macro generates an output clock
phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards
supported by the Fusion family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

The CLKDLY macro can be driven directly from the FPGA core. 

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired
I/O connection described earlier. 

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the
user to select the desired amount of delay and configures the delay elements appropriately. SmartGen
also allows the user to select the input clock source. SmartGen will automatically instantiate the special
macro, PLLINT, when needed.

Figure 2-20 • Global Buffers with No Programmable Delay
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Device Architecture
Erase Page Operation
The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation
allows the user to erase (set user data to zero) any page within the FB. 

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a
Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')

2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page
Loss Protection mode (STATUS = '01')

3. The Write Count of the erased page exceeding the Write Threshold defined in the part
specification (STATUS = '11')

4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS
= '10')

Figure 2-37 • FB Erase Page Waveform
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Fusion Family of Mixed Signal FPGAs
Read Next Operation
The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is
read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states
during consecutive sequential Read operations. 

The Read Next operation is performed in a predetermined manner because it does look-ahead reads.
The general look-ahead function is as follows:

• Within a page, the next block fetched will be the next in linear address. 

• When reading the last data block of a page, it will fetch the first block of the next page.

• When reading spare pages, it will read the first block of the next sector's spare page.

• Reads of the last sector will wrap around to sector 0.

• Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there
is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can
start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-40
and Figure 2-41. 

Figure 2-40 • Read Next Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-41 • Read Next WaveForm (Pipe Mode, 32-bit access)
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Fusion Family of Mixed Signal FPGAs
Analog Quad
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input
signals. The Analog Quad is divided into four sections. 

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage
range. The AV pin can also be used as a digital input pin. 

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one
addition, which is a current monitoring function. A small external current sensing resistor (typically less
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current
Monitor Block contains a current monitor circuit that converts the current through the external resistor to
a voltage that can then be read using the ADC. 

AG6 1 Output Analog Quad

AT6 1 Input Analog Quad

ATRETURN67 1 Input Temperature monitor return shared by
Analog Quads 6 and 7

Analog Quad

AV7 1 Input Analog Quad 7 Analog Quad

AC7 1 Input Analog Quad

AG7 1 Output Analog Quad

AT7 1 Input Analog Quad

AV8 1 Input Analog Quad 8 Analog Quad

AC8 1 Input Analog Quad

AG8 1 Output Analog Quad

AT8 1 Input Analog Quad

ATRETURN89 1 Input Temperature monitor return shared by
Analog Quads 8 and 9

Analog Quad

AV9 1 Input Analog Quad 9 Analog Quad

AC9 1 Input Analog Quad

AG9 1 Output Analog Quad

AT9 1 Input Analog Quad

RTCMATCH 1 Output MATCH RTC

RTCPSMMATCH 1 Output MATCH connected to VRPSM RTC

RTCXTLMODE[1:0] 2 Output Drives XTLOSC RTCMODE[1:0] pins RTC

RTCXTLSEL 1 Output Drives XTLOSC MODESEL pin RTC

RTCCLK 1 Input RTC clock input RTC

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
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Fusion Family of Mixed Signal FPGAs
Table 2-51 • Uncalibrated Analog Channel Accuracy*
Worst-Case Industrial Conditions, TJ = 85°C

Total Channel 
Error (LSB)

Channel Input Offset 
Error (LSB)

Channel Input Offset 
Error (mV)

Channel Gain Error 
(%FSR)

Analog 
Pad

Prescaler 
Range (V)

Neg. 
Max. Med.

Pos. 
Max.

Neg 
Max Med.

Pos. 
Max.

Neg. 
Max. Med.

Pos. 
Max. Min. Typ. Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 –22 –2 12 –11 –2 14 –169 –32 224 3 0 –3

8 –40 –5 17 –11 –5 21 –87 –40 166 2 0 –4

4 –45 –9 24 –16 –11 36 –63 –43 144 2 0 –4

2 –70 –19 33 –33 –20 66 –66 –39 131 2 0 –4

1 –25 –7 5 –11 –3 26 –11 –3 26 3 –1 –3

0.5 –41 –12 8 –12 –7 38 –6 –4 19 3 –1 –3

0.25 –53 –14 19 –20 –14 40 –5 –3 10 5 0 –4

0.125 –89 –29 24 –40 –28 88 –5 –4 11 7 0 –5

AT 16 –3 9 15 –4 0 4 –64 5 64 1 0 –1

4 –10 2 15 –11 –2 11 –44 –8 44 1 0 –1

Negative Range ADC in 10-Bit Mode

AV, AC 16 –35 –10 9 –24 –6 9 –383 –96 148 5 –1 –6

8 –65 –19 12 –34 –12 9 –268 –99 75 5 –1 –5

4 –86 –28 21 –64 –24 19 –254 –96 76 5 –1 –6

2 –136 –53 37 –115 –42 39 –230 –83 78 6 –2 –7

1 –98 –35 8 –39 –8 15 –39 –8 15 10 –3 –10

0.5 –121 –46 7 –54 –14 18 –27 –7 9 10 –4 –11

0.25 –149 –49 19 –72 –16 40 –18 –4 10 14 –4 –12

0.125 –188 –67 38 –112 –27 56 –14 –3 7 16 –5 –14

Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For
8-bit mode, divide the LSB count by 4. Gain remains the same.
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Fusion Family of Mixed Signal FPGAs
For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion
I/Os need to have 10 k (or lower) output drive resistance at hot insertion, and 1 k (or lower) output
drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion
I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of
staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should
have the following sequence: 

1. Grounds

2. Powers, I/Os, other pins

Cold-Sparing Support
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.

Pro I/O banks and standard I/O banks fully support cold-sparing.

For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing
compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished
either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each
advanced I/O pin to 0 V.

If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power
supply to ground should be provided. This can be done with a discharge resistor or a switched resistor.
This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.

If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given
power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time
constant should ensure full discharge of supplies before cold-sparing functionality is required. The
resistor is necessary to ensure that the power pins are discharged to ground every time there is an
interruption of power to the device.

I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down
resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin
is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across
the input pin divided by the pull resistor. Please refer to Table 2-95 on page 2-169, Table 2-96 on
page 2-169, and Table 2-97 on page 2-171 for the specific pull resistor value for the corresponding I/O
standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45
k and the resulting current is equal to 3.3 V / 45 k = 73 µA for the I/O pin. This is true also when a
weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving
the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is
used.

In Active and Static modes, this current draw can occur in the following cases:

• Input buffers with pull-up, driven low

• Input buffers with pull-down, driven high

• Bidirectional buffers with pull-up, driven low

• Bidirectional buffers with pull-down, driven high

• Output buffers with pull-up, driven low

• Output buffers with pull-down, driven high

• Tristate buffers with pull-up, driven low

• Tristate buffers with pull-down, driven high
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Device Architecture
Table 2-77 • Comparison Table for 5 V–Compliant Receiver Scheme

Scheme Board Components Speed Current Limitations

1 Two resistors Low to high1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

4 Minimum resistor value2

R = 47  at TJ = 70°C

R = 150  at TJ = 85°C

R = 420  at TJ = 100°C

Medium Maximum diode current at 100% duty cycle, signal constantly at
'1'

52.7 mA at TJ =70°C / 10-year lifetime

16.5 mA at TJ = 85°C / 10-year lifetime

5.9 mA at TJ = 100°C / 10-year lifetime

For duty cycles other than 100%, the currents can be increased
by a factor = 1 / (duty cycle).

Example: 20% duty cycle at 70°C

Maximum current = (1 / 0.2) * 52.7 mA = 5 * 52.7 mA = 263.5 mA

Notes:

1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
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Fusion Family of Mixed Signal FPGAs
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-
transmitter current shorts. Figure 2-110 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 2-111 shows how bus contention is created, and Figure 2-
112 on page 2-151 shows how it can be avoided with the skew circuit.

Figure 2-110 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
Fusion Devices

Figure 2-111 • Timing Diagram (bypasses skew circuit)

Transmitter 1: Fusion I/O Transmitter 2: Generic I/O

ENABLE(t2)EN(b1) EN(b2)EN(r1)

ENABLE(t1)
Bidirectional Data Bus

Transmitter 
ENABLE/
DISABLE

Skew or
Bypass
Skew

Routing
Delay (t1)

Routing
Delay (t2)

EN (b1)

EN (b2)

ENABLE (r1)

Transmitter 1: ON

ENABLE (t2) 

Transmitter 2: ON

ENABLE (t1)

Bus
Contention

Transmitter 1: OFF Transmitter 1: OFF

Transmitter 2: OFF
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Fusion Family of Mixed Signal FPGAs
Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

I/O Standards

OUT_DRIVE (mA) 

2 4 6 8 Slew

LVTTL/LVCMOS 3.3 V 3 3 3 3 High Low

LVCMOS 2.5 V 3 3 3 3 High Low

LVCMOS 1.8 V 3 3 – – High Low

LVCMOS 1.5 V 3 – – – High Low

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

I/O Standards

OUT_DRIVE (mA) 

2 4 6 8 12 16 Slew

LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 High Low 

LVCMOS 2.5 V 3 3 3 3 3 – High Low 

LVCMOS 1.8 V 3 3 3 3 – – High Low 

LVCMOS 1.5 V 3 3 – – – – High Low 

Table 2-80 • Fusion Pro I/O Standards—SLEW and OUT_DRIVE Settings

 I/O Standards

OUT_DRIVE (mA)

Slew2 4 6 8 12 16 24

LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 High Low

LVCMOS 2.5 V 3 3 3 3 3 3 3 High Low

LVCMOS 2.5 V/5.0 V 3 3 3 3 3 3 3 High Low

LVCMOS 1.8 V 3 3 3 3 3 3 – High Low

LVCMOS 1.5 V 3 3 3 3 3 – – High Low
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Device Architecture
Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = I/O Standard Dependent
Applicable to Pro I/Os

I/O Standard 
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3.3 V LVTTL/
3.3 V LVCMOS

12 mA High 35 – 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 ns 

2.5 V LVCMOS 12 mA High 35 – 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 ns 

1.8 V LVCMOS 12 mA High 35  – 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns 

1.5 V LVCMOS 12 mA High 35  – 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns 

3.3 V PCI Per 
PCI 
spec

High 10 25 2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns 

3.3 V PCI-X Per 
PCI-X 
spec

High 10 25 2 0.49 2.09 0.03 0.77 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns 

3.3 V GTL 20 mA High 10  25 0.49 1.55 0.03 2.19 – 0.32 1.52 1.55 0.00 0.00 3.19 3.22 ns 

2.5 V GTL 20 mA High 10  25 0.49 1.59 0.03 1.83 – 0.32 1.61 1.59 0.00 0.00 3.28 3.26 ns 

3.3 V GTL+ 35 mA High 10  25 0.49 1.53 0.03 1.19 – 0.32 1.56 1.53 0.00 0.00 3.23 3.20 ns 

2.5 V GTL+ 33 mA High 10  25 0.49 1.65 0.03 1.13 – 0.32 1.68 1.57 0.00 0.00 3.35 3.24 ns 

HSTL (I) 8 mA High 20  50 0.49 2.37 0.03 1.59 – 0.32 2.42 2.35 0.00 0.00 4.09 4.02 ns 

HSTL (II) 15 mA High 20  25 0.49 2.26 0.03 1.59 – 0.32 2.30 2.03 0.00 0.00 3.97 3.70 ns 

SSTL2 (I) 17 mA High 30  50 0.49 1.59 0.03 1.00 – 0.32 1.62 1.38 0.00 0.00 3.29 3.05 ns 

SSTL2 (II) 21 mA High 30  25 0.49 1.62 0.03 1.00 – 0.32 1.65 1.32 0.00 0.00 3.32 2.99 ns 

SSTL3 (I) 16 mA High 30  50 0.49 1.72 0.03 0.93 – 0.32 1.75 1.37 0.00 0.00 3.42 3.04 ns 

SSTL3 (II) 24 mA High 30  25 0.49 1.54 0.03 0.93 – 0.32 1.57 1.25 0.00 0.00 3.24 2.92 ns 

LVDS 24 mA High  –  – 0.49 1.57 0.03 1.36  –  –  –  –  –  –  –  – ns 

LVPECL 24 mA High  –  – 0.49 1.60 0.03 1.22  –  –  –  –  –  –  –  – ns 

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197

for connectivity. This resistor is not required during normal operation. 
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Device Architecture
Table 2-123 • 1.8 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.7 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 11.86 0.04 1.22 0.43 9.14 11.86 2.77 1.66 11.37 14.10  ns 

 –1 0.56 10.09 0.04 1.04 0.36 7.77 10.09 2.36 1.41 9.67 11.99  ns 

 –2 0.49 8.86 0.03 0.91 0.32 6.82 8.86 2.07 1.24 8.49 10.53  ns 

4 mA  Std. 0.66 6.91 0.04 1.22 0.43 5.86 6.91 3.22 2.84 8.10 9.15  ns 

 –1 0.56 5.88 0.04 1.04 0.36 4.99 5.88 2.74 2.41 6.89 7.78  ns 

 –2 0.49 5.16 0.03 0.91 0.32 4.38 5.16 2.41 2.12 6.05 6.83  ns 

8 mA  Std. 0.66 4.45 0.04 1.22 0.43 4.18 4.45 3.53 3.38 6.42 6.68  ns 

 –1 0.56 3.78 0.04 1.04 0.36 3.56 3.78 3.00 2.88 5.46 5.69  ns 

 –2 0.49 3.32 0.03 0.91 0.32 3.12 3.32 2.64 2.53 4.79 4.99  ns 

12 mA  Std. 0.66 3.92 0.04 1.22 0.43 3.93 3.92 3.60 3.52 6.16 6.16  ns 

 –1 0.56 3.34 0.04 1.04 0.36 3.34 3.34 3.06 3.00 5.24 5.24  ns 

 –2 0.49 2.93 0.03 0.91 0.32 2.93 2.93 2.69 2.63 4.60 4.60  ns 

16 mA  Std. 0.66 3.53 0.04 1.22 0.43 3.60 3.04 3.70 4.08 5.84 5.28  ns 

 –1 0.56 3.01 0.04 1.04 0.36 3.06 2.59 3.15 3.47 4.96 4.49  ns 

 –2 0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-124 • 1.8 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.7 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 15.01 0.04 1.20 0.43 13.15 15.01 1.99 1.99  ns 

 –1 0.56 12.77 0.04 1.02 0.36 11.19 12.77 1.70 1.70  ns 

 –2 0.49 11.21 0.03 0.90 0.32 9.82 11.21 1.49 1.49  ns 

4 mA  Std. 0.66 10.10 0.04 1.20 0.43 9.55 10.10 2.41 2.37  ns 

 –1 0.56 8.59 0.04 1.02 0.36 8.13 8.59 2.05 2.02  ns 

 –2 0.49 7.54 0.03 0.90 0.32 7.13 7.54 1.80 1.77  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 2-125 • 1.8 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.7 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 11.21 0.04 1.20 0.43 8.53 11.21 1.99 1.21  ns 

 –1 0.56 9.54 0.04 1.02 0.36 7.26 9.54 1.69 1.03  ns 

 –2 0.49 8.37 0.03 0.90 0.32 6.37 8.37 1.49 0.90  ns 

4 mA  Std. 0.66 6.34 0.04 1.20 0.43 5.38 6.34 2.41 2.48  ns 

 –1 0.56 5.40 0.04 1.02 0.36 4.58 5.40 2.05 2.11  ns 

 –2 0.49 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-143 • Input DDR Timing Diagram

tDDRICLR2Q2

tDDRIREMCLR

tDDRIRECCLR

tDDRICLR2Q1

1 2 3 4 5 6 7 8 9

CLK

Data

CLR

Out_QR

Out_QF

tDDRICLKQ1

2 4 6

3 5 7

tDDRIHD
tDDRISUD

tDDRICLKQ2

Table 2-180 • Input DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.39 0.44 0.52 ns

tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.27 0.31 0.37 ns

tDDRISUD Data Setup for Input DDR 0.28 0.32 0.38 ns

tDDRIHD Data Hold for Input DDR 0.00 0.00 0.00 ns

tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.57 0.65 0.76 ns

tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.46 0.53 0.62 ns

tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 0.00 ns

tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.22 0.25 0.30 ns

tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.25 0.30 ns

tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.36 0.41 0.48 ns

tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.32 0.37 0.43 ns

FDDRIMAX Maximum Frequency for Input DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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Fusion Family of Mixed Signal FPGAs
Figure 3-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input 
buffers do not meet VIH / VIL levels, and 
  output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V 

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ±0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON
and power supplies are within
specification.

I/Os meet the entire datasheet 
and timer specifications for 
speed, VIH / VIL, VOH VOL, etc.   

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential inputs) 

 but slower because VCCI is
below specification. For the 

same reason, input buffers do not 
 meet VIH / VIL levels, and output

buffers do not meet VOH / VOL levels.    

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)

VCC = VCCI + VT 

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC 
specifications are met, 
but I/Os are slower because 
the VCC is below specification
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Package Pin Assignments
M15 TRST TRST TRST TRST

M16 GND GND GND GND

N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO86PDB4V0

N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO86NDB4V0

N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0

N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP

N5 VCC15A VCC15A VCC15A VCC15A

N6 NC NC AG0 AG0

N7 AC1 AC1 AC3 AC3

N8 AG3 AG3 AG5 AG5

N9 AV3 AV3 AV5 AV5

N10 AG4 AG4 AG6 AG6

N11 NC NC AC8 AC8

N12 GNDA GNDA GNDA GNDA

N13 VCC33A VCC33A VCC33A VCC33A

N14 VCCNVM VCCNVM VCCNVM VCCNVM

N15 TCK TCK TCK TCK

N16 TDI TDI TDI TDI

P1 VCCNVM VCCNVM VCCNVM VCCNVM

P2 GNDNVM GNDNVM GNDNVM GNDNVM

P3 GNDA GNDA GNDA GNDA

P4 NC NC AC0 AC0

P5 NC NC AG1 AG1

P6 NC NC AV1 AV1

P7 AG0 AG0 AG2 AG2

P8 AG2 AG2 AG4 AG4

P9 GNDA GNDA GNDA GNDA

P10 NC AC5 AC7 AC7

P11 NC NC AV8 AV8

P12 NC NC AG8 AG8

P13 NC NC AV9 AV9

P14 ADCGNDREF ADCGNDREF ADCGNDREF ADCGNDREF

P15 PTBASE PTBASE PTBASE PTBASE

P16 GNDNVM GNDNVM GNDNVM GNDNVM

R1 VCCIB3 VCCIB3 VCCIB4 VCCIB4

R2 PCAP PCAP PCAP PCAP

R3 NC NC AT1 AT1

R4 NC NC AT0 AT0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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