

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	95
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1afs600-1pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Stack Architecture

To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer within the FPGA fabric and configures the individual peripherals and supports low-level processing of peripheral data. Fusion applets are application building blocks that can control and respond to peripherals and other system signals. Applets can be rapidly combined to create large applications. The technology is scalable across devices, families, design types, and user expertise, and supports a well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it manages peripheral configuration to ensure proper operation. Leveraging the common peripheral interface and a low-level state machine, the backbone efficiently offloads peripheral management from the system design. The backbone can set and clear flags based upon peripheral behavior and can define performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming through the backbone or from other sources, and responds to these stimuli by accessing and manipulating peripherals via the backbone or initiating some other action. An applet controls or responds to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet structure is open and well-defined, enabling users to import applets from Microsemi, system developers, third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack

Figure 2-31 • State Diagram for All Different Power Modes

When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot enter sleep mode or standby mode.

To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)" section on page 2-33. A match value corresponding to the wake-up time is loaded into the Match Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter standby mode, when the 1.5 V supply is off but the RTC remains on.

Flash Memory Block Pin Names

Table 2-19 • Flash Memory Block Pin Names

Interface Name	Width	Direction	Description
ADDR[17:0]	18	In	Byte offset into the FB. Byte-based address.
AUXBLOCK	1	In	When asserted, the page addressed is used to access the auxiliary block within that page.
BUSY	1	Out	When asserted, indicates that the FB is performing an operation.
CLK	1	In	User interface clock. All operations and status are synchronous to the rising edge of this clock.
DATAWIDTH[1:0]	2	In	Data width 00 = 1 byte in RD/WD[7:0] 01 = 2 bytes in RD/WD[15:0] 1x = 4 bytes in RD/WD[31:0]
DISCARDPAGE	1	In	When asserted, the contents of the Page Buffer are discarded so that a new page write can be started.
ERASEPAGE	1	In	When asserted, the address page is to be programmed with all zeros. ERASEPAGE must transition synchronously with the rising edge of CLK.
LOCKREQUEST	1	In	When asserted, indicates to the JTAG controller that the FPGA interface is accessing the FB.
OVERWRITEPAGE	1	In	When asserted, the page addressed is overwritten with the contents of the Page Buffer if the page is writable.
OVERWRITEPROTECT	1	In	When asserted, all program operations will set the overwrite protect bit of the page being programmed.
PAGESTATUS	1	In	When asserted with REN, initiates a read page status operation.
PAGELOSSPROTECT	1	In	When asserted, a modified Page Buffer must be programmed or discarded before accessing a new page.
PIPE	1	In	Adds a pipeline stage to the output for operation above 50 MHz.
PROGRAM	1	In	When asserted, writes the contents of the Page Buffer into the FB page addressed.
RD[31:0]	32	Out	Read data; data will be valid from the first non-busy cycle (BUSY = 0) after REN has been asserted.
READNEXT	1	In	When asserted with REN, initiates a read-next operation.
REN	1	In	When asserted, initiates a read operation.
RESET	1	In	When asserted, resets the state of the FB (active low).
SPAREPAGE	1	In	When asserted, the sector addressed is used to access the spare page within that sector.

Flash Memory Block Addressing

Figure 2-34 shows a graphical representation of the flash memory block.

Figure 2-34 • Flash Memory Block Organization

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block. Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data. Addressing for the FB is shown in Table 2-20.

Table 2-20 • FB Address Bit Allocation ADDR[17:0]

17	12	11	7	6	4	3	0	
Sector		Page		Blo	ock	Byte		

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error, and reads will return all zeroes.

Figure 2-54 • One Port Write / Other Port Read Same

Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18.

The following signals are used to configure the FIFO4K18 memory element.

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

TADIE 2-33 · ASDECLINALIO SELLINUS IOI WWWIZ.VI

WW2, WW1, WW0	RW2, RW1, RW0	D×W
000	000	4k×1
001	001	2k×2
010	010	1k×4
011	011	512×9
100	100	256×18
101, 110, 111	101, 110, 111	Reserved

WBLK and RBLK

These signals are active low and will enable the respective ports when Low. When the RBLK signal is High, the corresponding port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512×9	WD[17:9], RD[17:9]
256×18	-

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-34).

Gain Error

The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR). Gain error is the full-scale error minus the offset error (Figure 2-84).

Figure 2-84 • Gain Error

Gain Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed in ppm/°C.

Features Supported on Pro I/Os

Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature	Description						
Single-ended and voltage- referenced transmitter	 Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion) 						
features	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.						
	Weak pull-up and pull-down						
	Two slew rates						
	 Skew between output buffer enable/disable time: 2 ns delay (rising edge) and 0 ns delay (falling edge); see "Selectable Skew between Output Buffer Enable/Disable Time" on page 2-149 for more information 						
	Five drive strengths						
	5 V-tolerant receiver ("5 V Input Tolerance" section on page 2-144)						
	 LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output Tolerance" section on page 2-148) 						
	High performance (Table 2-76 on page 2-143)						
Single-ended receiver features	Schmitt trigger option						
	ESD protection						
	 Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V) 						
	High performance (Table 2-76 on page 2-143)						
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry 						
Voltage-referenced differential receiver features	 Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V) 						
	High performance (Table 2-76 on page 2-143)						
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry 						
CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL	 Two I/Os and external resistors are used to provide a CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter solution. 						
transmitter	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.						
	Weak pull-up and pull-down						
	Fast slew rate						
LVDS/LVPECL differential	ESD protection						
receiver teatures	High performance (Table 2-76 on page 2-143)						
	 Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V) 						
	 Separate input buffer ground and power planes to avoid output-induced noise in the input circuitry 						

Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3	3	3	3	3
PCI (3.3 V)			3		3	3	3	3		
PCI-X (3.3 V)	3		3		3	3	3	3		
GTL+ (3.3 V)			3		3	3	3	3		3
GTL+ (2.5 V)			3		3	3	3	3		3
GTL (3.3 V)			3		3	3	3	3		3
GTL (2.5 V)			3		3	3	3	3		3
HSTL Class I			3		3	3	3	3		3
HSTL Class II			3		3	3	3	3		3
SSTL2 Class I and II			3		3	3	3	3		3
SSTL3 Class I and II			3		3	3	3	3		3
LVDS, BLVDS, M-LVDS			3			3	3	3		3
LVPECL						3	3	3		3

Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.26	0.04	1.20	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	1.02	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.90	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
8 mA	Std.	0.66	7.27	0.04	1.20	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	1.02	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.90	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.20	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	1.02	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.90	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.20	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	1.02	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.90	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.20	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	1.02	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.90	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on page 2-132 for more details.

Timing Characteristics

Table 2-186 • JTAG 1532

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Pads	Pad Configuration	Prescaler Range	Input Resistance to Ground		
AV, AC	Analog Input (direct input to ADC)	-	2 kΩ (typical)		
		-	> 10 MΩ		
	Analog Input (positive prescaler)	+16 V to +2 V	1 MΩ (typical)		
		+1 V to +0.125 V	> 10 MΩ		
	Analog Input (negative prescaler)	–16 V to –2 V	1 MΩ (typical)		
		–1 V to –0.125 V	> 10 MΩ		
	Digital input	+16 V to +2 V	1 MΩ (typical)		
	Current monitor	+16 V to +2 V	1 MΩ (typical)		
		–16 V to –2 V	1 MΩ (typical)		
AT	Analog Input (direct input to ADC)	-	1 MΩ (typical)		
	Analog Input (positive prescaler)	+16 V, +4 V	1 MΩ (typical)		
	Digital input	+16 V, +4 V	1 MΩ (typical)		
	Temperature monitor	+16 V, +4 V	> 10 MΩ		

Table 3-3 • Input Resistance of Analog Pads

Table 3-4 • Overshoot and Undershoot Limits ¹

vccı	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3.0 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at a junction temperature of 85°C.

2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

Package Pin Assignments

QN180				
Pin Number	AFS090 Function	AFS250 Function		
C21	AG2	AG2		
C22	NC	NC		
C23	NC	NC		
C24	NC	NC		
C25	NC	AT5		
C26	GNDAQ	GNDAQ		
C27	NC	NC		
C28	NC	NC		
C29	NC	NC		
C30	NC	NC		
C31	GND	GND		
C32	NC	NC		
C33	NC	NC		
C34	NC	NC		
C35	GND	GND		
C36	GDB0/IO39NPB1V0	GDA0/IO54NPB1V0		
C37	GDA1/IO37NSB1V0	GDC0/IO52NSB1V0		
C38	GCA0/IO36NDB1V0	GCA0/IO49NDB1V0		
C39	GCB1/IO35PPB1V0	GCB1/IO48PPB1V0		
C40	GND	GND		
C41	GCA2/IO32NPB1V0	IO41NPB1V0		
C42	GBB2/IO31NDB1V0	IO40NDB1V0		
C43	NC	NC		
C44	NC	GBA1/IO39RSB0V0		
C45	NC	GBB0/IO36RSB0V0		
C46	GND	GND		
C47	NC	IO30RSB0V0		
C48	IO22RSB0V0	IO27RSB0V0		
C49	GND	GND		
C50	IO13RSB0V0	IO16RSB0V0		
C51	IO09RSB0V0	IO12RSB0V0		
C52	IO06RSB0V0	IO09RSB0V0		
C53	GND	GND		
C54	NC	GAB1/IO03RSB0V0		
C55	NC	GAA0/IO00RSB0V0		
C56	NC	NC		

QN180					
Pin Number	AFS090 Function	AFS250 Function			
D1	NC	NC			
D2	NC	NC			
D3	NC	NC			
D4	NC	NC			

Package Pin Assignments

PQ208			PQ208			
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function	
147	GCC1/IO47PDB1V0	IO39NDB2V0	184	IO18RSB0V0	IO10PPB0V1	
148	IO42NDB1V0	GCA2/IO39PDB2V0	185	IO17RSB0V0	IO09PPB0V1	
149	GBC2/IO42PDB1V0	IO31NDB2V0	186	IO16RSB0V0	IO10NPB0V1	
150	VCCIB1	GBB2/IO31PDB2V0	187	IO15RSB0V0	IO09NPB0V1	
151	GND	IO30NDB2V0	188	VCCIB0	IO08PPB0V1	
152	VCC	GBA2/IO30PDB2V0	189	GND	IO07PPB0V1	
153	IO41NDB1V0	VCCIB2	190	VCC	IO08NPB0V1	
154	GBB2/IO41PDB1V0	GNDQ	191	IO14RSB0V0	IO07NPB0V1	
155	IO40NDB1V0	VCOMPLB	192	IO13RSB0V0	IO06PPB0V0	
156	GBA2/IO40PDB1V0	VCCPLB	193	IO12RSB0V0	IO05PPB0V0	
157	GBA1/IO39RSB0V0	VCCIB1	194	IO11RSB0V0	IO06NPB0V0	
158	GBA0/IO38RSB0V0	GNDQ	195	IO10RSB0V0	IO04PPB0V0	
159	GBB1/IO37RSB0V0	GBB1/IO27PPB1V1	196	IO09RSB0V0	IO05NPB0V0	
160	GBB0/IO36RSB0V0	GBA1/IO28PPB1V1	197	IO08RSB0V0	IO04NPB0V0	
161	GBC1/IO35RSB0V0	GBB0/IO27NPB1V1	198	IO07RSB0V0	GAC1/IO03PDB0V0	
162	VCCIB0	GBA0/IO28NPB1V1	199	IO06RSB0V0	GAC0/IO03NDB0V0	
163	GND	VCCIB1	200	GAC1/IO05RSB0V0	VCCIB0	
164	VCC	GND	201	VCCIB0	GND	
165	GBC0/IO34RSB0V0	VCC	202	GND	VCC	
166	IO33RSB0V0	GBC1/IO26PDB1V1	203	VCC	GAB1/IO02PDB0V0	
167	IO32RSB0V0	GBC0/IO26NDB1V1	204	GAC0/IO04RSB0V0	GAB0/IO02NDB0V0	
168	IO31RSB0V0	IO24PPB1V1	205	GAB1/IO03RSB0V0	GAA1/IO01PDB0V0	
169	IO30RSB0V0	IO23PPB1V1	206	GAB0/IO02RSB0V0	GAA0/IO01NDB0V0	
170	IO29RSB0V0	IO24NPB1V1	207	GAA1/IO01RSB0V0	GNDQ	
171	IO28RSB0V0	IO23NPB1V1	208	GAA0/IO00RSB0V0	VCCIB0	
172	IO27RSB0V0	IO22PPB1V0				
173	IO26RSB0V0	IO21PPB1V0				
174	IO25RSB0V0	IO22NPB1V0				
175	VCCIB0	IO21NPB1V0				
176	GND	IO20PSB1V0				
177	VCC	IO19PSB1V0				
178	IO24RSB0V0	IO14NSB0V1				
179	IO23RSB0V0	IO12PDB0V1				
180	IO22RSB0V0	IO12NDB0V1				
181	IO21RSB0V0	VCCIB0				
182	IO20RSB0V0	GND				
183	IO19RSB0V0	VCC				

FG256

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

FG256					
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
K9	VCC	VCC	VCC	VCC	
K10	GND	GND	GND	GND	
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0	
K12	GND	GND	GND	GND	
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0	
K15	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0	
L1	NC	GEC1/IO63PDB3V0	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0	
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0	
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0	
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0	
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0	
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
L7	GNDA	GNDA	GNDA	GNDA	
L8	AC0	AC0	AC2	AC2	
L9	AV2	AV2	AV4	AV4	
L10	AC3	AC3	AC5	AC5	
L11	PTEM	PTEM	PTEM	PTEM	
L12	TDO	TDO	TDO	TDO	
L13	VJTAG	VJTAG	VJTAG	VJTAG	
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0	
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0	
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0	
M1	GND	GND	GND	GND	
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	
M4	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0	
M6	NC	NC	AV0	AV0	
M7	NC	NC	AC1	AC1	
M8	AG1	AG1	AG3	AG3	
M9	AC2	AC2	AC4	AC4	
M10	AC4	AC4	AC6	AC6	
M11	NC	AG5	AG7	AG7	
M12	VPUMP	VPUMP	VPUMP	VPUMP	
M13	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
M14	TMS	TMS	TMS	TMS	

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
H13	GND	GND	K4	IO75NDB4V0	IO110NDB4V0
H14	VCCIB1	VCCIB1	K5	GND	GND
H15	GND	GND	K6	NC	IO104NDB4V0
H16	GND	GND	K7	NC	IO111NDB4V0
H17	NC	IO53NDB2V0	K8	GND	GND
H18	IO38PDB2V0	IO57PDB2V0	K9	VCC	VCC
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	K10	GND	GND
H20	VCCIB2	VCCIB2	K11	VCC	VCC
H21	IO37NDB2V0	IO54NDB2V0	K12	GND	GND
H22	IO37PDB2V0	IO54PDB2V0	K13	VCC	VCC
J1	NC	IO112PPB4V0	K14	GND	GND
J2	IO76NDB4V0	IO113NDB4V0	K15	GND	GND
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0	K16	IO40NDB2V0	IO60NDB2V0
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	K17	NC	IO58PDB2V0
J5	NC	IO112NPB4V0	K18	GND	GND
J6	NC	IO104PDB4V0	K19	NC	IO68NPB2V0
J7	NC	IO111PDB4V0	K20	IO41NDB2V0	IO61NDB2V0
J8	VCCIB4	VCCIB4	K21	GND	GND
J9	GND	GND	K22	IO42NDB2V0	IO56NDB2V0
J10	VCC	VCC	L1	IO73NDB4V0	IO108NDB4V0
J11	GND	GND	L2	VCCOSC	VCCOSC
J12	VCC	VCC	L3	VCCIB4	VCCIB4
J13	GND	GND	L4	XTAL2	XTAL2
J14	VCC	VCC	L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0
J15	VCCIB2	VCCIB2	L6	VCCIB4	VCCIB4
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0
J17	NC	IO58NDB2V0	L8	VCCIB4	VCCIB4
J18	IO38NDB2V0	IO57NDB2V0	L9	GND	GND
J19	IO39NDB2V0	IO59NDB2V0	L10	VCC	VCC
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0	L11	GND	GND
J21	NC	IO55PSB2V0	L12	VCC	VCC
J22	IO42PDB2V0	IO56PDB2V0	L13	GND	GND
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	L14	VCC	VCC
K2	GND	GND	L15	VCCIB2	VCCIB2
K3	IO74NDB4V0	IO109NDB4V0	L16	IO48PDB2V0	IO70PDB2V0

Microsemi Fusion Family of Mixed Signal FPGAs

	FG676	FG676		FG676
Pin Number	AFS1500 Function	Р	in Number	AFS1500 Function
AD5	IO94NPB4V0		AE15	GNDA
AD6	GND		AE16	NC
AD7	VCC33N		AE17	NC
AD8	AT0		AE18	GNDA
AD9	ATRTN0		AE19	NC
AD10	AT1		AE20	NC
AD11	AT2		AE21	NC
AD12	ATRTN1		AE22	NC
AD13	AT3		AE23	NC
AD14	AT6		AE24	NC
AD15	ATRTN3		AE25	GND
AD16	AT7		AE26	GND
AD17	AT8		AF1	NC
AD18	ATRTN4		AF2	GND
AD19	AT9		AF3	NC
AD20	VCC33A		AF4	NC
AD21	GND		AF5	NC
AD22	IO76NPB2V0		AF6	NC
AD23	NC		AF7	NC
AD24	GND		AF8	NC
AD25	NC		AF9	VCC33A
AD26	NC		AF10	NC
AE1	GND		AF11	NC
AE2	GND		AF12	VCC33A
AE3	NC		AF13	NC
AE4	NC		AF14	NC
AE5	NC		AF15	VCC33A
AE6	NC		AF16	NC
AE7	NC		AF17	NC
AE8	NC		AF18	VCC33A
AE9	GNDA		AF19	NC
AE10	NC		AF20	NC
AE11	NC		AF21	NC
AE12	GNDA		AF22	NC
AE13	NC		AF23	NC
AE14	NC		AF24	NC

FG676				
Pin Number	AFS1500 Function			
AF25	GND			
AF26	NC			
B1	GND			
B2	GND			
B3	NC			
B4	NC			
B5	NC			
B6	VCCIB0			
B7	NC			
B8	NC			
B9	VCCIB0			
B10	IO15NDB0V2			
B11	IO15PDB0V2			
B12	VCCIB0			
B13	IO19NDB0V2			
B14	IO19PDB0V2			
B15	VCCIB1			
B16	IO25NDB1V0			
B17	IO25PDB1V0			
B18	VCCIB1			
B19	IO33NDB1V1			
B20	IO33PDB1V1			
B21	VCCIB1			
B22	NC			
B23	NC			
B24	NC			
B25	GND			
B26	GND			
C1	NC			
C2	NC			
C3	GND			
C4	NC			
C5	GAA1/IO01PDB0V0			
C6	GAB0/IO02NDB0V0			
C7	GAB1/IO02PDB0V0			
C8	IO07NDB0V1			

Revision	Changes	Page		
Advance v1.5 (continued)	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%	I		
	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:			
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.			
	In addition, 2°C was changed to 3°C:			
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of ±3°C."	1		
	The following sentence was deleted:	1		
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.	1		
	The title of the datasheet changed from Actel Programmable System Chips to Actel Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip were changed to mixed signal FPGA.	N/A		
Advance v1.4 (July 2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I_{DC2} and I_{DC3} . Footnote 3 and 4 were updated and footnote 5 is new.	3-11		
Advance v1 3	The "ADC Description" section was significantly updated. Please review carefully	2-102		
(July 2008)				
Advance v1.2	Table 2-25 • Flash Memory Block Timing was significantly updated.	2-55		
(May 2008)	The "V _{AREF} Analog Reference Voltage" pin description section was significantly update. Please review it carefully.	2-226		
	Table 2-45 • ADC Interface Timing was significantly updated.	2-110		
	Table 2-56 • Direct Analog Input Switch Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$) was significantly updated.			
	The following sentence was deleted from the "Voltage Monitor" section:	2-86		
	The Analog Quad inputs are tolerant up to 12 V + 10%.	l		
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	3-3		
Advance v1.1	The following text was incorrect and therefore deleted:	2-204		
(May 2008)	VCC33A Analog Power Filter	1		
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.	l		
	There is still a description of V _{CC33A} on page 2-224.	L		

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance 1.0 (continued)	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	
	The V_{CC33ACAP} signal name was changed to "XTAL1 Crystal Oscillator Circuit Input".	2-228
	Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.	2-123
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} is new.	2-124
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-125
	In Table 2-57 • Voltage Polarity Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$)*, the following I/O Bank names were changed:	2-131
	Hot-Swap changed to Standard	
	LVDS changed to Advanced	
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), the following I/O Bank names were changed:	2-132
	Hot-Swap changed to Standard	
	In the title of Table 2.64 a V/O Standarda Supported by Bank Type, IV/DS V/O was	0 104
	changed to Advanced I/O.	2-134
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-136
	 This sentence was deleted from the "Slew Rate Control and Drive Strength" section: The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed: From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O 	2-152
	The "Cold-Sparing Support" section was significantly updated.	2-143
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-153
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-153
	In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-157
	In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed: Hot-Swap changed to Standard	2-160
	LVDS changed to Advanced	
	The Figure 2-113 • Timing Model was updated.	2-161
	In the notes for Table 2-86 \cdot Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T _J was changed to T _A .	2-166