E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	95
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs600-pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Architecture Overview

Figure 1 • Fusion Device Architecture Overview (AFS600)

Package I/Os: Single-/Double-Ended (Analog)

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ¹	P1AFS1500 ¹
MicroBlade Devices		U1AFS250 ²	U1AFS600 ²	U1AFS1500 ²
QN108 ³	37/9 (16)			
QN180 ³	60/16 (20)	65/15 (24)		
PQ208 ⁴		93/26 (24)	95/46 (40)	
FG256	75/22 (20)	114/37 (24)	119/58 (40)	119/58 (40)
FG484			172/86 (40)	223/109 (40)
FG676				252/126 (40)
Notes:	•	1		•

1. Pigeon Point devices are only offered in FG484 and FG256.

2. MicroBlade devices are only offered in FG256.

3. Package not available.

4. Fusion devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).

The system application, Level 3, is the larger user application that utilizes one or more applets. Designing at the highest level of abstraction supported by the Fusion technology stack, the application can be easily created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile

Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate flash switch connections:

- Any 3-input logic function
- Latch with clear or set
- · D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input, which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-line or very-long-line resources (Figure 2-2).

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile

VersaTile Characteristics

Sample VersaTile Specifications—Combinatorial Module

The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the *IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide*.

Figure 2-3 • Sample of Combinatorial Cells

Figure 2-	-12 •	Global	Network	Architecture
-----------	-------	--------	---------	--------------

Table 2-4 • Globals/Spines/Rows by Device

	AFS090	AFS250	AFS600	AFS1500
Global VersaNets (trees)*	9	9	9	9
VersaNet Spines/Tree	4	8	12	20
Total Spines	36	72	108	180
VersaTiles in Each Top or Bottom Spine	384	768	1,152	1,920
Total VersaTiles	2,304	6,144	13,824	38,400

Note: *There are six chip (main) globals and three globals per quadrant.

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

- 1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

Figure 2-37 • FB Erase Page Waveform

The following signals are used to configure the FIFO4K18 memory element.

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

TADIE 2-33 · ASDECLINALIO SELLINUS IOI WWWIZ.VI

WW2, WW1, WW0	RW2, RW1, RW0	D×W	
000	000	4k×1	
001	001	2k×2	
010	010	1k×4	
011	011	512×9	
100	100	256×18	
101, 110, 111	101, 110, 111	Reserved	

WBLK and RBLK

These signals are active low and will enable the respective ports when Low. When the RBLK signal is High, the corresponding port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512×9	WD[17:9], RD[17:9]
256×18	-

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-34).

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case, the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of software and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid halfwords being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case, a complete word cannot be read. The same is applicable in the full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10× amplification, the maximum measurable difference between the AV and AC pads is V_{AREF} / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power (P = I² × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1 – 2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05
> 4 A – 8 A	0.0125 – 0.025
> 8 A – 12 A	0.00625 – 0.02

Table 2-37 • Recommended Resistor for Different Current Range Measurement

EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

EQ 16

EQ 17

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)): (VIN – 0.5 × LSB Value) = VIN(1 – $e^{-t/RC}$)

$$1 - e^{-e^{-1}}$$

Solving EQ 17:

EQ 18

where $R = Z_{INAD} + R_{SOURCE}$ and $C = C_{INAD}$. Calculate the value of STC by using EQ 19.

t_{SAMPLE} = (2 + STC) x (1 / ADCCLK) or t_{SAMPLE} = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

where VIN is the ADC reference voltage (VREF)

 t_{SAMPLE} = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (t_{SAMPLE} / (1 / 10 MHz)) - 2 = 4.49 - 2 = 2.49.

You must round up to 3 to accommodate the minimum sample time.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF				
Resolution	LSB Value (mV)	Min. Sample/Hold Time for 0.5 LSB (μs)		
8	10	0.449		
10	2.5	0.549		
12	0.625	0.649		

|--|

VIN = 3.3V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF				
Resolution	LSB Value (mV)	Min. Sample/Hold time for 0.5 LSB (µs)		
8	12.891	0.449		
10	3.223	0.549		
12	0.806	0.649		

Sample Phase

A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20. When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or Temperature Monitor, the minimum sample time for each must be obeyed.

Typical Performance Characteristics

Temperature Errror vs. Die Temperature

Figure 2-95 • Effect of External Sensor Capacitance

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Performance						
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Analog Configuration MUX

The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter. Microsemi Libero SoC will generate IP that will load and configure the Analog Block via the ACM. However, users are not limited to using the Libero SoC IP. This section provides a detailed description of the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as timing waveforms so users can access and control the ACM directly from their designs.

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM. These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in Table 2-36 on page 2-78. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the Analog Block).

Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and configuration byte for that quad.

ACMADDR [7:0] in Decimal	Name	Description	Associated Peripheral	
0	-	_	Analog Quad	
1	AQ0	Byte 0	Analog Quad	
2	AQ0	Byte 1	Analog Quad	
3	AQ0	Byte 2	Analog Quad	
4	AQ0	Byte 3	Analog Quad	
5	AQ1	Byte 0	Analog Quad	
			Analog Quad	
36	AQ8	Byte 3	Analog Quad	
37	AQ9	Byte 0	Analog Quad	
38	AQ9	Byte 1	Analog Quad	
39	AQ9	Byte 2	Analog Quad	
40	AQ9	Byte 3	Analog Quad	
41		Undefined	Analog Quad	
		Undefined	Analog Quad	
63		Undefined	RTC	
64	COUNTER0	Counter bits 7:0	RTC	
65	COUNTER1	Counter bits 15:8	RTC	
66	COUNTER2	Counter bits 23:16	RTC	
67	COUNTER3	Counter bits 31:24	RTC	
68	COUNTER4	Counter bits 39:32	RTC	
72	MATCHREG0	Match register bits 7:0	RTC	

Table 2-54 • ACM Address Decode Table for Analog Quad

Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMO S 3.3 V	Refer to the following tables for more	Refer to the following tables for more	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5 V	Table 2-78 on page 2-152	Table 2-78 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5/5.0 V	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V			Off	None	35 pF	-	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	-	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	-	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	-	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	-	Off	0	Off
HSTL Class I			Off	None	20 pF	-	Off	0	Off
HSTL Class II			Off	None	20 pF	-	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	-	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	-	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	_	Off	0	Off
LVPECL			Off	None	0 pF	_	Off	0	Off

User I/O Characteristics

Timing Model

Figure 2-115	Timing Model
	Operating Conditions: -2 Speed, Commercial Temperature Range (T _J = 70°C),
	Worst-Case VCC = 1.425 V

Output Register

Timing Characteristics

Table 2-177 • Output Data Register Propagation DelaysCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
tosud	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
tosue	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.32	0.37	0.43	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

User-Defined Supply Pins

VREF I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi Pro I/O. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as a system reference. If a different reference voltage is required, it can be supplied by an external source and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the needs of the individual designs. The choice of the capacitor value has an impact on the settling time it takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will be shorter than when selecting the larger capacitor value. The above range of capacitor values supports the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF has achieved the 2.56 V value. Microsemi recommends customers use 10 uF as the value of the bypass capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also make sure that the ADCRESET signal is deasserted before initiating valid conversions.²

If the user connects VAREF to external 3.3 V on their board, the internal VAREF driving OpAmp tries to bring the pin down to the nominal 2.56 V until the device is programmed and up/functional. Under this scenario, it is recommended to connect an external 3.3 V supply through a ~1 KOhm resistor to limit current, along with placing a 10-100nF capacitor between VAREF and GNDA.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up resistors.

During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os get instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M Ω to ground on AV, AC, and AT. This pin can be left floating when it is unused.

^{2.} The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in the datasheet refer to the VAREF specification in Table 3-2 on page 3-3.

Fusion Family of Mixed Signal FPGAs

	PQ208		PQ208		
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function
74	AV2	AV4	111	VCCNVM	VCCNVM
75	AC2	AC4	112	VCC	VCC
76	AG2	AG4	112	VCC	VCC
77	AT2	AT4	113	VPUMP	VPUMP
78	ATRTN1	ATRTN2	114	GNDQ	NC
79	AT3	AT5	115	VCCIB1	ТСК
80	AG3	AG5	116	ТСК	TDI
81	AC3	AC5	117	TDI	TMS
82	AV3	AV5	118	TMS	TDO
83	AV4	AV6	119	TDO	TRST
84	AC4	AC6	120	TRST	VJTAG
85	AG4	AG6	121	VJTAG	IO57NDB2V0
86	AT4	AT6	122	IO57NDB1V0	GDC2/IO57PDB2V0
87	ATRTN2	ATRTN3	123	GDC2/IO57PDB1V0	IO56NDB2V0
88	AT5	AT7	124	IO56NDB1V0	GDB2/IO56PDB2V0
89	AG5	AG7	125	GDB2/IO56PDB1V0	IO55NDB2V0
90	AC5	AC7	126	VCCIB1	GDA2/IO55PDB2V0
91	AV5	AV7	127	GND	GDA0/IO54NDB2V0
92	NC	AV8	128	IO55NDB1V0	GDA1/IO54PDB2V0
93	NC	AC8	129	GDA2/IO55PDB1V0	VCCIB2
94	NC	AG8	130	GDA0/IO54NDB1V0	GND
95	NC	AT8	131	GDA1/IO54PDB1V0	VCC
96	NC	ATRTN4	132	GDB0/IO53NDB1V0	GCA0/IO45NDB2V0
97	NC	AT9	133	GDB1/IO53PDB1V0	GCA1/IO45PDB2V0
98	NC	AG9	134	GDC0/IO52NDB1V0	GCB0/IO44NDB2V0
99	NC	AC9	135	GDC1/IO52PDB1V0	GCB1/IO44PDB2V0
100	NC	AV9	136	IO51NSB1V0	GCC0/IO43NDB2V
101	GNDAQ	GNDAQ			0
102	VCC33A	VCC33A	137	VCCIB1	GCC1/IO43PDB2V0
103	ADCGNDREF	ADCGNDREF	138	GND	IO42NDB2V0
104	VAREF	VAREF	139	VCC	IO42PDB2V0
105	PUB	PUB	140	IO50NDB1V0	IO41NDB2V0
106	VCC33A	VCC33A	141	IO50PDB1V0	GCC2/IO41PDB2V0
107	GNDA	GNDA	142	GCA0/IO49NDB1V0	VCCIB2
108	PTEM	PTEM	143	GCA1/IO49PDB1V0	GND
109	PTBASE	PTBASE	144	GCB0/IO48NDB1V0	VCC
110	GNDNVM	GNDNVM	145	GCB1/IO48PDB1V0	IO40NDB2V0
L		L]	146	GCC0/IO47NDB1V0	GCB2/IO40PDB2V0

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
B5	IO05NDB0V0	IO04NDB0V0	C18	VCCIB1	VCCIB1
B6	IO05PDB0V0	IO04PDB0V0	C19	VCOMPLB	VCOMPLB
B7	GND	GND	C20	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0
B8	IO10NDB0V1	IO09NDB0V1	C21	NC	IO48PSB2V0
B9	IO13PDB0V1	IO11PDB0V1	C22	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0
B10	GND	GND	D1	IO82NDB4V0	IO121NDB4V0
B11	IO17NDB1V0	IO24NDB1V0	D2	GND	GND
B12	IO18NDB1V0	IO26NDB1V0	D3	IO83NDB4V0	IO123NDB4V0
B13	GND	GND	D4	GAC2/IO83PDB4V0	GAC2/IO123PDB4V0
B14	IO21NDB1V0	IO31NDB1V1	D5	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0
B15	IO21PDB1V0	IO31PDB1V1	D6	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0
B16	GND	GND	D7	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0
B17	GBC1/IO26PDB1V1	GBC1/IO40PDB1V2	D8	IO09NDB0V1	IO10NDB0V1
B18	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2	D9	IO09PDB0V1	IO10PDB0V1
B19	GND	GND	D10	IO11NDB0V1	IO14NDB0V2
B20	VCCPLB	VCCPLB	D11	IO16NDB1V0	IO23NDB1V0
B21	GND	GND	D12	IO16PDB1V0	IO23PDB1V0
B22	VCC	NC	D13	NC	IO32NPB1V1
C1	IO82PDB4V0	IO121PDB4V0	D14	IO23NDB1V1	IO34NDB1V1
C2	NC	IO122PSB4V0	D15	IO23PDB1V1	IO34PDB1V1
C3	IO00NDB0V0	IO00NDB0V0	D16	IO25PDB1V1	IO37PDB1V2
C4	IO00PDB0V0	IO00PDB0V0	D17	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2
C5	VCCIB0	VCCIB0	D18	VCCIB2	VCCIB2
C6	IO06NDB0V0	IO05NDB0V1	D19	NC	IO47PPB2V0
C7	IO06PDB0V0	IO05PDB0V1	D20	IO30NDB2V0	IO44NDB2V0
C8	VCCIB0	VCCIB0	D21	GND	GND
C9	IO13NDB0V1	IO11NDB0V1	D22	IO31NDB2V0	IO45NDB2V0
C10	IO11PDB0V1	IO14PDB0V2	E1	IO81NDB4V0	IO120NDB4V0
C11	VCCIB0	VCCIB0	E2	IO81PDB4V0	IO120PDB4V0
C12	VCCIB1	VCCIB1	E3	VCCIB4	VCCIB4
C13	IO20NDB1V0	IO29NDB1V1	E4	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0
C14	IO20PDB1V0	IO29PDB1V1	E5	IO85NDB4V0	IO125NDB4V0
C15	VCCIB1	VCCIB1	E6	GND	GND
C16	IO25NDB1V1	IO37NDB1V2	E7	VCCIB0	VCCIB0
C17	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2	E8	NC	IO08NDB0V1

Revision	Changes	Page
Revision 2 (continued)	The prescalar range for the 'Analog Input (direct input to ADC)" configurations was removed as inapplicable for direct inputs. The input resistance for direct inputs is covered in Table 2-50 • ADC Characteristics in Direct Input Mode (SAR 31201).	2-120
	The "Examples" for calibrating accuracy for ADC channels were revised and corrected to make them consistent with terminology in the associated tables (SARs 36791, 36773).	2-124
	A note was added to Table 2-56 • Analog Quad ACM Byte Assignment and the introductory text for Table 2-66 • Internal Temperature Monitor Control Truth Table, stating that for the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set (SAR 34418).	2-129, 2-131
	t_{DOUT} was corrected to t_{DIN} in Figure 2-116 \bullet Input Buffer Timing Model and Delays (example) (SAR 37115).	2-161
	The formulas in the table notes for Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34751).	2-171
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34877).	2-175
	The following notes were removed from Table 2-168 • Minimum and Maximum DC Input and Output Levels (SAR 34808): ±5%	2-209
	Differential input voltage = ±350 mV	
	An incomplete, duplicate sentence was removed from the end of the "GNDAQ Ground (analog quiet)" pin description (SAR 30185).	2-223
	Information about configuration of unused I/Os was added to the "User Pins" section (SAR 32642).	2-225
	The following information was added to the pin description for "XTAL1 Crystal Oscillator Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 24119).	2-227
	The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads for Analog Input (direct input to ADC), was corrected from 1 M Ω (typical) to 2 k Ω (typical) (SAR 34371).	3-4
	The Storage Temperature column in Table 3-5 • FPGA Programming, Storage, and Operating Limits stated Min. T_J twice for commercial and industrial product grades and has been corrected to Min. T_J and Max. T_J (SAR 29416).	3-5
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Dynamic Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>Fusion FPGA Fabric User's Guide</i> (SAR 34741).	3-24
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 36612).	4-1
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "Fusion Device Status" table indicates the status for each device in the device family.	N/A

Datasheet Information

Revision	Changes	Page
v2.0, Revision 1 (July 2009)	The MicroBlade and Fusion datasheets have been combined. Pigeon Point information is new.	N/A
	CoreMP7 support was removed since it is no longer offered.	
	–F was removed from the datasheet since it is no longer offered.	
	The operating temperature was changed from ambient to junction to better reflect actual conditions of operations.	
	Commercial: 0°C to 85°C	
	Industrial: –40°C to 100°C	
	The version number category was changed from Preliminary to Production, which means the datasheet contains information based on final characterization. The version number changed from Preliminary v1.7 to v2.0.	
	The "Integrated Analog Blocks and Analog I/Os" section was updated to include a reference to the "Analog System Characteristics" section in the <i>Device Architecture</i> chapter of the datasheet, which includes Table 2-46 • Analog Channel Specifications and specific voltage data.	1-4
	The phrase "Commercial-Case Conditions" in timing table titles was changed to "Commercial Temperature Range Conditions."	N/A
	The "Crystal Oscillator" section was updated significantly. Please review carefully.	2-20
	The "Real-Time Counter (part of AB macro)" section was updated significantly. Please review carefully.	2-33
	There was a typo in Table 2-19 • Flash Memory Block Pin Names for the ERASEPAGE description; it was the same as DISCARDPAGE. As as a result, the ERASEPAGE description was updated.	2-40
	The $t_{\mbox{FMAXCLKNVM}}$ parameter was updated in Table 2-25 \bullet Flash Memory Block Timing.	2-52
	Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.	2-66
	In Table 2-36 • Analog Block Pin Description, the Function description for PWRDWN was changed from "Comparator power-down if 1"	2-78
	to "ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin."	
	Figure 2-75 • Gate Driver Example was updated.	2-91
	The "ADC Operation" section was updated. Please review carefully.	2-104
	Figure 2-92 • Intra-Conversion Timing Diagram and Figure 2-93 • Injected Conversion Timing Diagram are new.	2-113
	The "Typical Performance Characteristics" section is new.	2-115
	Table 2-49 • Analog Channel Specifications was significantly updated.	2-117
	Table 2-50 • ADC Characteristics in Direct Input Mode was significantly updated.	2-120
	In Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3, note 2 was updated.	2-123
	In Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages, note 1 was updated.	2-124
	In Table 2-54 • ACM Address Decode Table for Analog Quad, bit 89 was removed.	2-126