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Fusion Family of Mixed Signal FPGAs
Figure 2-4 • Combinatorial Timing Model and Waveforms
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Device Architecture
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off. 

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Fusion Family of Mixed Signal FPGAs
The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W
ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
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Device Architecture
Direct Digital Input
The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these
pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these
pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input
Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC,
or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the
appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad)
and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is
configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3

Worst-Case Industrial Conditions, TJ = 85°C

Condition Total Channel Error (LSB)

Analog 
Pad Prescaler Range (V) Input Voltage4 (V) Negative Max. Median Positive Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 0.300 to 12.0 –6 1 6

8 0.250 to 8.00 –6 0 6

4 0.200 to 4.00 –7 –1 7

2 0.150 to 2.00 –7 0 7

1 0.050 to 1.00 –6 –1 6

AT 16 0.300 to 16.0 –5 0 5

4 0.100 to 4.00 –7 –1 7

Negative Range ADC in 10-Bit Mode

AV, AC 16 –0.400 to –10.5 –7 1 9

8 –0.350 to –8.00 –7 –1 7

4 –0.300 to –4.00 –7 –2 9

2 –0.250 to –2.00 –7 –2 7

1 –0.050 to –1.00 –16 –1 20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit
mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.
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Device Architecture
Table 2-61 details the settings available to either power down or enable the prescaler associated with the
analog inputs AV, AC, and AT.

Table 2-62 details the settings available to enable the Current Monitor Block associated with the AC pin.

Table 2-63 details the settings available to configure the drive strength of the gate drive when not in high-
drive mode.

Table 2-64 details the settings available to set the polarity of the gate driver (either p-channel- or
n-channel-type devices).

Table 2-65 details the settings available to turn on the Gate Driver and set whether high-drive mode is on
or off. 

Table 2-66 details the settings available to turn on and off the chip internal temperature monitor.

Note: For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.

Table 2-61 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[7] Prescaler Op Amp 

0 Power-down 

1 Operational 

Table 2-62 • Current Monitor Input Switch Control Truth Table—AV (x = 0)

Control Lines B0[4] Current Monitor Input Switch 

0 Off 

1 On 

Table 2-63 • Low-Drive Gate Driver Current Truth Table (AG)

Control Lines B2[3] Control Lines B2[2] Current (µA) 

0 0 1 

0 1 3 

1 0 10 

1 1 30 

Table 2-64 • Gate Driver Polarity Truth Table (AG)

Control Lines B2[6] Gate Driver Polarity 

0 Positive 

1 Negative 

Table 2-65 • Gate Driver Control Truth Table (AG)

Control Lines B2[7] GDON Gate Driver 

0 0 Off 

0 1 Low drive on 

1 0 Off 

1 1 High drive on 

Table 2-66 • Internal Temperature Monitor Control Truth Table

Control Lines B2[0] PDTMB Chip Internal Temperature Monitor

0 0 Off

1 1 On
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Fusion Family of Mixed Signal FPGAs
I/O Registers
Each I/O module contains several input, output, and enable registers. Refer to Figure 2-100 for a
simplified representation of the I/O block. 

The number of input registers is selected by a set of switches (not shown in Figure 2-100) between
registers to implement single or differential data transmission to and from the FPGA core. The Designer
software sets these switches for the user. 

A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input
register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O
register combining must satisfy some rules.

Note: Fusion I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on
page 2-139 for more information).

Figure 2-100 • I/O Block Logical Representation
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Fusion Family of Mixed Signal FPGAs
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-
transmitter current shorts. Figure 2-110 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 2-111 shows how bus contention is created, and Figure 2-
112 on page 2-151 shows how it can be avoided with the skew circuit.

Figure 2-110 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
Fusion Devices

Figure 2-111 • Timing Diagram (bypasses skew circuit)
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Fusion Family of Mixed Signal FPGAs
HSTL (I) 8 mA 50 50

HSTL (II) 15 mA 25 25

SSTL2 (I) 17 mA 27 31

SSTL2 (II) 21 mA 13 15

SSTL3 (I) 16 mA 44 69

SSTL3 (II) 24 mA 18 32

Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300

4 mA 100 300

6 mA 50 150

8 mA 50 150

12 mA 25 75

16 mA 17 50

24 mA 11 33

2.5 V LVCMOS 2 mA 100 200

4 mA 100 200

6 mA 50 100

8 mA 50 100

12 mA 25 50

16 mA 20 40

24 mA 11 22

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

6 mA 50 56

8 mA 50 56

12 mA 20 22

16 mA 20 22

1.5 V LVCMOS 2 mA 200 224

4 mA 100 112

6 mA 67 75

8 mA 33 37

12 mA 33 37

3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75

Table 2-96 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
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Device Architecture
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of
analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.

2.5 V LVCMOS 2 mA 16 18

4 mA 16 18

6 mA 32 37

8 mA 32 37

12 mA 65 74

16 mA 83 87

24 mA 169 124

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

6 mA 35 44

8 mA 45 51

12 mA 91 74

16 mA 91 74

1.5 V LVCMOS 2 mA 13 16

4 mA 25 33

6 mA 32 39

8 mA 66 55

12 mA 66 55

3.3 V PCI/PCI-X Per PCI/PCI-X 
specification

103 109

Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

2.5 V LVCMOS 2 mA 16 18

4 mA 16 18

6 mA 32 37

8 mA 32 37

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

1.5 V LVCMOS 2 mA 13 16

Table 2-98 • I/O Short Currents IOSH/IOSL (continued)

Drive Strength IOSH (mA)* IOSL (mA)*

Note: *TJ = 100°C
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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DC and Power Characteristics
Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 3.3 – 16.69

2.5 V LVCMOS 2.5 – 5.12

1.8 V LVCMOS 1.8 – 2.13

1.5 V LVCMOS (JESD8-11) 1.5 – 1.45

3.3 V PCI 3.3 – 18.11

3.3 V PCI-X 3.3 – 18.11

Differential

LVDS 2.5 2.26 1.20

LVPECL 3.3 5.72 1.87

Applicable to Standard I/O Banks

3.3 V LVTTL/LVCMOS 3.3 – 16.79

2.5 V LVCMOS 2.5 – 5.19

1.8 V LVCMOS 1.8 – 2.18

1.5 V LVCMOS (JESD8-11) 1.5 – 1.52

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings  (continued)

VCCI (V) 
Static Power
PDC7 (mW)1 

Dynamic Power
PAC9 (µW/MHz)2

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCC and VCCI.
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DC and Power Characteristics
PS-CELL = NS-CELL * (PAC5 + (1 / 2) * PAC6) * FCLK

NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PS-CELL = 0 W

Combinatorial Cells Dynamic Contribution—PC-CELL

Operating Mode

PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PC-CELL = 0 W

Routing Net Dynamic Contribution—PNET

Operating Mode

PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK

NS-CELL is the number VersaTiles used as sequential modules in the design.

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PNET = 0 W

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK

NINPUTS is the number of I/O input buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PINPUTS = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK

NOUTPUTS is the number of I/O output buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

POUTPUTS = 0 W
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Package Pin Assignments
C21 AG2 AG2

C22 NC NC

C23 NC NC

C24 NC NC

C25 NC AT5

C26 GNDAQ GNDAQ

C27 NC NC

C28 NC NC

C29 NC NC

C30 NC NC

C31 GND GND

C32 NC NC

C33 NC NC

C34 NC NC

C35 GND GND

C36 GDB0/IO39NPB1V0 GDA0/IO54NPB1V0

C37 GDA1/IO37NSB1V0 GDC0/IO52NSB1V0

C38 GCA0/IO36NDB1V0 GCA0/IO49NDB1V0

C39 GCB1/IO35PPB1V0 GCB1/IO48PPB1V0

C40 GND GND

C41 GCA2/IO32NPB1V0 IO41NPB1V0

C42 GBB2/IO31NDB1V0 IO40NDB1V0

C43 NC NC

C44 NC GBA1/IO39RSB0V0

C45 NC GBB0/IO36RSB0V0

C46 GND GND

C47 NC IO30RSB0V0

C48 IO22RSB0V0 IO27RSB0V0

C49 GND GND

C50 IO13RSB0V0 IO16RSB0V0

C51 IO09RSB0V0 IO12RSB0V0

C52 IO06RSB0V0 IO09RSB0V0

C53 GND GND

C54 NC GAB1/IO03RSB0V0

C55 NC GAA0/IO00RSB0V0

C56 NC NC

QN180

Pin Number AFS090 Function AFS250 Function

D1 NC NC

D2 NC NC

D3 NC NC

D4 NC NC

QN180

Pin Number AFS090 Function AFS250 Function
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Fusion Family of Mixed Signal FPGAs
FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function

A1 GND GND GND GND

A2 VCCIB0 VCCIB0 VCCIB0 VCCIB0

A3 GAB0/IO02RSB0V0 GAA0/IO00RSB0V0 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

A4 GAB1/IO03RSB0V0 GAA1/IO01RSB0V0 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A5 GND GND GND GND

A6 IO07RSB0V0 IO11RSB0V0 IO10PDB0V1 IO07PDB0V1

A7 IO10RSB0V0 IO14RSB0V0 IO12PDB0V1 IO13PDB0V2

A8 IO11RSB0V0 IO15RSB0V0 IO12NDB0V1 IO13NDB0V2

A9 IO16RSB0V0 IO24RSB0V0 IO22NDB1V0 IO24NDB1V0

A10 IO17RSB0V0 IO25RSB0V0 IO22PDB1V0 IO24PDB1V0

A11 IO18RSB0V0 IO26RSB0V0 IO24NDB1V1 IO29NDB1V1

A12 GND GND GND GND

A13 GBC0/IO25RSB0V0 GBA0/IO38RSB0V0 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A14 GBA0/IO29RSB0V0 IO32RSB0V0 IO29NDB1V1 IO43NDB1V2

A15 VCCIB0 VCCIB0 VCCIB1 VCCIB1

A16 GND GND GND GND

B1 VCOMPLA VCOMPLA VCOMPLA VCOMPLA

B2 VCCPLA VCCPLA VCCPLA VCCPLA

B3 GAA0/IO00RSB0V0 IO07RSB0V0 IO00NDB0V0 IO00NDB0V0

B4 GAA1/IO01RSB0V0 IO06RSB0V0 IO00PDB0V0 IO00PDB0V0

B5 NC GAB1/IO03RSB0V0 GAB1/IO02PPB0V0 GAB1/IO02PPB0V0

B6 IO06RSB0V0 IO10RSB0V0 IO10NDB0V1 IO07NDB0V1

B7 VCCIB0 VCCIB0 VCCIB0 VCCIB0

B8 IO12RSB0V0 IO16RSB0V0 IO18NDB1V0 IO22NDB1V0

B9 IO13RSB0V0 IO17RSB0V0 IO18PDB1V0 IO22PDB1V0

B10 VCCIB0 VCCIB0 VCCIB1 VCCIB1

B11 IO19RSB0V0 IO27RSB0V0 IO24PDB1V1 IO29PDB1V1

B12 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 GBC0/IO26NPB1V1 GBC0/IO40NPB1V2

B13 GBC1/IO26RSB0V0 GBA1/IO39RSB0V0 GBA1/IO28PDB1V1 GBA1/IO42PDB1V2

B14 GBA1/IO30RSB0V0 IO33RSB0V0 IO29PDB1V1 IO43PDB1V2

B15 NC NC VCCPLB VCCPLB

B16 NC NC VCOMPLB VCOMPLB

C1 VCCIB3 VCCIB3 VCCIB4 VCCIB4

C2 GND GND GND GND

C3 VCCIB3 VCCIB3 VCCIB4 VCCIB4

C4 NC NC VCCIB0 VCCIB0

C5 VCCIB0 VCCIB0 VCCIB0 VCCIB0

C6 GAC1/IO05RSB0V0 GAC1/IO05RSB0V0 GAC1/IO03PDB0V0 GAC1/IO03PDB0V0
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Fusion Family of Mixed Signal FPGAs
P21 IO51PDB2V0 IO73PDB2V0

P22 IO49NDB2V0 IO71NDB2V0

R1 IO69PDB4V0 IO102PDB4V0

R2 IO69NDB4V0 IO102NDB4V0

R3 VCCIB4 VCCIB4

R4 IO64PDB4V0 IO91PDB4V0

R5 IO64NDB4V0 IO91NDB4V0

R6 NC IO92PDB4V0

R7 GND GND

R8 GND GND

R9 VCC33A VCC33A

R10 GNDA GNDA

R11 VCC33A VCC33A

R12 GNDA GNDA

R13 VCC33A VCC33A

R14 GNDA GNDA

R15 VCC VCC

R16 GND GND

R17 NC IO74NDB2V0

R18 GDA0/IO54NDB2V0 GDA0/IO81NDB2V0

R19 GDB0/IO53NDB2V0 GDB0/IO80NDB2V0

R20 VCCIB2 VCCIB2

R21 IO50NDB2V0 IO75NDB2V0

R22 IO50PDB2V0 IO75PDB2V0

T1 NC IO100PPB4V0

T2 GND GND

T3 IO66PDB4V0 IO95PDB4V0

T4 IO66NDB4V0 IO95NDB4V0

T5 VCCIB4 VCCIB4

T6 NC IO92NDB4V0

T7 GNDNVM GNDNVM

T8 GNDA GNDA

T9 NC NC

T10 AV4 AV4

T11 NC NC

FG484

Pin 
Number AFS600 Function AFS1500 Function

T12 AV5 AV5

T13 AC5 AC5

T14 NC NC

T15 GNDA GNDA

T16 NC IO77PPB2V0

T17 NC IO74PDB2V0

T18 VCCIB2 VCCIB2

T19 IO55NDB2V0 IO82NDB2V0

T20 GDA2/IO55PDB2V0 GDA2/IO82PDB2V0

T21 GND GND

T22 GDC1/IO52PDB2V0 GDC1/IO79PDB2V0

U1 IO67PDB4V0 IO98PDB4V0

U2 IO67NDB4V0 IO98NDB4V0

U3 GEC1/IO63PDB4V0 GEC1/IO90PDB4V0

U4 GEC0/IO63NDB4V0 GEC0/IO90NDB4V0

U5 GND GND

U6 VCCNVM VCCNVM

U7 VCCIB4 VCCIB4

U8 VCC15A VCC15A

U9 GNDA GNDA

U10 AC4 AC4

U11 VCC33A VCC33A

U12 GNDA GNDA

U13 AG5 AG5

U14 GNDA GNDA

U15 PUB PUB

U16 VCCIB2 VCCIB2

U17 TDI TDI

U18 GND GND

U19 IO57NDB2V0 IO84NDB2V0

U20 GDC2/IO57PDB2V0 GDC2/IO84PDB2V0

U21 NC IO77NPB2V0

U22 GDC0/IO52NDB2V0 GDC0/IO79NDB2V0

V1 GEB1/IO62PDB4V0 GEB1/IO89PDB4V0

V2 GEB0/IO62NDB4V0 GEB0/IO89NDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Package Pin Assignments
V3 VCCIB4 VCCIB4

V4 GEA1/IO61PDB4V0 GEA1/IO88PDB4V0

V5 GEA0/IO61NDB4V0 GEA0/IO88NDB4V0

V6 GND GND

V7 VCC33PMP VCC33PMP

V8 NC NC

V9 VCC33A VCC33A

V10 AG4 AG4

V11 AT4 AT4

V12 ATRTN2 ATRTN2

V13 AT5 AT5

V14 VCC33A VCC33A

V15 NC NC

V16 VCC33A VCC33A

V17 GND GND

V18 TMS TMS

V19 VJTAG VJTAG

V20 VCCIB2 VCCIB2

V21 TRST TRST

V22 TDO TDO

W1 NC IO93PDB4V0

W2 GND GND

W3 NC IO93NDB4V0

W4 GEB2/IO59PDB4V0 GEB2/IO86PDB4V0

W5 IO59NDB4V0 IO86NDB4V0

W6 AV0 AV0

W7 GNDA GNDA

W8 AV1 AV1

W9 AV2 AV2

W10 GNDA GNDA

W11 AV3 AV3

W12 AV6 AV6

W13 GNDA GNDA

W14 AV7 AV7

W15 AV8 AV8

FG484

Pin 
Number AFS600 Function AFS1500 Function

W16 GNDA GNDA

W17 AV9 AV9

W18 VCCIB2 VCCIB2

W19 NC IO68PPB2V0

W20 TCK TCK

W21 GND GND

W22 NC IO76PPB2V0

Y1 GEC2/IO60PDB4V0 GEC2/IO87PDB4V0

Y2 IO60NDB4V0 IO87NDB4V0

Y3 GEA2/IO58PDB4V0 GEA2/IO85PDB4V0

Y4 IO58NDB4V0 IO85NDB4V0

Y5 NCAP NCAP

Y6 AC0 AC0

Y7 VCC33A VCC33A

Y8 AC1 AC1

Y9 AC2 AC2

Y10 VCC33A VCC33A

Y11 AC3 AC3

Y12 AC6 AC6

Y13 VCC33A VCC33A

Y14 AC7 AC7

Y15 AC8 AC8

Y16 VCC33A VCC33A

Y17 AC9 AC9

Y18 ADCGNDREF ADCGNDREF

Y19 PTBASE PTBASE

Y20 GNDNVM GNDNVM

Y21 VCCNVM VCCNVM

Y22 VPUMP VPUMP

FG484

Pin 
Number AFS600 Function AFS1500 Function
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