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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Fusion Family of Mixed Signal FPGAs
Figure 2-12 • Global Network Architecture

Table 2-4 • Globals/Spines/Rows by Device

AFS090 AFS250 AFS600 AFS1500

Global VersaNets (trees)* 9 9 9 9

VersaNet Spines/Tree 4 8 12 20

Total Spines 36 72 108 180

VersaTiles in Each Top or Bottom Spine 384 768 1,152 1,920

Total VersaTiles 2,304 6,144 13,824 38,400

Note: *There are six chip (main) globals and three globals per quadrant. 
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Fusion Family of Mixed Signal FPGAs
Clock Aggregation
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock
aggregation system is achieved through long-line resources in the central rib, and also through local
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14
indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using
Global Resources in Actel Fusion Devices application note.

Figure 2-14 • Clock Aggregation Tree Architecture
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Device Architecture
Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.89 1.12 1.02 1.27 1.20 1.50  ns 

tRCKH Input High Delay for Global Clock 0.88 1.14 1.00 1.30 1.17 1.53  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.26 0.30 0.35  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully
loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.84 1.07 0.96 1.21 1.13 1.43  ns 

tRCKH Input High Delay for Global Clock 0.83 1.10 0.95 1.25 1.12 1.47  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.30 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off. 

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Fusion Family of Mixed Signal FPGAs
Voltage Regulator and Power System Monitor (VRPSM)
The VRPSM macro controls the power-up state of the FPGA. The power-up bar (PUB) pin can turn on
the voltage regulator when set to 0. TRST can enable the voltage regulator when deasserted, allowing
the FPGA to power-up when user want access to JTAG ports. The inputs VRINITSTATE and
RTCPSMMATCH come from the flash bits and RTC, and can also power up the FPGA.

Note: *Signals are hardwired internally and do not exist in the macro core.

Figure 2-30 • VRPSM Macro
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Table 2-17 • VRPSM Signal Descriptions

Signal Name Width Direction Function

VRPU 1 In Voltage Regulator Power-Up

0 – Voltage regulator disabled. PUB must be floated or pulled up, and the TRST
pin must be grounded to disable the voltage regulator.

1 – Voltage regulator enabled

VRINITSTATE 1 In Voltage Regulator Initial State

Defines the voltage Regulator status upon power-up of the 3.3 V. The signal is
configured by Libero SoC when the VRPSM macro is generated.

Tie off to 1 – Voltage regulator enables when 3.3 V is powered.

Tie off to 0 – Voltage regulator disables when 3.3 V is powered.

RTCPSMMATCH 1 In RTC Power System Management Match

Connect from RTCPSMATCH signal from RTC in AB

0 transition to 1 turns on the voltage regulator 

PUB 1 In External pin, built-in weak pull-up

Power-Up Bar

0 – Enables voltage regulator at all times

TRST* 1 In External pin, JTAG Test Reset

1 – Enables voltage regulator at all times

FPGAGOOD 1 Out Indicator that the FPGA is powered and functional

No need to connect if it is not used.

1 – Indicates that the FPGA is powered up and functional.

0 – Not possible to read by FPGA since it has already powered off.

PUCORE 1 Out Power-Up Core

Inverted signal of PUB. No need to connect if it is not used.

VREN* 1 Out Voltage Regulator Enable

Connected to 1.5 V voltage regulator in Fusion device internally.

0 – Voltage regulator disables

1 – Voltage regulator enables

Note: *Signals are hardwired internally and do not exist in the macro core.
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Fusion Family of Mixed Signal FPGAs
1.5 V Voltage Regulator
The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The
base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to
PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-31 shows the hook-up of
the 1.5 V voltage regulator to an external pass transistor.

Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is
approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported
is 0.5 A. Transistors with different gain can also be used for different current requirements.

Table 2-18 • Electrical Characteristics
VCC33A = 3.3 V

Symbol Parameter Condition Min Typical Max Units

VOUT Output Voltage Tj = 25ºC 1.425 1.5 1.575 V

ICC33A Operation Current Tj = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

 11

11

30

mA

mA

mA

VOUT Load Regulation Tj = 25ºC ILOAD = 1 mA to 0.5 A 90 mV

VOUT 

Line Regulation Tj = 25ºC VCC33A = 2.97 V to 3.63 V

ILOAD = 1 mA

VCC33A = 2.97 V to 3.63 V

ILOAD = 100 mA

VCC33A = 2.97 V to 3.63 V

ILOAD = 500 mA

10.6

12.1

10.6

mV/V

mV/V

mV/V

Dropout Voltage* Tj = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

0.63

0.84

1.35

V

V

V

IPTBASE PTBase Current Tj = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

 48

736

12 20

µA

µA

mA

Note: *Data collected with 2N2222A.
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Device Architecture
RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).

WD and RD
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then
RD[17:9] are undefined. 

WADDR and RADDR
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used
for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

WCLK and RCLK
These signals are the write and read clocks, respectively. They are both active high.

WEN and REN
These signals are the write and read enables, respectively. They are both active low by default. These
signals can be configured as active high.

RESET
This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

PIPE 
This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read,
and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data
appears on the output in the next clock cycle.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by
separate clocks, by port. 

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock
input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the
HDL code will be automatically accounted for during design compile without incurring additional delay in
the clock path.

The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK. 

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble pushing) is automatically used within the Fusion development tools, without
performance penalty. 

Table 2-30 • Aspect Ratio Settings for WW[1:0]

WW[1:0] RW[1:0] D×W

01 01 512×9

10 10 256×18

00, 11 00, 11 Reserved
2-61 Revision 6



Fusion Family of Mixed Signal FPGAs
Care must be taken when choosing the right resistor for current measurement application. Note that
because of the 10× amplification, the maximum measurable difference between the AV and AC pads is
VAREF / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by
the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor
appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges.
When choosing resistor values for a system, there is a trade-off between measurement accuracy and
power consumption. Choosing a large resistor will increase the voltage drop and hence increase
accuracy of the measurement; however the larger voltage drop dissipates more power (P = I2 × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to
VAREF/10. Therefore, the Current Monitor only supports differential voltage where |VAV-VAC| is greater
than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential
of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it
means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73. 

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the
differential amplifier still falls between 0 V and VAREF as required.  

Figure 2-72 • Positive Current Monitor

0-12 V RSENSE I

ACxAVx

CMSTBx

10 X

Current Monitor

VADC to Analog MUX
(refer Table 2-36
for MUX channel

number)

Table 2-37 • Recommended Resistor for Different Current Range Measurement

Current Range Recommended Minimum Resistor Value (Ohms)

> 5 mA – 10 mA 10 – 20 

> 10 mA – 20 mA 5 – 10 

> 20 mA – 50 mA 2.5 – 5 

> 50 mA – 100 mA 1 – 2

> 100 mA – 200 mA 0.5 – 1

> 200 mA – 500 mA 0.3 – 0.5

> 500 mA – 1 A 0.1 – 0.2

> 1 A – 2 A 0.05 – 0.1

> 2 A – 4 A 0.025 – 0.05

> 4 A – 8 A 0.0125 – 0.025

> 8 A – 12 A 0.00625 – 0.02
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Device Architecture
Terminology

Accuracy

The accuracy of Fusion Current Monitor is ±2 mV minimum plus 5% of the differential voltage at the
input. The input accuracy can be translated to error at the ADC output by using EQ 4. The 10 V/V gain is
the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-86. For 8-
bit mode, N = 8, VAREF= 2.56 V, zero differential voltage between AV and AC, the Error (EADC) is equal to
2 LSBs.

EQ 4

where

N is the number of bits

VAREF is the Reference voltage

VAV is the voltage at AV pad

VAC is the voltage at AC pad

Figure 2-73 • Negative Current Monitor
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Fusion Family of Mixed Signal FPGAs
Gate Driver
The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74).
Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink
or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive
levels: 1 µA, 3 µA, 10 µA, and 30 µA (Figure 2-75 on page 2-91). The AG also supports a High Current
Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with
100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a
voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current
sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the
number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9). 

The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current
times the external pull-up or pull-down resistor value (EQ 5).

Vgs  Ig × (Rpullup or Rpulldown)

EQ 5

Figure 2-74 • Gate Driver
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Device Architecture
Hot-Swap Support
Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or
from) a powered-up system. The levels of hot-swap support and examples of related applications are
described in Table 2-74. The I/Os also need to be configured in hot insertion mode if hot plugging
compliance is required. 

Table 2-74 • Levels of Hot-Swap Support

Hot
Swapping
Level Description

Power
Applied

to Device Bus State

Card
Ground

Connection

Device
Circuitry

Connected
to Bus Pins

Example of
Application with

Cards that Contain
Fusion Devices

Compliance of
Fusion Devices

1 Cold-swap No – – – System and card with 
Microsemi FPGA chip 
are powered down, 
then card gets 
plugged into system, 
then power supplies 
are turned on for 
system but not for 
FPGA on card. 

Compliant I/Os 
can but do not 
have to be set to 
hot insertion 
mode.

2 Hot-swap 
while reset

Yes Held in 
reset state

Must be made 
and 
maintained for 
1 ms before, 
during, and 
after insertion/ 
removal

– In PCI hot plug 
specification, reset 
control circuitry 
isolates the card 
busses until the card 
supplies are at their 
nominal operating 
levels and stable. 

Compliant I/Os 
can but do not 
have to be set to 
hot insertion 
mode.

3 Hot-swap 
while bus 

idle

Yes Held idle 
(no ongoing 
I/O 
processes 
during 
insertion/re
moval)

Same as 
Level 2

Must remain 
glitch-free 
during 
power-up or 
power-down

Board bus shared 
with card bus is 
"frozen," and there is 
no toggling activity on 
bus. It is critical that 
the logic states set on 
the bus signal do not 
get disturbed during 
card 
insertion/removal.

Compliant with 
cards with two 
levels of staging. 
I/Os have to be 
set to hot 
insertion mode.

4 Hot-swap on 
an active 

bus

Yes Bus may 
have active 
I/O 
processes 
ongoing, 
but device 
being 
inserted or 
removed 
must be 
idle.

Same as 
Level 2

Same as 
Level 3

There is activity on 
the system bus, and it 
is critical that the logic 
states set on the bus 
signal do not get 
disturbed during card 
insertion/removal.

Compliant with 
cards with two 
levels of staging. 
I/Os have to be 
set to hot 
insertion mode.
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Device Architecture
Electrostatic Discharge (ESD) Protection
Fusion devices are tested per JEDEC Standard JESD22-A114-B.

Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all
device pads against damage from ESD as well as from excessive voltage transients. 

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the Off state, except when
transient voltage is significantly above VCCI or below GND levels. 

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-75 and
Table 2-76 on page 2-143 for more information about I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment

Clamp Diode Hot Insertion 5 V Input Tolerance 1

Input 
Buffer

Output 
BufferStandard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O

3.3 V LVTTL/LVCMOS No Yes Yes No Yes1 Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes1 Enabled/Disabled

LVCMOS 2.5 V No Yes Yes No No No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V N/A Yes N/A No N/A Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential,
LVDS/BLVDS/M-
LVDS/ LVPECL 3

N/A Yes N/A No N/A No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.

Table 2-76 • Fusion Pro I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment
Clamp 
Diode 

Hot 
Insertion

5 V Input 
Tolerance Input Buffer Output Buffer

3.3 V LVTTL/LVCMOS No Yes Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X Yes No Yes1 Enabled/Disabled

LVCMOS 2.5 V 3 No Yes No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V 3 Yes No Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes No Enabled/Disabled

LVCMOS 1.5 V No Yes No Enabled/Disabled

Voltage-Referenced Input Buffer No Yes No Enabled/Disabled

Differential, LVDS/BLVDS/M-LVDS/LVPECL4 No Yes No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User Guide, select the
LVCMOS5 macro for the LVCMOS 2.5 V / 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O
standard.

4. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.
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Device Architecture
Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300

4 mA 100 300

6 mA 50 150

8 mA 50 150

2.5 V LVCMOS 2 mA 100 200

4 mA 100 200

6 mA 50 100

8 mA 50 100

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

1.5 V LVCMOS 2 mA 200 224

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values 

VCCI

R(WEAK PULL-UP)
1

(ohms)
R(WEAK PULL-DOWN)

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / IWEAK PULL-UP-MIN
2. R(WEAK PULL-DOWN-MAX) = VOLspec / IWEAK PULL-DOWN-MIN

Table 2-96 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
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Table 2-99 • Short Current Event Duration before Failure

Temperature Time Before Failure

–40°C >20 years

 0°C >20 years

25°C >20 years

70°C  5 years

85°C  2 years

100°C 6 months

Table 2-100 • Schmitt Trigger Input Hysteresis
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration Hysteresis Value (typ.)

3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV

2.5 V LVCMOS (Schmitt trigger mode) 140 mV

1.8 V LVCMOS (Schmitt trigger mode) 80 mV

1.5 V LVCMOS (Schmitt trigger mode) 60 mV

Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability

LVTTL/LVCMOS (Schmitt trigger
disabled)

No requirement 10 ns* 20 years (100°C)

LVTTL/LVCMOS (Schmitt trigger
enabled)

No requirement No requirement, but input
noise voltage cannot exceed
Schmitt hysteresis

20 years (100°C)

HSTL/SSTL/GTL No requirement 10 ns* 10 years (100°C)

LVDS/BLVDS/M-LVDS/LVPECL No requirement 10 ns* 10 years (100°C)

Note: * The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is
low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise.
Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive
noise coupling into input signals.
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Fusion Family of Mixed Signal FPGAs
Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 10.26 0.04 1.20 0.43 10.45 8.90 2.64 2.46 12.68 11.13  ns 

 –1 0.56 8.72 0.04 1.02 0.36 8.89 7.57 2.25 2.09 10.79 9.47  ns 

 –2 0.49 7.66 0.03 0.90 0.32 7.80 6.64 1.98 1.83 9.47 8.31  ns 

8 mA  Std. 0.66 7.27 0.04 1.20 0.43 7.41 6.28 2.98 3.04 9.65 8.52  ns 

 –1 0.56 6.19 0.04 1.02 0.36 6.30 5.35 2.54 2.59 8.20 7.25  ns 

 –2 0.49 5.43 0.03 0.90 0.32 5.53 4.69 2.23 2.27 7.20 6.36  ns 

12 mA  Std. 0.66 5.58 0.04 1.20 0.43 5.68 4.87 3.21 3.42 7.92 7.11  ns 

 –1 0.56 4.75 0.04 1.02 0.36 4.84 4.14 2.73 2.91 6.74 6.05  ns 

 –2 0.49 4.17 0.03 0.90 0.32 4.24 3.64 2.39 2.55 5.91 5.31  ns 

16 mA  Std. 0.66 5.21 0.04 1.20 0.43 5.30 4.56 3.26 3.51 7.54 6.80  ns 

 –1 0.56 4.43 0.04 1.02 0.36 4.51 3.88 2.77 2.99 6.41 5.79  ns 

 –2 0.49 3.89 0.03 0.90 0.32 3.96 3.41 2.43 2.62 5.63 5.08  ns 

24 mA  Std. 0.66 4.85 0.04 1.20 0.43 4.94 4.54 3.32 3.88 7.18 6.78  ns 

 –1 0.56 4.13 0.04 1.02 0.36 4.20 3.87 2.82 3.30 6.10 5.77  ns 

 –2 0.49 3.62 0.03 0.90 0.32 3.69 3.39 2.48 2.90 5.36 5.06  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class
II. This provides a differential amplifier input buffer and a push-pull output buffer.   

Timing Characteristics

Table 2-165 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

21 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 109 103 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-133 • AC Loading

Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

30 pF

25

25

SSTL3
Class II

VTT

Table 2-167 • SSTL3- Class II
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V, VREF = 1.5 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.07 0.04 1.25 0.43 2.10 1.67 4.34 3.91 ns

 –1 0.56 1.76 0.04 1.06 0.36 1.79 1.42 3.69 3.32 ns

 –2 0.49 1.54 0.03 0.93 0.32 1.57 1.25 3.24 2.92 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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Fusion Family of Mixed Signal FPGAs
Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings 

VCCI (V) 
Static Power
PDC7 (mW)1 

Dynamic Power
PAC9 (µW/MHz)2

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS  3.3 – 17.39

3.3 V LVTTL/LVCMOS – Schmitt trigger  3.3 – 25.51 

2.5 V LVCMOS  2.5 – 5.76

2.5 V LVCMOS – Schmitt trigger  2.5 – 7.16

1.8 V LVCMOS  1.8 – 2.72

1.8 V LVCMOS – Schmitt trigger  1.8 – 2.80

1.5 V LVCMOS (JESD8-11)  1.5 – 2.08

1.5 V LVCMOS (JESD8-11) – Schmitt trigger  1.5 – 2.00

3.3 V PCI  3.3 – 18.82

3.3 V PCI – Schmitt trigger  3.3 – 20.12

3.3 V PCI-X  3.3 – 18.82

3.3 V PCI-X – Schmitt trigger  3.3 – 20.12

Voltage-Referenced 

3.3 V GTL 3.3 2.90 8.23

2.5 V GTL 2.5 2.13 4.78

3.3 V GTL+ 3.3 2.81 4.14

2.5 V GTL+ 2.5 2.57 3.71

HSTL (I) 1.5 0.17 2.03

HSTL (II) 1.5 0.17 2.03

SSTL2 (I) 2.5 1.38 4.48

SSTL2 (II) 2.5 1.38 4.48

SSTL3 (I) 3.3 3.21 9.26

SSTL3 (II) 3.3 3.21 9.26

Differential

LVDS 2.5 2.26 1.50

LVPECL 3.3 5.71 2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCC and VCCI.
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DC and Power Characteristics
Differential 

LVDS – 2.5 7.74 88.92

LVPECL – 3.3 19.54 166.52

Applicable to Standard I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08

2.5 V LVCMOS 35 2.5 – 247.36

1.8 V LVCMOS 35 1.8 – 128.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  (continued)

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Package Pin Assignments
C7 IO09RSB0V0 IO12RSB0V0 IO06NDB0V0 IO09NDB0V1

C8 IO14RSB0V0 IO22RSB0V0 IO16PDB1V0 IO23PDB1V0

C9 IO15RSB0V0 IO23RSB0V0 IO16NDB1V0 IO23NDB1V0

C10 IO22RSB0V0 IO30RSB0V0 IO25NDB1V1 IO31NDB1V1

C11 IO20RSB0V0 IO31RSB0V0 IO25PDB1V1 IO31PDB1V1

C12 VCCIB0 VCCIB0 VCCIB1 VCCIB1

C13 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0 GBC1/IO26PPB1V1 GBC1/IO40PPB1V2

C14 VCCIB1 VCCIB1 VCCIB2 VCCIB2

C15 GND GND GND GND

C16 VCCIB1 VCCIB1 VCCIB2 VCCIB2

D1 GFC2/IO50NPB3V0 IO75NDB3V0 IO84NDB4V0 IO124NDB4V0

D2 GFA2/IO51NDB3V0 GAB2/IO75PDB3V0 GAB2/IO84PDB4V0 GAB2/IO124PDB4V0

D3 GAC2/IO51PDB3V0 IO76NDB3V0 IO85NDB4V0 IO125NDB4V0

D4 GAA2/IO52PDB3V0 GAA2/IO76PDB3V0 GAA2/IO85PDB4V0 GAA2/IO125PDB4V0

D5 GAB2/IO52NDB3V0 GAB0/IO02RSB0V0 GAB0/IO02NPB0V0 GAB0/IO02NPB0V0

D6 GAC0/IO04RSB0V0 GAC0/IO04RSB0V0 GAC0/IO03NDB0V0 GAC0/IO03NDB0V0

D7 IO08RSB0V0 IO13RSB0V0 IO06PDB0V0 IO09PDB0V1

D8 NC IO20RSB0V0 IO14NDB0V1 IO15NDB0V2

D9 NC IO21RSB0V0 IO14PDB0V1 IO15PDB0V2

D10 IO21RSB0V0 IO28RSB0V0 IO23PDB1V1 IO37PDB1V2

D11 IO23RSB0V0 GBB0/IO36RSB0V0 GBB0/IO27NDB1V1 GBB0/IO41NDB1V2

D12 NC NC VCCIB1 VCCIB1

D13 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0 GBA2/IO30PDB2V0 GBA2/IO44PDB2V0

D14 GBB2/IO31NDB1V0 IO40NDB1V0 IO30NDB2V0 IO44NDB2V0

D15 GBC2/IO32PDB1V0 GBB2/IO41PDB1V0 GBB2/IO31PDB2V0 GBB2/IO45PDB2V0

D16 GCA2/IO32NDB1V0 IO41NDB1V0 IO31NDB2V0 IO45NDB2V0

E1 GND GND GND GND

E2 GFB0/IO48NPB3V0 IO73NDB3V0 IO81NDB4V0 IO118NDB4V0

E3 GFB2/IO50PPB3V0 IO73PDB3V0 IO81PDB4V0 IO118PDB4V0

E4 VCCIB3 VCCIB3 VCCIB4 VCCIB4

E5 NC IO74NPB3V0 IO83NPB4V0 IO123NPB4V0

E6 NC IO08RSB0V0 IO04NPB0V0 IO05NPB0V1

E7 GND GND GND GND

E8 NC IO18RSB0V0 IO08PDB0V1 IO11PDB0V1

E9 NC NC IO20NDB1V0 IO27NDB1V1

E10 GND GND GND GND

E11 IO24RSB0V0 GBB1/IO37RSB0V0 GBB1/IO27PDB1V1 GBB1/IO41PDB1V2

E12 NC IO50PPB1V0 IO33PSB2V0 IO48PSB2V0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
4-13 Revision 6


