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programmable solution, ensuring robust security and
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specific needs of the application.
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Fusion Device Family Overview
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. 
Flash-based Fusion devices simplify total system design and reduce cost and design risk, while
increasing system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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Fusion Family of Mixed Signal FPGAs
Global Clocking
Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL
support described above, there are on-chip oscillators as well as a comprehensive global clock
distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock
source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

• Crystal (32.768 KHz to 20 MHz)

• Ceramic (500 KHz to 8 MHz)

• RC (32.768 KHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global
networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The
VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards
The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V,
1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended
and differential. 

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks
determines the I/O standards supported. The banks along the east and west sides of the device support
the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads
(analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O
standards. In the family’s larger devices, the north bank is divided into two banks of digital Pro I/Os,
supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following applications:

• Single-Data-Rate (SDR) applications 

• Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications

• Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points. 

VersaTiles
The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The
Fusion VersaTile supports the following:

• All 3-input logic functions—LUT-3 equivalent 

• Latch with clear or set

• D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

Figure 1-2 • VersaTile Configurations
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Fusion Family of Mixed Signal FPGAs
Figure 2-10 • Very-Long-Line Resources
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Device Architecture
Flash Memory Block Addressing
Figure 2-34 shows a graphical representation of the flash memory block.

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each
sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block.
Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.

Addressing for the FB is shown in Table 2-20.

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error,
and reads will return all zeroes.

Figure 2-34 • Flash Memory Block Organization
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Table 2-20 • FB Address Bit Allocation ADDR[17:0]

17 12 11 7 6 4 3 0

Sector Page Block Byte
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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Characteristics

Figure 2-44 • Reset Timing Diagram

Table 2-25 • Flash Memory Block Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std. 
 

Units 

 tCLK2RD
Clock-to-Q in 5-cycle read mode of the Read Data 7.99 9.10 10.70  ns 

Clock-to-Q in 6-cycle read mode of the Read Data 5.03 5.73 6.74  ns 

 tCLK2BUSY 
Clock-to-Q in 5-cycle read mode of BUSY 4.95 5.63 6.62  ns 

Clock-to-Q in 6-cycle read mode of BUSY 4.45 5.07 5.96  ns 

tCLK2STATUS
Clock-to-Status in 5-cycle read mode 11.24 12.81 15.06  ns 

Clock-to-Status in 6-cycle read mode 4.48 5.10 6.00  ns 

 tDSUNVM Data Input Setup time for the Control Logic 1.92 2.19 2.57  ns 

 tDHNVM Data Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

 tASUNVM Address Input Setup time for the Control Logic 2.76 3.14 3.69  ns 

 tAHNVM Address Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

 tSUDWNVM Data Width Setup time for the Control Logic 1.85 2.11 2.48  ns 

 tHDDWNVM Data Width Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSURENNVM Read Enable Setup time for the Control Logic 3.85 4.39 5.16  ns 

tHDRENNVM Read Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUWENNVM Write Enable Setup time for the Control Logic 2.37 2.69 3.17  ns 

tHDWENNVM Write Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUPROGNVM Program Setup time for the Control Logic 2.16 2.46 2.89  ns 

tHDPROGNVM Program Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUSPAREPAGE SparePage Setup time for the Control Logic 3.74 4.26 5.01  ns 

tHDSPAREPAGE SparePage Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUAUXBLK Auxiliary Block Setup Time for the Control Logic 3.74 4.26 5.00  ns 

tHDAUXBLK Auxiliary Block Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSURDNEXT ReadNext Setup Time for the Control Logic 2.17 2.47 2.90  ns 

tHDRDNEXT ReadNext Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUERASEPG Erase Page Setup Time for the Control Logic 3.76 4.28 5.03  ns 

tHDERASEPG Erase Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUUNPROTECTPG Unprotect Page Setup Time for the Control Logic 2.01 2.29 2.69  ns 

tHDUNPROTECTPG Unprotect Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUDISCARDPG Discard Page Setup Time for the Control Logic 1.88 2.14 2.52  ns 

tHDDISCARDPG Discard Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUOVERWRPRO Overwrite Protect Setup Time for the Control Logic 1.64 1.86 2.19  ns 

tHDOVERWRPRO Overwrite Protect Hold Time for the Control Logic 0.00 0.00 0.00  ns 

CLK

RESET
Active Low, Asynchronous

 BUSY
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Fusion Family of Mixed Signal FPGAs
Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be
undefined. The RAM blocks employ little-endian byte order for read and write operations. 

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller
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Fusion Family of Mixed Signal FPGAs
Analog Block
With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution.
Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is
this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best
of both worlds. The high-performance CMOS is used for building RAM resources. These high-
performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi
0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both
of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise
immunity so that the analog portions of the chip can be better isolated from the digital portions,
increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be
connected directly to high-voltage input signals, eliminating the need for external resistor divider
networks, reducing component count, and increasing accuracy. By supporting higher internal voltages,
the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing
precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the
need for external level shifters and drivers. 

The unique triple-well process enables the integration of high-performance analog features with
increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-
well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time
Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the
single Analog Block macro, with which the user implements this functionality (Figure 2-64). 

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed.
An external reset/initialize signal, which can come from the internal voltage regulator when it powers up,
must be applied.
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Device Architecture
Typical scaling factors are given in Table 2-57 on page 2-130, and the gain error (which contributes to the
minimum and maximum) is in Table 2-49 on page 2-117. 

Terminology

BW – Bandwidth

BW is a range of frequencies that a Channel can handle.

Channel

A channel is define as an analog input configured as one of the Prescaler range shown in Table 2-57 on
page 2-130. The channel includes the Prescaler circuit and the ADC.

Channel Gain

Channel Gain is a measured of the deviation of the actual slope from the ideal slope. The slope is
measured from the 20% and 80% point.

EQ 1

Channel Gain Error

Channel Gain Error is a deviation from the ideal slope of the transfer function. The Prescaler Gain Error
is expressed as the percent difference between the actual and ideal, as shown in EQ 2.

EQ 2

Figure 2-67 • Analog Quad Prescaler Input Configuration
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Device Architecture
Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be
connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the
reference voltage. 

ADC Clock
The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The
ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of
the ADCCLK in relationship to SYSCLK, based on EQ 15.

EQ 15

TVC: Time Divider Control (0–255)

tADCCLK is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz

tSYSCLK is the period of SYSCLK

The frequency of ADCCLK, fADCCLK, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the
ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-112 and Figure 2-91 on
page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control
Acquisition time (tSAMPLE) specifies how long an analog input signal has to charge the internal capacitor
array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC. 

The internal impedance (ZINAD), external source resistance (RSOURCE), and sample capacitor (CINAD)
form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given
insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source
resistance or increase the sampling time by changing the acquisition time using the STC signal.

Table 2-42 • VAREF Bit Function

Name Bit Function

VAREF 0 Reference voltage selection

0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.

1 – Input external voltage reference from VAREF and ADCGNDREF

tADCCLK 4 1 TVC+  tSYSCLK=

Table 2-43 • TVC Bits Function

Name Bits Function

TVC [7:0] SYSCLK divider control

Figure 2-88 • Simplified Sample and Hold Circuitry

Sample and Hold

ZINAD

CINAD

Rsource
2-107 Revision 6



Device Architecture
Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks
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Device Architecture
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and 
Industrial Conditions
Applicable to Standard I/Os

I/O Standard
Drive 

Strength
Slew 
Rate

VIL VIH VOL VOH IOL IOH

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

3.3 V LVTTL /
3.3 V LVCMOS 

8 mA  High   –0.3   0.8   2   3.6   0.4   2.4  8 8

 2.5 V LVCMOS 8 mA  High   –0.3   0.7   1.7   3.6   0.7   1.7  8 8

 1.8 V LVCMOS 4 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.45   VCCI – 0.45  4 4

 1.5 V LVCMOS 2 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.25 * VCCI  0.75 * VCCI 2 2

Note: Currents are measured at 85°C junction temperature.

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial 
Conditions
Applicable to All I/O Bank Types

DC I/O Standards

Commercial1 Industrial2

IIL3 IIH4 IIL3 IIH4

µA µA µA µA

3.3 V LVTTL / 3.3 V LVCMOS  10  10  15  15 

 2.5 V LVCMOS  10  10  15  15 

 1.8 V LVCMOS  10  10  15  15 

 1.5 V LVCMOS  10  10  15  15 

 3.3 V PCI  10  10  15  15 

 3.3 V PCI-X  10  10  15  15 

 3.3 V GTL  10  10  15  15 

 2.5 V GTL  10  10  15  15 

 3.3 V GTL+  10  10  15  15 

 2.5 V GTL+  10  10  15  15 

 HSTL (I)  10  10  15  15 

 HSTL (II)  10  10  15  15 

 SSTL2 (I)  10  10  15  15 

 SSTL2 (II)  10  10  15  15 

 SSTL3 (I)  10  10  15  15 

 SSTL3 (II)  10  10  15  15 

Notes:

1. Commercial range (0°C < TJ < 85°C)
2. Industrial range (–40°C < TJ < 100°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Fusion Family of Mixed Signal FPGAs
Table 2-122 • 1.8 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.7 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 15.53 0.04 1.31 0.43 14.11 15.53 2.78 1.60 16.35 17.77  ns 

 –1 0.56 13.21 0.04 1.11 0.36 12.01 13.21 2.36 1.36 13.91 15.11  ns 

 –22 0.49 11.60 0.03 0.98 0.32 10.54 11.60 2.07 1.19 12.21 13.27  ns 

4 mA  Std. 0.66 10.48 0.04 1.31 0.43 10.41 10.48 3.23 2.73 12.65 12.71  ns 

 –1 0.56 8.91 0.04 1.11 0.36 8.86 8.91 2.75 2.33 10.76 10.81  ns 

 –2 0.49 7.82 0.03 0.98 0.32 7.77 7.82 2.41 2.04 9.44 9.49  ns 

8 mA  Std. 0.66 8.05 0.04 1.31 0.43 8.20 7.84 3.54 3.27 10.43 10.08  ns 

 –1 0.56 6.85 0.04 1.11 0.36 6.97 6.67 3.01 2.78 8.88 8.57  ns 

 –2 0.49 6.01 0.03 0.98 0.32 6.12 5.86 2.64 2.44 7.79 7.53  ns 

12 mA  Std. 0.66 7.50 0.04 1.31 0.43 7.64 7.30 3.61 3.41 9.88 9.53  ns 

 –1 0.56 6.38 0.04 1.11 0.36 6.50 6.21 3.07 2.90 8.40 8.11  ns 

 –2 0.49 5.60 0.03 0.98 0.32 5.71 5.45 2.69 2.55 7.38 7.12  ns 

16 mA  Std. 0.66 7.29 0.04 1.31 0.43 7.23 7.29 3.71 3.95 9.47 9.53  ns 

 –1 0.56 6.20 0.04 1.11 0.36 6.15 6.20 3.15 3.36 8.06 8.11  ns 

 –2 0.49 5.45 0.03 0.98 0.32 5.40 5.45 2.77 2.95 7.07 7.12  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output
buffer.    

Timing Characteristics

Table 2-150 • Minimum and Maximum DC Input and Output Levels

HSTL 
Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

8 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 8 8 39 32 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-128 • AC Loading

Table 2-151 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.1 VREF + 0.1 0.75 0.75 0.75 20

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
20 pF

50
HSTL
Class I

VTT

Table 2-152 • HSTL Class I
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 3.18 0.04 2.12 0.43 3.24 3.14 5.47 5.38 ns

 –1 0.56 2.70 0.04 1.81 0.36 2.75 2.67 4.66 4.58 ns

 –2 0.49 2.37 0.03 1.59 0.32 2.42 2.35 4.09 4.02 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-138 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
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Device Architecture
TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin. 

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent
parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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DC and Power Characteristics
Total Static Power Consumption—PSTAT 
Number of Quads used: NQUADS = 4

Number of NVM blocks available (AFS600): NNVM-BLOCKS = 2

Number of input pins used: NINPUTS = 30

Number of output pins used: NOUTPUTS = 40

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5 + (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8)

PSTAT = 7.50 mW + (2 * 1.19 mW) + 8.25 mW + (4 * 3.30 mW) + (30 * 0.00) + (40 * 0.00)

PSTAT = 31.33 mW

Standby Mode 

PSTAT = PDC2

PSTAT = 0.03 mW

Sleep Mode

PSTAT = PDC3

PSTAT = 0.03 mW

Total Power Consumption—PTOTAL
In operating mode, the total power consumption of the device is 174.39 mW:

PTOTAL = PSTAT + PDYN

PTOTAL = 143.06 mW + 31.33 mW

PTOTAL = 174.39 mW

In standby mode, the total power consumption of the device is limited to 0.66 mW:

PTOTAL = PSTAT + PDYN

PTOTAL = 0.03 mW + 0.63 mW

PTOTAL = 0.66 mW

In sleep mode, the total power consumption of the device drops as low as 0.03 mW:

PTOTAL = PSTAT + PDYN

PTOTAL = 0.03 mW
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Fusion Family of Mixed Signal FPGAs
74 AV2 AV4

75 AC2 AC4

76 AG2 AG4

77 AT2 AT4

78 ATRTN1 ATRTN2

79 AT3 AT5

80 AG3 AG5

81 AC3 AC5

82 AV3 AV5

83 AV4 AV6

84 AC4 AC6

85 AG4 AG6

86 AT4 AT6

87 ATRTN2 ATRTN3

88 AT5 AT7

89 AG5 AG7

90 AC5 AC7

91 AV5 AV7

92 NC AV8

93 NC AC8

94 NC AG8

95 NC AT8

96 NC ATRTN4

97 NC AT9

98 NC AG9

99 NC AC9

100 NC AV9

101 GNDAQ GNDAQ

102 VCC33A VCC33A

103 ADCGNDREF ADCGNDREF

104 VAREF VAREF

105 PUB PUB

106 VCC33A VCC33A

107 GNDA GNDA

108 PTEM PTEM

109 PTBASE PTBASE

110 GNDNVM GNDNVM

PQ208

Pin 
Number AFS250 Function AFS600 Function

111 VCCNVM VCCNVM

112 VCC VCC

112 VCC VCC

113 VPUMP VPUMP

114 GNDQ NC

115 VCCIB1 TCK

116 TCK TDI

117 TDI TMS

118 TMS TDO

119 TDO TRST

120 TRST VJTAG

121 VJTAG IO57NDB2V0

122 IO57NDB1V0 GDC2/IO57PDB2V0

123 GDC2/IO57PDB1V0 IO56NDB2V0

124 IO56NDB1V0 GDB2/IO56PDB2V0

125 GDB2/IO56PDB1V0 IO55NDB2V0

126 VCCIB1 GDA2/IO55PDB2V0

127 GND GDA0/IO54NDB2V0

128 IO55NDB1V0 GDA1/IO54PDB2V0

129 GDA2/IO55PDB1V0 VCCIB2

130 GDA0/IO54NDB1V0 GND

131 GDA1/IO54PDB1V0 VCC

132 GDB0/IO53NDB1V0 GCA0/IO45NDB2V0

133 GDB1/IO53PDB1V0 GCA1/IO45PDB2V0

134 GDC0/IO52NDB1V0 GCB0/IO44NDB2V0

135 GDC1/IO52PDB1V0 GCB1/IO44PDB2V0

136 IO51NSB1V0 GCC0/IO43NDB2V
0

137 VCCIB1 GCC1/IO43PDB2V0

138 GND IO42NDB2V0

139 VCC IO42PDB2V0

140 IO50NDB1V0 IO41NDB2V0

141 IO50PDB1V0 GCC2/IO41PDB2V0

142 GCA0/IO49NDB1V0 VCCIB2

143 GCA1/IO49PDB1V0 GND

144 GCB0/IO48NDB1V0 VCC

145 GCB1/IO48PDB1V0 IO40NDB2V0

146 GCC0/IO47NDB1V0 GCB2/IO40PDB2V0

PQ208

Pin 
Number AFS250 Function AFS600 Function
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Fusion Family of Mixed Signal FPGAs
R5 AV0 AV0 AV2 AV2

R6 AT0 AT0 AT2 AT2

R7 AV1 AV1 AV3 AV3

R8 AT3 AT3 AT5 AT5

R9 AV4 AV4 AV6 AV6

R10 NC AT5 AT7 AT7

R11 NC AV5 AV7 AV7

R12 NC NC AT9 AT9

R13 NC NC AG9 AG9

R14 NC NC AC9 AC9

R15 PUB PUB PUB PUB

R16 VCCIB1 VCCIB1 VCCIB2 VCCIB2

T1 GND GND GND GND

T2 NCAP NCAP NCAP NCAP

T3 VCC33N VCC33N VCC33N VCC33N

T4 NC NC ATRTN0 ATRTN0

T5 AT1 AT1 AT3 AT3

T6 ATRTN0 ATRTN0 ATRTN1 ATRTN1

T7 AT2 AT2 AT4 AT4

T8 ATRTN1 ATRTN1 ATRTN2 ATRTN2

T9 AT4 AT4 AT6 AT6

T10 ATRTN2 ATRTN2 ATRTN3 ATRTN3

T11 NC NC AT8 AT8

T12 NC NC ATRTN4 ATRTN4

T13 GNDA GNDA GNDA GNDA

T14 VCC33A VCC33A VCC33A VCC33A

T15 VAREF VAREF VAREF VAREF

T16 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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