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Fusion Device Family Overview
The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part. Another
feature allows the inclusion of static data for system version control. Data for the FlashROM can be
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with
differing FlashROM contents.

SRAM and FIFO
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be written through a 4-bit port
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via
the device JTAG port (ROM emulation mode), using the UJTAG macro. 

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control
unit contains the counters necessary for the generation of the read and write address pointers. The
SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)
Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the
Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a
PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with
dedicated CCC block connections.

The CCC block has the following key features:

• Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz

• Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz

• Clock phase adjustment via programmable and fixed delays from –6.275 ns to +8.75 ns

• Clock skew minimization (PLL)

• Clock frequency synthesis (PLL)

• On-chip analog clocking resources usable as inputs:

– 100 MHz on-chip RC oscillator

– Crystal oscillator

Additional CCC specifications:

• Internal phase shift = 0°, 90°, 180°, and 270° 

• Output duty cycle = 50% ± 1.5%

• Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:

– 70 ps at 350 MHz

– 90 ps at 100 MHz

– 180 ps at 24 MHz

– Worst case < 2.5% × clock period

• Maximum acquisition time = 150 µs 

• Low power consumption of 5 mW
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Device Architecture
VersaTile Characteristics
Sample VersaTile Specifications—Combinatorial Module
The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide. 

Figure 2-3 • Sample of Combinatorial Cells
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Device Architecture
Figure 2-9 • Efficient Long-Line Resources
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Device Architecture
Global Resource Characteristics
AFS600 VersaNet Topology
Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It
is used to drive all D-flip-flops in the device. 

Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.
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Fusion Family of Mixed Signal FPGAs
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance
both at power-up and during runtime. 

Figure 2-79 • ADC Block Diagram
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Fusion Family of Mixed Signal FPGAs
INL – Integral Non-Linearity
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the
transfer function (Figure 2-85).

LSB – Least Significant Bit
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,
where N is the converter’s resolution. 

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

1 LSB = (2.56 V / 210) = 2.5 mV

EQ 13

No Missing Codes
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal
applied to the analog input.

Figure 2-85 • Integral Non-Linearity (INL)
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Device Architecture
Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3

Worst-Case Industrial Conditions, TJ = 85°C

Condition Total Channel Error (LSB)

Analog 
Pad Prescaler Range (V) Input Voltage4 (V) Negative Max. Median Positive Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 0.300 to 12.0 –6 1 6

8 0.250 to 8.00 –6 0 6

4 0.200 to 4.00 –7 –1 7

2 0.150 to 2.00 –7 0 7

1 0.050 to 1.00 –6 –1 6

AT 16 0.300 to 16.0 –5 0 5

4 0.100 to 4.00 –7 –1 7

Negative Range ADC in 10-Bit Mode

AV, AC 16 –0.400 to –10.5 –7 1 9

8 –0.350 to –8.00 –7 –1 7

4 –0.300 to –4.00 –7 –2 9

2 –0.250 to –2.00 –7 –2 7

1 –0.050 to –1.00 –16 –1 20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit
mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.
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Device Architecture
Analog Quad ACM Description
Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the
Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within
each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular
configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are
loaded with default settings until the initialization and configuration state machine changes them to user-
defined settings.

Table 2-56 • Analog Quad ACM Byte Assignment

Byte Bit Signal (Bx) Function Default Setting 

Byte 0 

(AV)

0 B0[0] Scaling factor control – prescaler Highest voltage range

1 B0[1] 

2 B0[2] 

3 B0[3] Analog MUX select Prescaler 

4 B0[4] Current monitor switch Off 

5 B0[5] Direct analog input switch Off 

6 B0[6] Selects V-pad polarity Positive 

7 B0[7] Prescaler op amp mode Power-down 

Byte 1 

(AC)

0 B1[0] Scaling factor control – prescaler Highest voltage range

1 B1[1] 

2 B1[2] 

3 B1[3] Analog MUX select Prescaler 

4 B1[4] 

5 B1[5] Direct analog input switch Off 

6 B1[6] Selects C-pad polarity Positive 

7 B1[7] Prescaler op amp mode Power-down 

Byte 2 

(AG)

0 B2[0] Internal chip temperature monitor * Off 

1 B2[1] Spare –

2 B2[2] Current drive control Lowest current 

3 B2[3] 

4 B2[4] Spare –

5 B2[5] Spare –

6 B2[6] Selects G-pad polarity Positive 

7 B2[7] Selects low/high drive Low drive 

Byte 3 

(AT)

0 B3[0] Scaling factor control – prescaler Highest voltage range 

1 B3[1] 

2 B3[2] 

3 B3[3] Analog MUX select Prescaler 

4 B3[4] 

5 B3[5] Direct analog input switch Off 

6 B3[6] – –

7 B3[7] Prescaler op amp mode Power-down 

Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.
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Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS090 AFS250 AFS600 AFS1500

Standard I/O N N – –

Advanced I/O E, W E, W E, W E, W

Pro I/O – – N N

Analog Quad S S S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-
LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.   

Timing Characteristics  

Table 2-141 • Minimum and Maximum DC Input and Output Levels

2.5 GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

20 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 124 169 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-125 • AC Loading

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

10 pF

25GTL

VTT

Table 2-143 • 2.5 V GTL
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V, VREF = 0.8 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.13 0.04 2.46 0.43 2.16 2.13 4.40 4.36 ns

 –1 0.56 1.81 0.04 2.09 0.36 1.84 1.81 3.74 3.71 ns

 –2 0.49 1.59 0.03 1.83 0.32 1.61 1.59 3.28 3.26 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Output Register

Timing Characteristics 

Figure 2-140 • Output Register Timing Diagram
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Table 2-177 • Output Data Register Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOCLKQ Clock-to-Q of the Output Data Register 0.59 0.67 0.79 ns

tOSUD Data Setup Time for the Output Data Register 0.31 0.36 0.42 ns

tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOSUE Enable Setup Time for the Output Data Register 0.44 0.50 0.59 ns

tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.80 0.91 1.07 ns

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.80 0.91 1.07 ns

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.22 0.25 0.30 ns

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.22 0.25 0.30 ns

tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns

tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data
Register

0.22 0.25 0.30 ns

tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns

tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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DC and Power Characteristics
Table 3-2 • Recommended Operating Conditions1

Symbol Parameter2 Commercial Industrial Units

TJ Junction temperature 0 to +85 –40 to +100 °C

VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V

VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V

VPUMP Programming voltage Programming mode3 3.15 to 3.45 3.15 to 3.45 V

Operation4 0 to 3.6 0 to 3.6 V

VCCPLL Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V

VCCI 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V

1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V

2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V

3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V

LVDS differential I/O 2.375 to 2.625 2.375 to 2.625 V

LVPECL differential I/O 3.0 to 3.6 3.0 to 3.6 V

VCC33A +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VCC33PMP +3.3 V power supply 2.97 to 3.63 2.97 to 3.63 V

VAREF Voltage reference for ADC 2.527 to 2.593 2.527 to 2.593 V

VCC15A 5 Digital power supply for the analog system 1.425 to 1.575 1.425 to 1.575 V

VCCNVM Embedded flash power supply 1.425 to 1.575 1.425 to 1.575 V

VCCOSC Oscillator power supply 2.97 to 3.63 2.97 to 3.63 V

AV, AC 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Analog input (+16 V to +2 V prescaler range) –0.3 to 12.0 –0.3 to 11.6 V

Analog input (+1 V to + 0.125 V prescaler range) –0.3 to 3.6 –0.3 to 3.6 V

Analog input (–16 V to –2 V prescaler range) –10.5 to 0.3 –10.5 to 0.3 V

Analog input (–1 V to –0.125 V prescaler range) –3.6 to 0.3 –3.6 to 0.3 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 12.0 –0.3 to 11.6 V

AG 6 Unpowered, ADC reset asserted or unconfigured –10.5 to 12.0 –10.5 to 11.6 V

Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA) –0.3 to 12.0 –0.3 to 11.6 V

Low Current Mode (–1 µA, –3 µA, –10 µA, –30 µA) –10.5 to 0.3 –10.5 to 0.3 V

High Current Mode 7 –10.5 to 12.0 –10.5 to 11.6 V

AT 6 Unpowered, ADC reset asserted or unconfigured –0.3 to 15.5 –0.3 to 14.5 V

Analog input (+16 V, +4 V prescaler range) –0.3 to 15.5 –0.3 to 14.5 V

Analog input (direct input to ADC) –0.3 to 3.6 –0.3 to 3.6 V

Digital input –0.3 to 15.5 –0.3 to 14.5 V

Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O
standard are given in Table 2-85 on page 2-157. 

2. All parameters representing voltages are measured with respect to GND unless otherwise specified.

3. The programming temperature range supported is Tambient = 0°C to 85°C.

4. VPUMP can be left floating during normal operation (not programming mode).

5. Violating the VCC15A recommended voltage supply during an embedded flash program cycle can corrupt the page being
programmed.

6. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode),
provided the duration of the overshoot is less than 50% of the operating lifetime of the device.

7. The AG pad should also conform to the limits as specified in Table 2-48 on page 2-114.
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DC and Power Characteristics
Thermal Characteristics

Introduction
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the
ambient, case, or board temperatures. This is an important distinction because dynamic and static power
consumption will cause the chip's junction temperature to be higher than the ambient, case, or board
temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature
gradient, and power.

EQ 1

EQ 2

EQ 3

where  

JA = Junction-to-air thermal resistance

JB = Junction-to-board thermal resistance

JC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TB = Board temperature (measured 1.0 mm away from the
package edge)

TC = Case temperature

P = Total power dissipated by the device

JA

TJ A–

P
------------------=

JB

TJ TB–

P
-------------------=

JC

TJ TC–

P
-------------------=

Table 3-6 • Package Thermal Resistance

Product

JA

JC JB UnitsStill Air 1.0 m/s 2.5 m/s

AFS090-QN108 34.5 30.0 27.7 8.1 16.7 °C/W

AFS090-QN180 33.3 27.6 25.7 9.2 21.2 °C/W

AFS250-QN180 32.2 26.5 24.7 5.7 15.0 °C/W

AFS250-PQ208 42.1 38.4 37 20.5 36.3 °C/W

AFS600-PQ208 23.9 21.3 20.48 6.1 16.5 °C/W

AFS090-FG256 37.7 33.9 32.2 11.5 29.7 °C/W

AFS250-FG256 33.7 30.0 28.3 9.3 24.8 °C/W

AFS600-FG256 28.9 25.2 23.5 6.8 19.9 °C/W

AFS1500-FG256 23.3 19.6 18.0 4.3 14.2 °C/W

AFS600-FG484 21.8 18.2 16.7 7.7 16.8 °C/W

AFS1500-FG484 21.6 16.8 15.2 5.6 14.9 °C/W

AFS1500-FG676 TBD TBD TBD TBD TBD °C/W
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DC and Power Characteristics
The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the
airflow where the device is mounted should be increased. The design's total junction-to-air thermal
resistance requirement can be estimated by EQ 7:

EQ 7

Determining the heat sink's thermal performance proceeds as follows:

EQ 8

where

EQ 9

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat
sinks is a function of airflow. The heat sink performance can be significantly improved with increased
airflow. 

Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA.
Design engineers should always correlate the power consumption of the device with the maximum
allowable power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard
(JESD-51) and assumptions made in building the model. It may not be realized in actual application and
therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all
power is dissipated through the case.

Temperature and Voltage Derating Factors 

JA = 0.37°C/W

= Thermal resistance of the interface material between
the case and the heat sink, usually provided by the
thermal interface manufacturer

SA = Thermal resistance of the heat sink in °C/W

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, Worst-Case VCC = 1.425 V)

Array Voltage 
VCC (V)

Junction Temperature (°C)

–40°C 0°C 25°C 70°C 85°C 100°C

1.425  0.88 0.93 0.95 1.00 1.02 1.05

1.500 0.83 0.88 0.90 0.95 0.96 0.99

1.575 0.80 0.85 0.87 0.91 0.93 0.96

ja(total)

TJ TA–

P
------------------- 100°C 70°C–

3.00 W
------------------------------------ 10.00°C/W= = =

JA(TOTAL) JC CS SA+ +=

SA JA(TOTAL) JC– CS–=

SA 13.33°C/W 8.28°C/W– 0.37°C/W– 5.01°C/W= =
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Fusion Family of Mixed Signal FPGAs
Example of Power Calculation
This example considers a shift register with 5,000 storage tiles, including a counter and memory that
stores analog information. The shift register is clocked at 50 MHz and stores and reads information from
a RAM. 

The device used is a commercial AFS600 device operating in typical conditions. 

The calculation below uses the power calculation methodology previously presented and shows how to
determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep
modes to illustrate the benefit of power-saving modes.

Global Clock Contribution—PCLOCK
FCLK = 50 MHz

Number of sequential VersaTiles: NS-CELL = 5,000

Estimated number of Spines: NSPINES = 5

Estimated number of Rows: NROW = 313

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

PCLOCK = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50

PCLOCK = 41.28 mW

Standby Mode and Sleep Mode 

PCLOCK = 0 W

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions—PS-CELL, 
PC-CELL, and PNET 

FCLK = 50 MHz

Number of sequential VersaTiles: NS-CELL = 5,000

Number of combinatorial VersaTiles: NC-CELL = 6,000

Estimated toggle rate of VersaTile outputs: 1 = 0.1 (10%) 

Operating Mode

PS-CELL = NS-CELL * (PAC5+ (1 / 2) * PAC6) * FCLK

PS-CELL = 5,000 * (0.00007 + (0.1 / 2) * 0.00029) * 50

PS-CELL = 21.13 mW

PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK

PC-CELL = 6,000 * (0.1 / 2) * 0.00029 * 50

PC-CELL = 4.35 mW

PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK

PNET = (5,000 + 6,000) * (0.1 / 2) * 0.0007 * 50

PNET = 19.25 mW

PLOGIC = PS-CELL + PC-CELL + PNET

PLOGIC = 21.13 mW + 4.35 mW + 19.25 mW

PLOGIC = 44.73 mW

Standby Mode and Sleep Mode
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Package Pin Assignments
FG256

Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/default.aspx.

13579111315 246810121416
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Package Pin Assignments
FG484

Pin 
Number AFS600 Function AFS1500 Function

A1 GND GND

A2 VCC NC

A3 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A4 GAB0/IO02NDB0V0 GAB0/IO02NDB0V0

A5 GAB1/IO02PDB0V0 GAB1/IO02PDB0V0

A6 IO07NDB0V1 IO07NDB0V1

A7 IO07PDB0V1 IO07PDB0V1

A8 IO10PDB0V1 IO09PDB0V1

A9 IO14NDB0V1 IO13NDB0V2

A10 IO14PDB0V1 IO13PDB0V2

A11 IO17PDB1V0 IO24PDB1V0

A12 IO18PDB1V0 IO26PDB1V0

A13 IO19NDB1V0 IO27NDB1V1

A14 IO19PDB1V0 IO27PDB1V1

A15 IO24NDB1V1 IO35NDB1V2

A16 IO24PDB1V1 IO35PDB1V2

A17 GBC0/IO26NDB1V1 GBC0/IO40NDB1V2

A18 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A19 IO29NDB1V1 IO43NDB1V2

A20 IO29PDB1V1 IO43PDB1V2

A21 VCC NC

A22 GND GND

AA1 VCC NC

AA2 GND GND

AA3 VCCIB4 VCCIB4

AA4 VCCIB4 VCCIB4

AA5 PCAP PCAP

AA6 AG0 AG0

AA7 GNDA GNDA

AA8 AG1 AG1

AA9 AG2 AG2

AA10 GNDA GNDA

AA11 AG3 AG3

AA12 AG6 AG6

AA13 GNDA GNDA

AA14 AG7 AG7

AA15 AG8 AG8

AA16 GNDA GNDA

AA17 AG9 AG9

AA18 VAREF VAREF

AA19 VCCIB2 VCCIB2

AA20 PTEM PTEM

AA21 GND GND

AA22 VCC NC

AB1 GND GND

AB2 VCC NC

AB3 NC IO94NSB4V0

AB4 GND GND

AB5 VCC33N VCC33N

AB6 AT0 AT0

AB7 ATRTN0 ATRTN0

AB8 AT1 AT1

AB9 AT2 AT2

AB10 ATRTN1 ATRTN1

AB11 AT3 AT3

AB12 AT6 AT6

AB13 ATRTN3 ATRTN3

AB14 AT7 AT7

AB15 AT8 AT8

AB16 ATRTN4 ATRTN4

AB17 AT9 AT9

AB18 VCC33A VCC33A

AB19 GND GND

AB20 NC IO76NPB2V0

AB21 VCC NC

AB22 GND GND

B1 VCC NC

B2 GND GND

B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

B4 GND GND

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Datasheet Information
v2.0, Revision 1
(July 2009)

The MicroBlade and Fusion datasheets have been combined. Pigeon Point
information is new. 

CoreMP7 support was removed since it is no longer offered.

–F was removed from the datasheet since it is no longer offered.

The operating temperature was changed from ambient to junction to better reflect
actual conditions of operations.

Commercial: 0°C to 85°C

Industrial: –40°C to 100°C

The version number category was changed from Preliminary to Production, which
means the datasheet contains information based on final characterization. The
version number changed from Preliminary v1.7 to v2.0.

N/A

The "Integrated Analog Blocks and Analog I/Os" section was updated to include a
reference to the "Analog System Characteristics" section in the Device Architecture
chapter of the datasheet, which includes Table 2-46 • Analog Channel Specifications
and specific voltage data.

1-4

The phrase "Commercial-Case Conditions" in timing table titles was changed to
"Commercial Temperature Range Conditions."

N/A

The "Crystal Oscillator" section was updated significantly. Please review carefully. 2-20

The "Real-Time Counter (part of AB macro)" section was updated significantly.
Please review carefully.

2-33

There was a typo in Table 2-19 • Flash Memory Block Pin Names for the
ERASEPAGE description; it was the same as DISCARDPAGE. As as a result, the
ERASEPAGE description was updated.

2-40

The tFMAXCLKNVM parameter was updated in Table 2-25 • Flash Memory Block
Timing.

2-52

Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated. 2-66 

In Table 2-36 • Analog Block Pin Description, the Function description for PWRDWN
was changed from "Comparator power-down if 1"

to

"ADC comparator power-down if 1. When asserted, the ADC will stop functioning,
and the digital portion of the analog block will continue operating. This may result in
invalid status flags from the analog block. Therefore, Microsemi does not
recommend asserting the PWRDWN pin."

2-78

Figure 2-75 • Gate Driver Example was updated. 2-91

The "ADC Operation" section was updated. Please review carefully. 2-104

Figure 2-92 • Intra-Conversion Timing Diagram and Figure 2-93 • Injected
Conversion Timing Diagram are new.

2-113

The "Typical Performance Characteristics" section is new. 2-115

Table 2-49 • Analog Channel Specifications was significantly updated. 2-117

Table 2-50 • ADC Characteristics in Direct Input Mode was significantly updated. 2-120

In Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3, note 2 was updated. 2-123

In Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages,
note 1 was updated.

2-124

In Table 2-54 •  ACM Address Decode Table for Analog Quad, bit 89 was removed. 2-126

Revision Changes Page
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