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Fusion Family of Mixed Signal FPGAs
Global Buffers with No Programmable Delays
The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro
driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not
use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards
supported by Fusion devices. The available CLKBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide.

Global Buffers with Programmable Delay
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes
the selected clock input and adds a user-defined delay element. This macro generates an output clock
phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards
supported by the Fusion family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

The CLKDLY macro can be driven directly from the FPGA core. 

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired
I/O connection described earlier. 

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the
user to select the desired amount of delay and configures the delay elements appropriately. SmartGen
also allows the user to select the input clock source. SmartGen will automatically instantiate the special
macro, PLLINT, when needed.

Figure 2-20 • Global Buffers with No Programmable Delay
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Device Architecture
PLL Macro
The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL
macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global
A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL
feedback loop can be driven either internally or externally. The PLL macro also provides power-down
input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up.
See Figure 2-19 on page 2-23 for more information.

Inputs:

• CLKA: selected clock input

• POWERDOWN (active low): disables PLLs. The default state is power-down on (active low). 

Outputs:

• LOCK (active high): indicates that PLL output has locked on the input reference signal

• GLA, GLB, GLC: outputs to respective global networks

• YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs.
Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device
core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the
reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where
the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this
case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired
I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user. SmartGen allows the user to select the various delays and phase shift values
necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB,
GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from.
SmartGen automatically instantiates the special macro, PLLINT, when needed.
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Device Architecture
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off. 

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Device Architecture
Flash Memory Block Addressing
Figure 2-34 shows a graphical representation of the flash memory block.

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each
sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block.
Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.

Addressing for the FB is shown in Table 2-20.

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error,
and reads will return all zeroes.

Figure 2-34 • Flash Memory Block Organization
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Table 2-20 • FB Address Bit Allocation ADDR[17:0]

17 12 11 7 6 4 3 0

Sector Page Block Byte
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Device Architecture
Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal.
FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation
Write operations are initiated with the assertion of the WEN signal. Figure 2-35 on page 2-45 illustrates
the multiple Write operations.

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic
will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page
Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect
Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a
block from the array into the block register (5 cycles) and then write the block register to the page buffer
(1 cycle) and if necessary, when the copy is complete, reading the block being written from the page
buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to
read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur
no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when
PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded
into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS
indicates that an error was detected during the operation and the write was not performed. Note that the
STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are
responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just
like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any
order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before
saving it to nonvolatile memory.

Write errors include the following:

1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not
performed.

2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled
(STATUS = '11'). The write is not performed.

Figure 2-35 • FB Write Waveform
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Fusion Family of Mixed Signal FPGAs
Analog Block
With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution.
Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is
this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best
of both worlds. The high-performance CMOS is used for building RAM resources. These high-
performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi
0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both
of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise
immunity so that the analog portions of the chip can be better isolated from the digital portions,
increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be
connected directly to high-voltage input signals, eliminating the need for external resistor divider
networks, reducing component count, and increasing accuracy. By supporting higher internal voltages,
the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing
precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the
need for external level shifters and drivers. 

The unique triple-well process enables the integration of high-performance analog features with
increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-
well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time
Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the
single Analog Block macro, with which the user implements this functionality (Figure 2-64). 

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed.
An external reset/initialize signal, which can come from the internal voltage regulator when it powers up,
must be applied.
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Fusion Family of Mixed Signal FPGAs
Current Monitor
The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In
addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to
monitor current across an external sense resistor (Figure 2-70). To support this current monitor function,
a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to
the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on
the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be
configured for use as a direct voltage input or scaled through the AV prescaler independently of it’s use
as an input to the AC pad’s differential amplifier. 

Figure 2-70 • Analog Quad Current Monitor Configuration
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Device Architecture
ADC Description
The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models.
Figure 2-80 shows a block diagram of the Fusion ADC.

• Configurable resolution: 8-bit, 10-bit, and 12-bit mode

• DNL: 0.6 LSB for 10-bit mode

• INL: 0.4 LSB for 10-bit mode

• No missing code

• Internal VAREF = 2.56 V

• Maximum Sample Rate = 600 Ksps

• Power-up calibration and dynamic calibration after every sample to compensate for temperature
drift over time

ADC Theory of Operation
An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and
provide a discrete binary representation of the signal. Analog-to-digital converters are generally
characterized in three ways:

• Input voltage range

• Resolution

• Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices
include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The
following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to
2.56 V. 

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC
approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter.
Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit
operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each
second. The bandwidth of an ADC is constrained by its architecture and several key performance
characteristics. 

Figure 2-80 • ADC Simplified Block Diagram
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Fusion Family of Mixed Signal FPGAs
The ADC can be powered down independently of the FPGA core, as an additional control or for power-
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the
comparators in the ADC.

ADC Modes
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-106.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

16 AV5

Analog Quad 517 AC5

18 AT5

19 AV6

Analog Quad 620 AC6

21 AT6

22 AV7

Analog Quad 723 AC7

24 AT7

25 AV8

Analog Quad 826 AC8

27 AT8

28 AV9

Analog Quad 929 AC9

30 AT9

31 Internal temperature monitor

Table 2-40 • Analog MUX Channels (continued)

Analog MUX Channel Signal Analog Quad Number

Table 2-41 • Mode Bits Function

Name Bits Function

MODE 3 0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion.

1 – No calibration after every conversion

MODE 2 0 – Power-down after conversion

1 – No Power-down after conversion

MODE 1:0 00 – 10-bit

01 – 12-bit

10 – 8-bit

11 – Unused
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Device Architecture
Dynamic Performance

SNR Signal-to-Noise Ratio 8-bit mode 48.0 49.5 dB

10-bit mode 58.0 60.0 dB

12-bit mode 62.9 64.5 dB

SINAD Signal-to-Noise Distortion 8-bit mode 47.6 49.5 dB

10-bit mode 57.4 59.8 dB

12-bit mode 62.0 64.2 dB

THD Total Harmonic
Distortion

8-bit mode –74.4 –63.0 dBc

10-bit mode –78.3 –63.0 dBc

12-bit mode –77.9 –64.4 dBc

ENOB Effective Number of Bits 8-bit mode 7.6 7.9 bits

10-bit mode 9.5 9.6 bits

12-bit mode 10.0 10.4 bits

Conversion Rate

Conversion Time 8-bit mode 1.7 µs

10-bit mode 1.8 µs

12-bit mode 2 µs

Sample Rate 8-bit mode 600 Ksps

10-bit mode 550 Ksps

12-bit mode 500 Ksps

Table 2-50 • ADC Characteristics in Direct Input Mode  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. Accuracy of the external reference is 2.56 V ± 4.6 mV.
2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.
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Device Architecture
Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3

Worst-Case Industrial Conditions, TJ = 85°C

Condition Total Channel Error (LSB)

Analog 
Pad Prescaler Range (V) Input Voltage4 (V) Negative Max. Median Positive Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 0.300 to 12.0 –6 1 6

8 0.250 to 8.00 –6 0 6

4 0.200 to 4.00 –7 –1 7

2 0.150 to 2.00 –7 0 7

1 0.050 to 1.00 –6 –1 6

AT 16 0.300 to 16.0 –5 0 5

4 0.100 to 4.00 –7 –1 7

Negative Range ADC in 10-Bit Mode

AV, AC 16 –0.400 to –10.5 –7 1 9

8 –0.350 to –8.00 –7 –1 7

4 –0.300 to –4.00 –7 –2 9

2 –0.250 to –2.00 –7 –2 7

1 –0.050 to –1.00 –16 –1 20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit
mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.
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Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS090 AFS250 AFS600 AFS1500

Standard I/O N N – –

Advanced I/O E, W E, W E, W E, W

Pro I/O – – N N

Analog Quad S S S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-
LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Device Architecture
Table 2-71 • Fusion Standard and Advanced I/O Features
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Fusion Family of Mixed Signal FPGAs
For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion
I/Os need to have 10 k (or lower) output drive resistance at hot insertion, and 1 k (or lower) output
drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion
I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of
staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should
have the following sequence: 

1. Grounds

2. Powers, I/Os, other pins

Cold-Sparing Support
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.

Pro I/O banks and standard I/O banks fully support cold-sparing.

For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing
compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished
either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each
advanced I/O pin to 0 V.

If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power
supply to ground should be provided. This can be done with a discharge resistor or a switched resistor.
This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.

If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given
power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time
constant should ensure full discharge of supplies before cold-sparing functionality is required. The
resistor is necessary to ensure that the power pins are discharged to ground every time there is an
interruption of power to the device.

I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down
resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin
is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across
the input pin divided by the pull resistor. Please refer to Table 2-95 on page 2-169, Table 2-96 on
page 2-169, and Table 2-97 on page 2-171 for the specific pull resistor value for the corresponding I/O
standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45
k and the resulting current is equal to 3.3 V / 45 k = 73 µA for the I/O pin. This is true also when a
weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving
the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is
used.

In Active and Static modes, this current draw can occur in the following cases:

• Input buffers with pull-up, driven low

• Input buffers with pull-down, driven high

• Bidirectional buffers with pull-up, driven low

• Bidirectional buffers with pull-down, driven high

• Output buffers with pull-up, driven low

• Output buffers with pull-down, driven high

• Tristate buffers with pull-up, driven low

• Tristate buffers with pull-down, driven high
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Fusion Family of Mixed Signal FPGAs
Table 2-98 • I/O Short Currents IOSH/IOSL

Drive Strength IOSH (mA)* IOSL (mA)*

Applicable to Pro I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 4 mA 25 27

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

2.5 V LVCMOS 4 mA 16 18

8 mA 32 37

12 mA 65 74

16 mA 83 87

24 mA 169 124

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

6 mA 35 44

8 mA 45 51

12 mA 91 74

16 mA 91 74

1.5 V LVCMOS 2 mA 13 16

4 mA 25 33

6 mA 32 39

8 mA 66 55

12 mA 66 55

Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

Note: *TJ = 100°C
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics  

Table 2-136 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.81 0.04 1.05 1.67 0.43 2.86 2.00 3.28 3.61 5.09 4.23 ns

 –1 0.56 2.39 0.04 0.89 1.42 0.36 2.43 1.70 2.79 3.07 4.33 3.60 ns

 –2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Advanced I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.68 0.04 0.86 0.43 2.73 1.95 3.21 3.58 4.97 4.19 0.66 ns

 –1 0.56 2.28 0.04 0.73 0.36 2.32 1.66 2.73 3.05 4.22 3.56 0.56 ns

 –2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 0.49 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name Parameter Definition
Measuring Nodes 

(from, to)*

tOCLKQ Clock-to-Q of the Output Data Register HH, DOUT

tOSUD Data Setup Time for the Output Data Register FF, HH

tOHD Data Hold Time for the Output Data Register FF, HH

tOSUE Enable Setup Time for the Output Data Register GG, HH

tOHE Enable Hold Time for the Output Data Register GG, HH

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register LL, DOUT

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH

tOECLKQ Clock-to-Q of the Output Enable Register HH, EOUT

tOESUD Data Setup Time for the Output Enable Register JJ, HH

tOEHD Data Hold Time for the Output Enable Register JJ, HH

tOESUE Enable Setup Time for the Output Enable Register KK, HH

tOEHE Enable Hold Time for the Output Enable Register KK, HH

tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT

tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH

tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH

tICLKQ Clock-to-Q of the Input Data Register AA, EE

tISUD Data Setup Time for the Input Data Register CC, AA

tIHD Data Hold Time for the Input Data Register CC, AA

tISUE Enable Setup Time for the Input Data Register BB, AA

tIHE Enable Hold Time for the Input Data Register BB, AA

tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE

tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA

tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Fusion Family of Mixed Signal FPGAs
v2.0, Revision 1
(continued)

The data in the 2.5 V LCMOS and LVCMOS 2.5 V / 5.0 V rows were updated in
Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance
Capabilities. 

2-143

In Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings, LVCMOS
1.5 V, for OUT_DRIVE 2, was changed from a dash to a check mark.

2-152

The "VCC15A Analog Power Supply (1.5 V)" definition was changed from "A 1.5 V
analog power supply input should be used to provide this input" to "1.5 V clean
analog power supply input for use by the 1.5 V portion of the analog circuitry."

2-223

In the "VCC33PMP Analog Power Supply (3.3 V)" pin description, the following text
was changed from "VCC33PMP should be powered up before or simultaneously
with VCC33A" to "VCC33PMP should be powered up simultaneously with or after
VCC33A."

2-223

The "VCCOSC Oscillator Power Supply (3.3 V)" section was updated to include
information about when to power the pin.

2-223

In the "128-Bit AES Decryption" section, FIPS-192 was incorrect and changed to
FIPS-197.

2-228

The note in Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O
Standard Applications was updated.

2-156

For 1.5 V LVCMOS, the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 *
VCCI and 0.70 * VCCI was changed to 0.65 * VCCI in Table 2-86 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions, Table 2-87 • Summary of Maximum and Minimum DC Input
and Output Levels Applicable to Commercial and Industrial Conditions, and
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions. 

In Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions, the VIH max column was
updated.

2-164 to 
2-165 

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to
Commercial and Industrial Conditions was updated to include notes 3 and 4. The
temperature ranges were also updated in notes 1 and 2.

2-165

The titles in Table 2-92 • Summary of I/O Timing Characteristics – Software Default
Settings to Table 2-94 • Summary of I/O Timing Characteristics – Software Default
Settings were updated to "VCCI = I/O Standard Dependent."

2-167 to 
2-168

Below Table 2-98 • I/O Short Currents IOSH/IOSL, the paragraph was updated to
change 110°C to 100°C and three months was changed to six months.

2-172

Table 2-99 • Short Current Event Duration before Failure was updated to remove
110°C data. 

2-174

In Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability,
LVTTL/LVCMOS rows were changed from 110°C to 100°C.

2-174

VCC33PMP was added to Table 3-1 • Absolute Maximum Ratings. In addition,
conditions for AV, AC, AG, and AT were also updated.

3-1

VCC33PMP was added to Table 3-2 • Recommended Operating Conditions1. In
addition, conditions for AV, AC, AG, and AT were also updated.

3-3

Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated to
include new data and the temperature ranges were changed. The notes were
removed from the table.

3-5
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