

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	93
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1afs250-pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Ordering Codes

Notes:

- 1. For Fusion devices, Quad Flat No Lead packages are only offered as RoHS compliant, QNG packages.
- 2. MicroBlade and Pigeon Point devices only support FG packages.

Fusion Device Status

Fusion	Status	Cortex-M1	Status	Pigeon Point	Status	MicroBlade	Status
AFS090	Production						
AFS250	Production	M1AFS250	Production			U1AFS250	Production
AFS600	Production	M1AFS600	Production	P1AFS600	Production	U1AFS600	Production
AFS1500	Production	M1AFS1500	Production	P1AFS1500	Production	U1AFS1500	Production

Temperature Grade Offerings

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ³	P1AFS1500 ³
MicroBlade Devices		U1AFS250 ⁴	U1AFS600 ⁴	U1AFS1500 ⁴
QN108 ⁵	C, I	-	-	_
QN180 ⁵	C, I	C, I	-	-
PQ208	-	C, I	C, I	-
FG256	C, I	C, I	C, I	C, I
FG484	-	-	C, I	C, I
FG676	-	-	-	C, I

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction

2. I = Industrial Temperature Range: -40°C to 100°C Junction

3. Pigeon Point devices are only offered in FG484 and FG256.

4. MicroBlade devices are only offered in FG256.

5. Package not available.

Speed Grade and Temperature Grade Matrix

	Std. ¹	-1	-2 ²
C ³	\checkmark	\checkmark	\checkmark
l ⁴	\checkmark	\checkmark	\checkmark

Notes:

1. MicroBlade devices are only offered in standard speed grade.

2. Pigeon Point devices are only offered in –2 speed grade.

3. C = Commercial Temperature Range: 0°C to 85°C Junction

4. I = Industrial Temperature Range: -40°C to 100°C Junction

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information

This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices when appropriate. Please note the following:

- Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.
- Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.
- MicroBlade devices are only offered in standard speed grade and the FG256 package.

Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits in density. Each block operates independently with a dedicated flash controller and interface. Fusion flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and granularity enable many use models and allow added granularity in programming updates.

Fusion devices support two methods of external access to the flash memory blocks. The first method is a serial interface that features a built-in JTAG-compliant port, which allows in-system programmability during user or monitor/test modes. This serial interface supports programming of an AES-encrypted stream. Data protected with security measures can be passed through the JTAG interface, decrypted, and then programmed in the flash block. The second method is a soft parallel interface.

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface. Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to meet special user requirements. For more information, refer to the *CoreCFI Handbook*. The flash memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide (×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip memories can be cascaded for wider or deeper configurations.

The flash memory has built-in security. The user can configure either the entire flash block or the small blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents. Each on-chip flash memory block has a dedicated controller, enabling each block to operate independently.

The flash block logic consists of the following sub-blocks:

- Flash block Contains all stored data. The flash block contains 64 sectors and each sector contains 33 pages of data.
- Page Buffer Contains the contents of the current page being modified. A page contains 8 blocks of data.
- Block Buffer Contains the contents of the last block accessed. A block contains 128 data bits.
- ECC Logic The flash memory stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM

In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for communications algorithms protected by security
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be individually programmed (erased and written). On-chip AES decryption can be used selectively over public networks to load data such as security keys stored in the FlashROM for a user design.

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing.

VersaTile Characteristics

Sample VersaTile Specifications—Combinatorial Module

The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the *IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide*.

Figure 2-3 • Sample of Combinatorial Cells

RAM512X18 Description

Figure 2-49 • RAM512X18

Analog-to-Digital Converter Block

At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR) ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve 500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance both at power-up and during runtime.

Figure 2-79 • ADC Block Diagram

Table 2-61 details the settings available to either power down or enable the prescaler associated with the analog inputs AV, AC, and AT.

Table 2-61 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[7]	Prescaler Op Amp
0	Power-down
1	Operational

Table 2-62 details the settings available to enable the Current Monitor Block associated with the AC pin.

Table 2-62 • Current Monitor Input Switch Control Truth Table—AV (x = 0)

Control Lines B0[4]	Current Monitor Input Switch
0	Off
1	On

Table 2-63 details the settings available to configure the drive strength of the gate drive when not in highdrive mode.

Table 2-63 • Low-Drive Gate Driver Current Truth Table (AG)

Control Lines B2[3]	Control Lines B2[2]	Current (µA)
0	0	1
0	1	3
1	0	10
1	1	30

Table 2-64 details the settings available to set the polarity of the gate driver (either p-channel- or n-channel-type devices).

Table 2-64 • Gate Driver Polarity Truth Table (AG)

Control Lines B2[6]	Gate Driver Polarity				
0	Positive				
1	Negative				

Table 2-65 details the settings available to turn on the Gate Driver and set whether high-drive mode is on or off.

Table 2-65 • Gate Driver Control Truth Table (AG)

Control Lines B2[7]	GDON	Gate Driver
0	0	Off
0	1	Low drive on
1	0	Off
1	1	High drive on

Table 2-66 details the settings available to turn on and off the chip internal temperature monitor.

Note: For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.

Table 2-66 • Internal Temperature Monitor Control Truth Table

Control Lines B2[0]	PDTMB	Chip Internal Temperature Monitor
0	0	Off
1	1	On

Device Architecture

Result: No Bus Contention

Figure 2-112 • Timing Diagram (with skew circuit selected)

Weak Pull-Up and Weak Pull-Down Resistors

Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to Table 2-97 on page 2-171 for more information.

Slew Rate Control and Drive Strength

Fusion devices support output slew rate control: high and low. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 2.5 V, 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.

For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:

- Fusion Standard I/O (Table 2-78 on page 2-152)
- Fusion Advanced I/O (Table 2-79 on page 2-152)
- Fusion Pro I/O (Table 2-80 on page 2-152)

Table 2-83 on page 2-155 lists the default values for the above selectable I/O attributes as well as those that are preset for each I/O standard.

Refer to Table 2-78, Table 2-79, and Table 2-80 on page 2-152 for SLEW and OUT_DRIVE settings. Table 2-81 on page 2-153 and Table 2-82 on page 2-154 list the I/O default attributes. Table 2-83 on page 2-155 lists the voltages for the supported I/O standards.

Device Architecture

Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMO S 3.3 V	Refer to the following tables for more	Refer to the following tables for more	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5 V	Table 2-78 on page 2-152	Table 2-78 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5/5.0 V	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V			Off	None	35 pF	-	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	-	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	-	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	-	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	-	Off	0	Off
HSTL Class I			Off	None	20 pF	-	Off	0	Off
HSTL Class II			Off	None	20 pF	-	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	-	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	-	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	_	Off	0	Off
LVPECL			Off	None	0 pF	_	Off	0	Off

Table 2-82 • Advanced I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	Refer to the following	Refer to the following tables	Off	None	35 pF	-
LVCMOS 2.5 V	information:	Table 2-78 on page 2-152	Off	None	35 pF	-
LVCMOS 2.5/5.0 V	Table 2-78 on page 2-152	Table 2-79 on page 2-152	Off	None	35 pF	-
LVCMOS 1.8 V	Table 2-79 on page 2-152	Table 2-80 on page 2-152	Off	None	35 pF	-
LVCMOS 1.5 V	Table 2-80 on page 2-152		Off	None	35 pF	-
PCI (3.3 V)			Off	None	10 pF	-
PCI-X (3.3 V)			Off	None	10 pF	-
LVDS, BLVDS, M-LVDS			Off	None	_	_
LVPECL			Off	None	-	-

I/O Software Support

In the Fusion development software, default settings have been defined for the various I/O standards supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 2-84 and Table 2-85 list the valid I/O attributes that can be manipulated by the user for each I/O standard.

Single-ended I/O standards in Fusion support up to five different drive strengths.

Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)*	RES PULL	OUT_LOAD (output only)	COMBINE REGISTER
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3
PCI (3.3 V)			3		3	3
PCI-X (3.3 V)	3		3		3	3
LVDS, BLVDS, M-LVDS			3			3
LVPECL						3

Note: * This feature does not apply to the standard I/O banks, which are the north I/O banks of AFS090 and AFS250 devices

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18	124	169	10	10

Table 2-159 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-131 • AC Loading

Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-161 • SSTL 2 Class II Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.17	0.04	1.33	0.43	2.21	1.77			4.44	4.01	ns
-1	0.56	1.84	0.04	1.14	0.36	1.88	1.51			3.78	3.41	ns
-2	0.49	1.62	0.03	1.00	0.32	1.65	1.32			3.32	2.99	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Device Architecture

Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	КК, НН
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
tIRECCLR	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.

VCC Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the Fusion device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated VJTAG bank.

Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VCCPLA/B PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Microsemi recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from PLL.

If unused, VCCPLA/B should be tied to GND.

VCOMPLA/B Ground for West and East PLL

VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL (CCC location C).

VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
IPP	Programming supply	Non-programming mode,	T _J = 25°C		36	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		36	80	μA
			T _J = 100°C		36	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM current	Reset asserted,	T _J = 25°C		22	80	μA
		VCCNVM = 1.575 V	T _J = 85°C		24	80	μA
			T _J = 100°C		25	80	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby,	T _J = 25°C		130	200	μA
		VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Notes:

- 1. ICC is the 1.5 V power supplies, ICC and ICC15A.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		4.8	10	mA
		VCC = 1.575 V	T _J = 85°C		8.2	30	mA
			T _J = 100°C		15	50	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		9.8	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only	T _J = 25°C		0.29	2	mA
		Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 85°C		0.31	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63V	T _J = 25°C		2.9	3.0	mA
			T _J = 85°C		2.9	3.1	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		19	18	μΑ
			T _J = 85°C		19	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ ,	T _J = 25°C		266	437	μΑ
		VCCIX = 3.63 V	T _J = 85°C		266	437	μΑ
			T _J = 100°C		266	437	μA
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJIAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Table 3-10 • AFS250 Quiescent Supply Cu	urrent Characteristics
---	------------------------

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.

DC and Power Characteristics

Table 3-10 • AFS250 Q	Quiescent Supply Current	Characteristics (continued)
-----------------------	--------------------------	-----------------------------

Parameter	Description	Conditions	Temp.	Min	Тур	Max	Unit
IPP	Programming supply	Non-programming mode,	T _J = 25°C		37	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		37	80	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM current	Reset asserted,	T _J = 25°C		10	40	μA
		VCCNVM = 1.575 V	T _J = 85°C		14	40	μA
			T _J = 100°C		14	40	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby,	T _J = 25°C		65	100	μA
		VCCPLL = 1.575 V	T _J = 85°C		65	100	μA
			T _J = 100°C		65	100	μA

Notes:

- 1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, and ICCI2.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.

	FG484		FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
P21	IO51PDB2V0	IO73PDB2V0	T12	AV5	AV5			
P22	IO49NDB2V0	IO71NDB2V0	T13	AC5	AC5			
R1	IO69PDB4V0	IO102PDB4V0	T14	NC	NC			
R2	IO69NDB4V0	IO102NDB4V0	T15	GNDA	GNDA			
R3	VCCIB4	VCCIB4	T16	NC	IO77PPB2V0			
R4	IO64PDB4V0	IO91PDB4V0	T17	NC	IO74PDB2V0			
R5	IO64NDB4V0	IO91NDB4V0	T18	VCCIB2	VCCIB2			
R6	NC	IO92PDB4V0	T19	IO55NDB2V0	IO82NDB2V0			
R7	GND	GND	T20	GDA2/IO55PDB2V0	GDA2/IO82PDB2V0			
R8	GND	GND	T21	GND	GND			
R9	VCC33A	VCC33A	T22	GDC1/IO52PDB2V0	GDC1/IO79PDB2V0			
R10	GNDA	GNDA	U1	IO67PDB4V0	IO98PDB4V0			
R11	VCC33A	VCC33A	U2	IO67NDB4V0	IO98NDB4V0			
R12	GNDA	GNDA	U3	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0			
R13	VCC33A	VCC33A	U4	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0			
R14	GNDA	GNDA	U5	GND	GND			
R15	VCC	VCC	U6	VCCNVM	VCCNVM			
R16	GND	GND	U7	VCCIB4	VCCIB4			
R17	NC	IO74NDB2V0	U8	VCC15A	VCC15A			
R18	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	U9	GNDA	GNDA			
R19	GDB0/IO53NDB2V0	GDB0/IO80NDB2V0	U10	AC4	AC4			
R20	VCCIB2	VCCIB2	U11	VCC33A	VCC33A			
R21	IO50NDB2V0	IO75NDB2V0	U12	GNDA	GNDA			
R22	IO50PDB2V0	IO75PDB2V0	U13	AG5	AG5			
T1	NC	IO100PPB4V0	U14	GNDA	GNDA			
T2	GND	GND	U15	PUB	PUB			
Т3	IO66PDB4V0	IO95PDB4V0	U16	VCCIB2	VCCIB2			
T4	IO66NDB4V0	IO95NDB4V0	U17	TDI	TDI			
T5	VCCIB4	VCCIB4	U18	GND	GND			
Т6	NC	IO92NDB4V0	U19	IO57NDB2V0	IO84NDB2V0			
T7	GNDNVM	GNDNVM	U20	GDC2/IO57PDB2V0	GDC2/IO84PDB2V0			
Т8	GNDA	GNDA	U21	NC	IO77NPB2V0			
Т9	NC	NC	U22	GDC0/IO52NDB2V0	GDC0/IO79NDB2V0			
T10	AV4	AV4	V1	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0			
T11	NC	NC	V2	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0			

Package Pin Assignments

	FG484		FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
V3	VCCIB4	VCCIB4	W16	GNDA	GNDA			
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	W17	AV9	AV9			
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	W18	VCCIB2	VCCIB2			
V6	GND	GND	W19	NC	IO68PPB2V0			
V7	VCC33PMP	VCC33PMP	W20	ТСК	ТСК			
V8	NC	NC	W21	GND	GND			
V9	VCC33A	VCC33A	W22	NC	IO76PPB2V0			
V10	AG4	AG4	Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0			
V11	AT4	AT4	Y2	IO60NDB4V0	IO87NDB4V0			
V12	ATRTN2	ATRTN2	Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0			
V13	AT5	AT5	Y4	IO58NDB4V0	IO85NDB4V0			
V14	VCC33A	VCC33A	Y5	NCAP	NCAP			
V15	NC	NC	Y6	AC0	AC0			
V16	VCC33A	VCC33A	Y7	VCC33A	VCC33A			
V17	GND	GND	Y8	AC1	AC1			
V18	TMS	TMS	Y9	AC2	AC2			
V19	VJTAG	VJTAG	Y10	VCC33A	VCC33A			
V20	VCCIB2	VCCIB2	Y11	AC3	AC3			
V21	TRST	TRST	Y12	AC6	AC6			
V22	TDO	TDO	Y13	VCC33A	VCC33A			
W1	NC	IO93PDB4V0	Y14	AC7	AC7			
W2	GND	GND	Y15	AC8	AC8			
W3	NC	IO93NDB4V0	Y16	VCC33A	VCC33A			
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	Y17	AC9	AC9			
W5	IO59NDB4V0	IO86NDB4V0	Y18	ADCGNDREF	ADCGNDREF			
W6	AV0	AV0	Y19	PTBASE	PTBASE			
W7	GNDA	GNDA	Y20	GNDNVM	GNDNVM			
W8	AV1	AV1	Y21	VCCNVM	VCCNVM			
W9	AV2	AV2	Y22	VPUMP	VPUMP			
W10	GNDA	GNDA		-				
W11	AV3	AV3						
W12	AV6	AV6						
W13	GNDA	GNDA						
W14	AV7	AV7						
W15	AV8	AV8						

Datasheet Information

Revision	Changes	Page
Advance v0.5 (June 2006)	The low power modes of operation were updated and clarified.	N/A
	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.	i
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	ii
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.	2-36
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-53
	The "256-Pin FBGA" table for the AFS1500 is new.	3-12
Advance v0.4 (April 2006)	The G was moved in the "Product Ordering Codes" section.	III
Advance v0.3 (April 2006)	The "Features and Benefits" section was updated.	I
	The "Fusion Family" table was updated.	I
	The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.	П
	The "Product Ordering Codes" table was updated.	Ш
	The "Temperature Grade Offerings" table was updated.	IV
	The "General Description" section was updated to include ARM information.	1-1
	Figure 2-46 • FlashROM Timing Diagram was updated.	2-58
	The "FlashROM" section was updated.	2-57
	The "RESET" section was updated.	2-61
	The "RESET" section was updated.	2-64
	Figure 2-27 · Real-Time Counter System was updated.	2-35
	Table 2-19 • Flash Memory Block Pin Names was updated.	2-43
	Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block information.	2-45
	Figure 2-34 • Flash Memory Block Organization was updated to include AUX block information.	2-46
	The note in the "Program Operation" section was updated.	2-48
	Figure 2-76 • Gate Driver Example was updated.	2-95
	The "Analog Quad ACM Description" section was updated.	2-130
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94
	Figure 2-65 • Analog Block Macro was updated.	2-81
	Figure 2-65 • Analog Block Macro was updated.	2-81
	The "Analog Quad" section was updated.	2-84
	The "Voltage Monitor" section was updated.	2-86
	The "Direct Digital Input" section was updated.	2-89
	The "Current Monitor" section was updated.	2-90
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94