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Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and 
CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Device Architecture
No-Glitch MUX (NGMUX) 
Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence
between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses.
The NGMUX is used to switch the source of a global between three different clock sources. Allowable
inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown in Figure 2-24.
The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or
GLC). These are set by SmartGen during design but can also be changed by dynamically reconfiguring
the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global
network (GL). See Table 2-13.  

Figure 2-24 • NGMUX
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Table 2-13 • NGMUX Configuration and Selection Table

GLMUXCFG[1:0] GLMUXSEL[1:0] Selected Input Signal MUX Type

00
X 0 GLA

2-to-1 GLMUX
X 1 GLC

01
X 0 GLA

2-to-1 GLMUX
X 1 GLINT
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Fusion Family of Mixed Signal FPGAs
ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes High). A High on this signal inhibits the counting. 

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes High). A High on this signal inhibits the counting. 

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-70.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts High. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts High. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 2-70. 

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively. 

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go High. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go High. 

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values,
respectively. They are 12-bit signals. For more information on these signals, refer to "FIFO Flag
Usage Considerations" section.

ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes High). Likewise, the FSTOP pin is used to stop the write counter from counting any
further once the FIFO is full (i.e., the FULL flag goes High). 

The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the
configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the
ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same
content over and over without doing another write.

FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values,
respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR)
counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented
every time a read operation is performed. Whenever the difference between WADDR and RADDR is
greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference
between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To
handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits
instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the
SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen
configures the AFULL flag to assert when the write address exceeds the read address by at least a
predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag
will be asserted after a write when the difference between the write address and the read address
reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the
difference between the write and read addresses drops below 1,500.
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Device Architecture
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-82.

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between counts in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues. 

First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing
of the data is required to interpolate the value of the waveform during the time between each sample. 

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results through
Oversampling and Post-Processing of Data white paper for more information.

Figure 2-82 • Conversion Example
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Fusion Family of Mixed Signal FPGAs
Features Supported on Pro I/Os
Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature Description

Single-ended and voltage-
referenced transmitter
features 

• Hot insertion in every mode except PCI or 5 V input tolerant (these modes use
clamp diodes and do not allow hot insertion)

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Two slew rates

• Skew between output buffer enable/disable time: 2 ns delay (rising edge) and
0 ns delay (falling edge); see "Selectable Skew between Output Buffer
Enable/Disable Time" on page 2-149 for more information

• Five drive strengths

• 5 V–tolerant receiver ("5 V Input Tolerance" section on page 2-144)

• LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output
Tolerance" section on page 2-148)

• High performance (Table 2-76 on page 2-143)

Single-ended receiver features • Schmitt trigger option

• ESD protection

• Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-76 on page 2-143)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

Voltage-referenced differential
receiver features

• Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-76 on page 2-143)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

CMOS-style LVDS, BLVDS,
M-LVDS, or LVPECL
transmitter 

• Two I/Os and external resistors are used to provide a CMOS-style LVDS,
BLVDS, M-LVDS, or LVPECL transmitter solution.

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Fast slew rate 

LVDS/LVPECL differential
receiver features 

• ESD protection

• High performance (Table 2-76 on page 2-143)

• Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting,
0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• Separate input buffer ground and power planes to avoid output-induced noise
in the input circuitry
Revision 6 2-136



Device Architecture
Double Data Rate (DDR) Support
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,
high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR
The basic structure to support a DDR input is shown in Figure 2-101. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 2-102 on page 2-140. New data is presented to the
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account
in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-101 • DDR Input Register Support in Fusion Devices
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Fusion Family of Mixed Signal FPGAs
5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and
LVCMOS 2.5 V configurations are used (see Table 2-77 on page 2-147 for more details). There are four
recommended solutions (see Figure 2-103 to Figure 2-106 on page 2-146 for details of board and macro
setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any
voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be
used for clamping, and the voltage must be limited by the two external resistors, as explained below.
Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model
with no line effects and 10  transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH,
Rtx_out_low = VOL / IOL).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 36  (±5%), P(r1)min = 0.069 

R2 = 82  (±5%), P(r2)min = 0.158 

Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low–medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 220  (±5%), P(r1)min = 0.018 

R2 = 390  (±5%), P(r2)min = 0.032 

Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA

tRISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output
resistance, and board resistor tolerances.
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Device Architecture
Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks
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Fusion Family of Mixed Signal FPGAs
Table 2-114 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 11.40 0.04 1.31 0.43 11.22 11.40 2.68 2.20 13.45 13.63  ns 

 –1 0.56 9.69 0.04 1.11 0.36 9.54 9.69 2.28 1.88 11.44 11.60  ns 

 –2 0.49 8.51 0.03 0.98 0.32 8.38 8.51 2.00 1.65 10.05 10.18  ns 

8 mA  Std. 0.66 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05  ns 

 –1 0.56 6.77 0.04 1.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55  ns 

 –2 0.49 5.94 0.03 0.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50  ns 

12 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

16 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

24 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output
buffer.

Timing Characteristics

Table 2-153 • Minimum and Maximum DC Input and Output Levels

HSTL Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

15 mA3 –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 15 15 55 66 10 10

Note:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-129 • AC Loading

Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.1 VREF + 0.1 0.75 0.75 0.75 20

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

20 pF

25

HSTL
Class II

VTT

Table 2-155 • HSTL Class II
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 3.02 0.04 2.12 0.43 3.08 2.71 5.32 4.95 ns

 –1 0.56 2.57 0.04 1.81 0.36 2.62 2.31 4.52 4.21 ns

 –2 0.49 2.26 0.03 1.59 0.32 2.30 2.03 3.97 3.70 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-137 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
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Fusion Family of Mixed Signal FPGAs
XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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Fusion Family of Mixed Signal FPGAs
Figure 3-1 • I/O State as a Function of VCCI and VCC Voltage Levels

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input 
buffers do not meet VIH / VIL levels, and 
  output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V 

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ±0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON
and power supplies are within
specification.

I/Os meet the entire datasheet 
and timer specifications for 
speed, VIH / VIL, VOH VOL, etc.   

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential inputs) 

 but slower because VCCI is
below specification. For the 

same reason, input buffers do not 
 meet VIH / VIL levels, and output

buffers do not meet VOH / VOL levels.    

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)

VCC = VCCI + VT 

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC 
specifications are met, 
but I/Os are slower because 
the VCC is below specification
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DC and Power Characteristics
Thermal Characteristics

Introduction
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the
ambient, case, or board temperatures. This is an important distinction because dynamic and static power
consumption will cause the chip's junction temperature to be higher than the ambient, case, or board
temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature
gradient, and power.

EQ 1

EQ 2

EQ 3

where  

JA = Junction-to-air thermal resistance

JB = Junction-to-board thermal resistance

JC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TB = Board temperature (measured 1.0 mm away from the
package edge)

TC = Case temperature

P = Total power dissipated by the device

JA

TJ A–

P
------------------=

JB

TJ TB–

P
-------------------=

JC

TJ TC–

P
-------------------=

Table 3-6 • Package Thermal Resistance

Product

JA

JC JB UnitsStill Air 1.0 m/s 2.5 m/s

AFS090-QN108 34.5 30.0 27.7 8.1 16.7 °C/W

AFS090-QN180 33.3 27.6 25.7 9.2 21.2 °C/W

AFS250-QN180 32.2 26.5 24.7 5.7 15.0 °C/W

AFS250-PQ208 42.1 38.4 37 20.5 36.3 °C/W

AFS600-PQ208 23.9 21.3 20.48 6.1 16.5 °C/W

AFS090-FG256 37.7 33.9 32.2 11.5 29.7 °C/W

AFS250-FG256 33.7 30.0 28.3 9.3 24.8 °C/W

AFS600-FG256 28.9 25.2 23.5 6.8 19.9 °C/W

AFS1500-FG256 23.3 19.6 18.0 4.3 14.2 °C/W

AFS600-FG484 21.8 18.2 16.7 7.7 16.8 °C/W

AFS1500-FG484 21.6 16.8 15.2 5.6 14.9 °C/W

AFS1500-FG676 TBD TBD TBD TBD TBD °C/W
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DC and Power Characteristics
IPP Programming supply
current

Non-programming mode, 
VPUMP = 3.63 V

TJ = 25°C 36 80 µA

TJ = 85°C 36 80 µA

TJ = 100°C 36 80 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM current Reset asserted, 
VCCNVM = 1.575 V

TJ = 25°C 22 80 µA

TJ = 85°C 24 80 µA

TJ = 100°C 25 80 µA

ICCPLL 1.5 V PLL quiescent current Operational standby, 
VCCPLL = 1.575 V 

TJ = 25°C 130 200 µA

TJ = 85°C 130 200 µA

TJ = 100°C 130 200 µA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min Typ Max Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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DC and Power Characteristics
Static Power Consumption of Various Internal Resources 

Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

• The number of PLLs as well as the number and the frequency of each output clock generated

• The number of combinatorial and sequential cells used in the design

• The internal clock frequencies

• The number and the standard of I/O pins used in the design

• The number of RAM blocks used in the design

• The number of NVM blocks used in the design

• The number of Analog Quads used in the design

• Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on
page 3-27.

• Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on
page 3-27.

• Read rate and write rate to the RAM—guidelines are provided for typical applications in
Table 3-17 on page 3-27. 

• Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices

Parameter Definition
Power 
Supply

Device-Specific Static Contributions

UnitsAFS1500 AFS600 AFS250 AFS090

PDC1 Core static power contribution in
operating mode

VCC 1.5 V 18 7.5 4.50 3.00 mW

PDC2 Device static power contribution in
standby mode

VCC33A 3.3 V 0.66 mW

PDC3 Device static power contribution in
sleep mode

VCC33A 3.3 V 0.03 mW

PDC4 NVM static power contribution VCC 1.5 V 1.19 mW

PDC5 Analog Block static power
contribution of ADC

VCC33A 3.3 V 8.25 mW

PDC6 Analog Block static power
contribution per Quad

VCC33A 3.3 V 3.3 mW

PDC7 Static contribution per input pin –
standard dependent contribution

VCCI See Table 3-12 on page 3-18

PDC8 Static contribution per input pin –
standard dependent contribution

VCCI See Table 3-13 on page 3-20

PDC9 Static contribution for PLL VCC 1.5 V 2.55 mW
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Package Pin Assignments
FG484

Pin 
Number AFS600 Function AFS1500 Function

A1 GND GND

A2 VCC NC

A3 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A4 GAB0/IO02NDB0V0 GAB0/IO02NDB0V0

A5 GAB1/IO02PDB0V0 GAB1/IO02PDB0V0

A6 IO07NDB0V1 IO07NDB0V1

A7 IO07PDB0V1 IO07PDB0V1

A8 IO10PDB0V1 IO09PDB0V1

A9 IO14NDB0V1 IO13NDB0V2

A10 IO14PDB0V1 IO13PDB0V2

A11 IO17PDB1V0 IO24PDB1V0

A12 IO18PDB1V0 IO26PDB1V0

A13 IO19NDB1V0 IO27NDB1V1

A14 IO19PDB1V0 IO27PDB1V1

A15 IO24NDB1V1 IO35NDB1V2

A16 IO24PDB1V1 IO35PDB1V2

A17 GBC0/IO26NDB1V1 GBC0/IO40NDB1V2

A18 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A19 IO29NDB1V1 IO43NDB1V2

A20 IO29PDB1V1 IO43PDB1V2

A21 VCC NC

A22 GND GND

AA1 VCC NC

AA2 GND GND

AA3 VCCIB4 VCCIB4

AA4 VCCIB4 VCCIB4

AA5 PCAP PCAP

AA6 AG0 AG0

AA7 GNDA GNDA

AA8 AG1 AG1

AA9 AG2 AG2

AA10 GNDA GNDA

AA11 AG3 AG3

AA12 AG6 AG6

AA13 GNDA GNDA

AA14 AG7 AG7

AA15 AG8 AG8

AA16 GNDA GNDA

AA17 AG9 AG9

AA18 VAREF VAREF

AA19 VCCIB2 VCCIB2

AA20 PTEM PTEM

AA21 GND GND

AA22 VCC NC

AB1 GND GND

AB2 VCC NC

AB3 NC IO94NSB4V0

AB4 GND GND

AB5 VCC33N VCC33N

AB6 AT0 AT0

AB7 ATRTN0 ATRTN0

AB8 AT1 AT1

AB9 AT2 AT2

AB10 ATRTN1 ATRTN1

AB11 AT3 AT3

AB12 AT6 AT6

AB13 ATRTN3 ATRTN3

AB14 AT7 AT7

AB15 AT8 AT8

AB16 ATRTN4 ATRTN4

AB17 AT9 AT9

AB18 VCC33A VCC33A

AB19 GND GND

AB20 NC IO76NPB2V0

AB21 VCC NC

AB22 GND GND

B1 VCC NC

B2 GND GND

B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

B4 GND GND

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Package Pin Assignments
FG676

Pin Number AFS1500 Function

A1 NC

A2 GND

A3 NC

A4 NC

A5 GND

A6 NC

A7 NC

A8 GND

A9 IO17NDB0V2

A10 IO17PDB0V2

A11 GND

A12 IO18NDB0V2

A13 IO18PDB0V2

A14 IO20NDB0V2

A15 IO20PDB0V2

A16 GND

A17 IO21PDB0V2

A18 IO21NDB0V2

A19 GND

A20 IO39NDB1V2

A21 IO39PDB1V2

A22 GND

A23 NC

A24 NC

A25 GND

A26 NC

AA1 NC

AA2 VCCIB4

AA3 IO93PDB4V0

AA4 GND

AA5 IO93NDB4V0

AA6 GEB2/IO86PDB4V0

AA7 IO86NDB4V0

AA8 AV0

AA9 GNDA

AA10 AV1

AA11 AV2

AA12 GNDA

AA13 AV3

AA14 AV6

AA15 GNDA

AA16 AV7

AA17 AV8

AA18 GNDA

AA19 AV9

AA20 VCCIB2

AA21 IO68PPB2V0

AA22 TCK

AA23 GND

AA24 IO76PPB2V0

AA25 VCCIB2

AA26 NC

AB1 GND

AB2 NC

AB3 GEC2/IO87PDB4V0

AB4 IO87NDB4V0

AB5 GEA2/IO85PDB4V0

AB6 IO85NDB4V0

AB7 NCAP

AB8 AC0

AB9 VCC33A

AB10 AC1

AB11 AC2

AB12 VCC33A

AB13 AC3

AB14 AC6

AB15 VCC33A

AB16 AC7

AB17 AC8

AB18 VCC33A

AB19 AC9

AB20 ADCGNDREF

FG676

Pin Number AFS1500 Function

AB21 PTBASE

AB22 GNDNVM

AB23 VCCNVM

AB24 VPUMP

AB25 NC

AB26 GND

AC1 NC

AC2 NC

AC3 NC

AC4 GND

AC5 VCCIB4

AC6 VCCIB4

AC7 PCAP

AC8 AG0

AC9 GNDA

AC10 AG1

AC11 AG2

AC12 GNDA

AC13 AG3

AC14 AG6

AC15 GNDA

AC16 AG7

AC17 AG8

AC18 GNDA

AC19 AG9

AC20 VAREF

AC21 VCCIB2

AC22 PTEM

AC23 GND

AC24 NC

AC25 NC

AC26 NC

AD1 NC

AD2 NC

AD3 GND

AD4 NC

FG676

Pin Number AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
Revision 3
(continued)

The "RC Oscillator" section was revised to correct a sentence that did not
differentiate accuracy for commercial and industrial temperature ranges, which is
given in Table 2-9 • Electrical Characteristics of RC Oscillator (SAR 33722).

2-19

Figure 2-57 • FIFO Read and Figure 2-58 • FIFO Write are new (SAR 34840). 2-72

The first paragraph of the "Offset" section was removed; it was intended to be
replaced by the paragraph following it (SAR 22647).

2-95

IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected in Table 2-86 •
Summary of Maximum and Minimum DC Input and Output Levels Applicable to
Commercial and Industrial Conditions (SAR 39813).

2-164

The drive strength, IOL, and IOH for 3.3 V GTL and 2.5 V GTL were changed from
25 mA to 20 mA in the following tables (SAR 37373):

Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions, 

Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings

Table 2-96 • I/O Output Buffer Maximum Resistances 1

Table 2-138 • Minimum and Maximum DC Input and Output Levels

Table 2-141 • Minimum and Maximum DC Input and Output Levels

2-164

2-167

2-169

2-199

2-200

The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34800):
"It uses a 5 V–tolerant input buffer and push-pull output buffer."

2-181

Corrected the inadvertent error in maximum values for LVPECL VIH and VIL and
revised them to "3.6" in Table 2-171 • Minimum and Maximum DC Input and Output
Levels, making these consistent with Table 3-1 • Absolute Maximum Ratings, and
Table 3-4 • Overshoot and Undershoot Limits 1 (SAR 37687).

2-211

The maximum frequency for global clock parameter was removed from Table 2-5 •
AFS1500 Global Resource Timing through Table 2-8 • AFS090 Global Resource
Timing because a frequency on the global is only an indication of what the global
network can do. There are other limiters such as the SRAM, I/Os, and PLL.
SmartTime software should be used to determine the design frequency (SAR
36955).

2-16 to 
2-17

Revision 2
(March 2012)

The phrase "without debug" was removed from the "Soft ARM Cortex-M1 Fusion
Devices (M1)" section (SAR 21390).

I

The "In-System Programming (ISP) and Security" section, "Security" section, "Flash
Advantages" section, and "Security" section were revised to clarify that although no
existing security measures can give an absolute guarantee, Microsemi FPGAs
implement the best security available in the industry (SAR 34679).

I, 1-2, 
2-228

The Y security option and Licensed DPA Logo was added to the "Product Ordering
Codes" section. The trademarked Licensed DPA Logo identifies that a product is
covered by a DPA counter-measures license from Cryptography Research (SAR
34721).

III

The "Specifying I/O States During Programming" section is new (SAR 34693). 1-9

The following information was added before Figure 2-17 • XTLOSC Macro:

In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be
connected to GND and the XTAL2 pin should be left floating (SAR 24119).

2-20

Table 2-12 • Fusion CCC/PLL Specification was updated. A note was added
indicating that when the CCC/PLL core is generated by Microsemi core generator
software, not all delay values of the specified delay increments are available (SAR
34814).

2-28
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Fusion Family of Mixed Signal FPGAs
Advance v0.6
(continued)

The "Analog-to-Digital Converter Block" section was updated with the following
statement:
"All results are MSB justified in the ADC."

2-99

The information about the ADCSTART signal was updated in the "ADC Description"
section.

2-102

Table 2-46 · Analog Channel Specifications was updated. 2-118

Table 2-47 · ADC Characteristics in Direct Input Mode was updated. 2-121

Table 2-51 •  ACM Address Decode Table for Analog Quad was updated. 2-127

In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default
Setting for Bit 6 in Byte 3 was updated.

2-130

The "Introduction" section was updated to include information about digital inputs,
outputs, and bibufs.

2-133

In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were
updated for the following features:

Single-ended receiver

Voltage-referenced differential receiver 

LVDS/LVPECL differential receiver features

2-137

The "User I/O Naming Convention" section was updated to include "V" and "z"
descriptions

2-159

The "VCC33PMP Analog Power Supply (3.3 V)" section was updated to include
information about avoiding high current draw.

2-224

The "VCCNVM Flash Memory Block Power Supply (1.5 V)" section was updated to
include information about avoiding high current draw.

2-224

The "VMVx I/O Supply Voltage (quiet)" section was updated to include this
statement: VMV and VCCI must be connected to the same power supply and VCCI
pins within a given I/O bank.

2-185

The "PUB Push Button" section was updated to include information about leaving
the pin floating if it is not used.

2-228

The "PTBASE Pass Transistor Base" section was updated to include information
about leaving the pin floating if it is not used.

2-228

The "PTEM Pass Transistor Emitter" section was updated to include information
about leaving the pin floating if it is not used.

2-228

The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not
AFS090.

3-8
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