

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	95
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1afs600-2pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Global Resources (VersaNets)

Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has six CCCs. The west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach

One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks. Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array (Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the four chip quadrants. Each core VersaTile has access to nine global networks on the device. Each of these networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12). This flexible VersaNet global network architecture allows users to map up to 180 different internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several design requirements. User applications that are clock-resource-intensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.

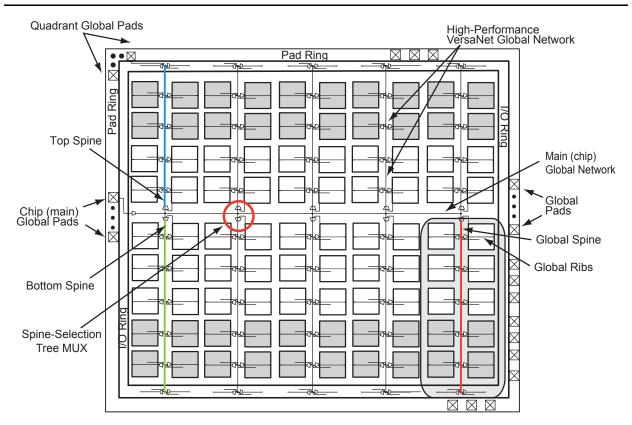


Figure 2-11 • Overview of Fusion VersaNet Global Network

Read Operation

Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status registers. Read operations support a normal read and a read-ahead mode (done by asserting READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode (Figure 2-39) reads of the flash memory block interface.

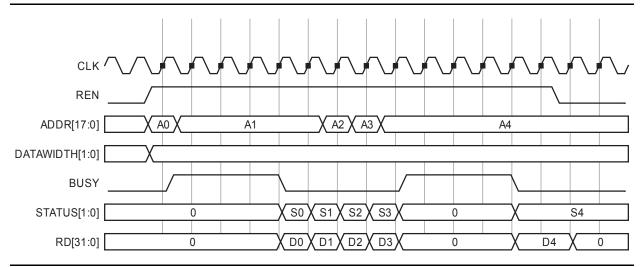


Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

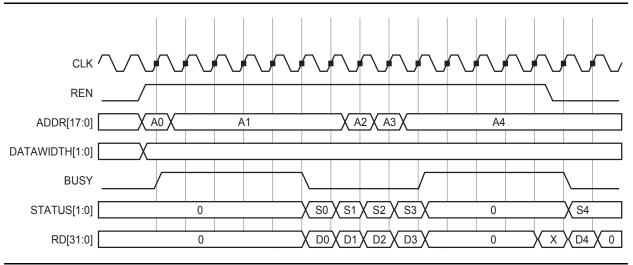


Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)

The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

WIDTHA1, WIDTHA0	WIDTHB1, WIDTHB0	D×W						
00	00	4k×1						
01	01	2k×2						
10	10	1k×4						
11	11	512×9						
Note: The aspect ratio settings are constant and cannot be changed on the fly.								

BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, the corresponding port's outputs hold the previous value.

WENA and WENB

These signals switch the RAM between read and write mode for the respective ports. A Low on these signals indicates a write operation, and a High indicates a read.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

PIPEA and PIPEB

These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB

These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on these signals makes the output retain data from the previous read. A High indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

RESET

This active low signal resets the output to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W	ADDRx						
	Unused	Used					
4k×1	None	[11:0]					
2k×2	[11]	[10:0]					
1k×4	[11:10]	[9:0]					
512×9	[11:9]	[8:0]					

Note: The "x" in ADDRx implies A or B.

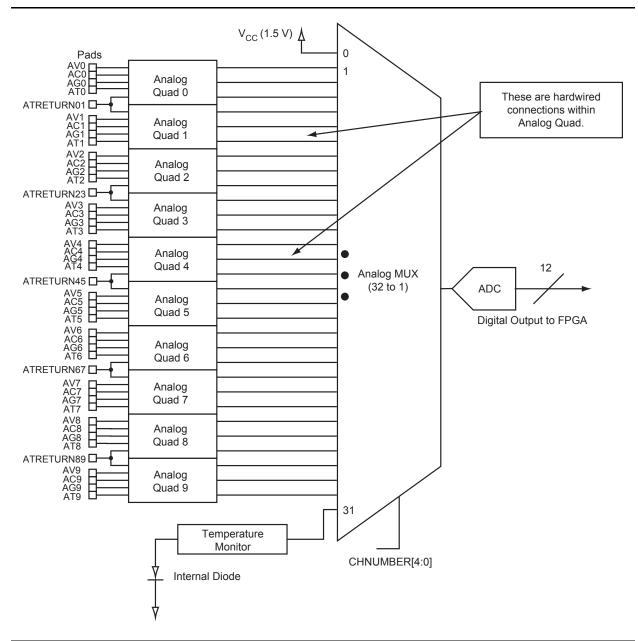
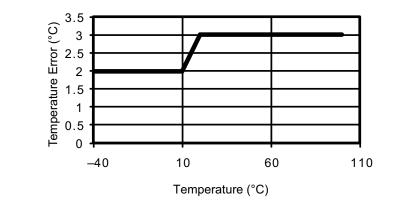
Device Architecture

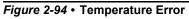
Table 2-36 • Analog Block Pin Description (continued)

Signal Name	Number of Bits	Direction	Function	Location of Details
GDON0 to GDON9	10	Input	Control to power MOS – 1 per quad	Analog Quad
TMSTB0 to TMSTB9	10	Input	Temperature monitor strobe – 1 per quad; active high	Analog Quad
DAVOUT0, DACOUT0, DATOUT0 to	30	Output	Digital outputs – 3 per quad	Analog Quad
DAVOUT9, DACOUT9, DATOUT9				
DENAV0, DENAC0, DENAT0 to DENAV9, DENAC9, DENAT9	30	Input	Digital input enables – 3 per quad	Analog Quad
AV0	1	Input	Analog Quad 0	Analog Quad
AC0	1	Input		Analog Quad
AG0	1	Output		Analog Quad
AT0	1	Input		Analog Quad
ATRETURN01	1	Input	Temperature monitor return shared by Analog Quads 0 and 1	Analog Quad
AV1	1	Input	Analog Quad 1	Analog Quad
AC1	1	Input		Analog Quad
AG1	1	Output		Analog Quad
AT1	1	Input		Analog Quad
AV2	1	Input	Analog Quad 2	Analog Quad
AC2	1	Input		Analog Quad
AG2	1	Output		Analog Quad
AT2	1	Input		Analog Quad
ATRETURN23	1	Input	Temperature monitor return shared by Analog Quads 2 and 3	Analog Quad
AV3	1	Input	Analog Quad 3	Analog Quad
AC3	1	Input		Analog Quad
AG3	1	Output		Analog Quad
AT3	1	Input		Analog Quad
AV4	1	Input	Analog Quad 4	Analog Quad
AC4	1	Input		Analog Quad
AG4	1	Output		Analog Quad
AT4	1	Input		Analog Quad
ATRETURN45	1	Input	Temperature monitor return shared by Analog Quads 4 and 5	Analog Quad
AV5	1	Input	Analog Quad 5	Analog Quad
AC5	1	Input		Analog Quad
AG5	1	Output		Analog Quad
AT5	1	Input		Analog Quad
AV6	1	Input	Analog Quad 6	Analog Quad
AC6	1	Input	1	Analog Quad

Analog-to-Digital Converter Block

At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR) ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve 500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance both at power-up and during runtime.


Figure 2-79 • ADC Block Diagram

Typical Performance Characteristics

Temperature Errror vs. Die Temperature

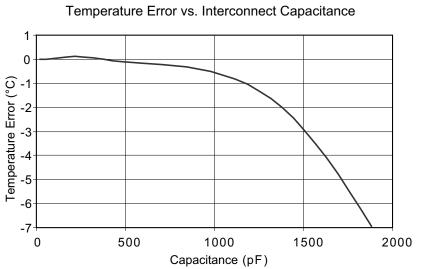


Figure 2-95 • Effect of External Sensor Capacitance

	Total Channel Error (LSB)			-		el Inpu rror (LS	t Offset SB)	Channel Input Offset Error (mV)			Channel Gain Error (%FSR)		
Analog Pad	Prescaler Range (V)	Neg. Max.	Med.	Pos. Max.	Neg Max	Med.	Pos. Max.	Neg. Max.	Med.	Pos. Max.	Min.	Тур.	Max.
Positi	ve Range						ADC in	10-Bit N	lode				
AV, AC	16	-22	-2	12	-11	-2	14	-169	-32	224	3	0	-3
	8	-40	-5	17	-11	-5	21	-87	-40	166	2	0	-4
	4	-45	-9	24	-16	-11	36	-63	-43	144	2	0	-4
	2	-70	-19	33	-33	-20	66	-66	-39	131	2	0	-4
	1	-25	-7	5	-11	-3	26	-11	-3	26	3	–1	-3
	0.5	-41	-12	8	-12	-7	38	-6	-4	19	3	-1	-3
	0.25	-53	-14	19	-20	-14	40	-5	-3	10	5	0	-4
	0.125	-89	-29	24	-40	-28	88	-5	-4	11	7	0	-5
AT	16	-3	9	15	-4	0	4	-64	5	64	1	0	-1
	4	-10	2	15	-11	-2	11	-44	-8	44	1	0	-1
Negati	ve Range						ADC in	10-Bit Mode					
AV, AC	16	-35	-10	9	-24	-6	9	-383	-96	148	5	-1	-6
	8	-65	-19	12	-34	-12	9	-268	-99	75	5	-1	-5
	4	-86	-28	21	-64	-24	19	-254	-96	76	5	–1	-6
	2	-136	-53	37	-115	-42	39	-230	-83	78	6	-2	-7
	1	-98	-35	8	-39	-8	15	-39	-8	15	10	-3	-10
	0.5	-121	-46	7	-54	-14	18	-27	-7	9	10	-4	-11
	0.25	-149	-49	19	-72	-16	40	-18	-4	10	14	-4	-12
	0.125	-188	-67	38	-112	-27	56	-14	-3	7	16	-5	-14

Table 2-51 • Uncalibrated Analog Channel Accuracy*Worst-Case Industrial Conditions, TJ = 85°C

Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Gain remains the same.

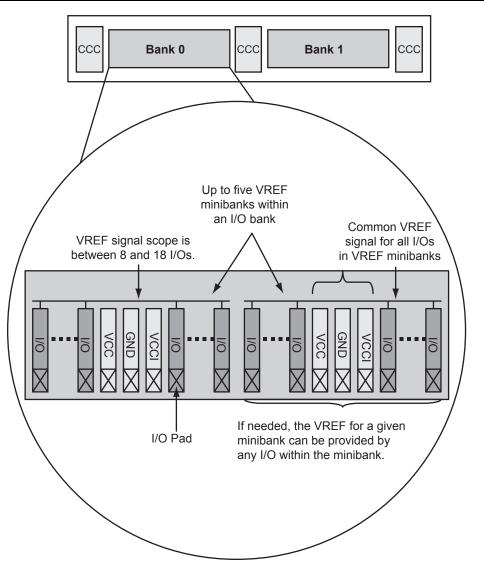


Figure 2-99 • Fusion Pro I/O Bank Detail Showing VREF Minibanks (north side of AFS600 and AFS1500)

I/O Bank	Single-Ended I/O Standards	Differential I/O Standards	Voltage-Referenced	Hot- Swap
Standard I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V	_	-	Yes
Advanced I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	-	-
Pro I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	GTL+2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II	Yes

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-90 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	_	1.4 V
2.5 V LVCMOS	_	-	1.2 V
1.8 V LVCMOS	_	-	0.90 V
1.5 V LVCMOS	_	-	0.75 V
3.3 V PCI	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))
3.3 V PCI-X	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	_	-	Cross point
LVPECL	_	-	Cross point

Table 2-91 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

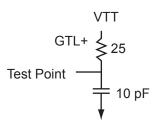
Device Architecture

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

Table 2-144 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	181	268	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-126 • AC Loading

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-146 • 3.3 V GTL+

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.56	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.49	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

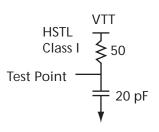
Device Architecture

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class I	VIL		VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
8 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	8	8	39	32	10	10

Table 2-150 • Minimum and Maximum DC Input and Output Levels


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-128 • AC Loading

Table 2-151 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

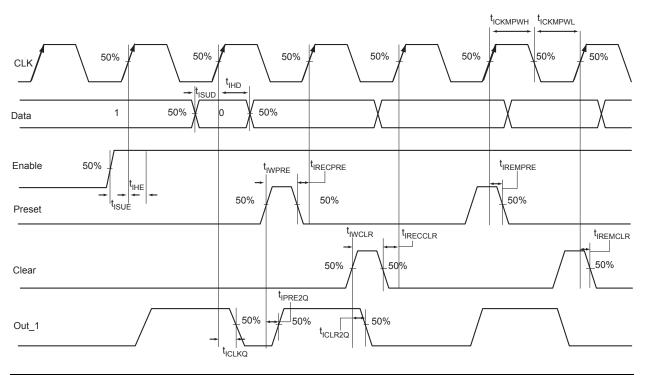

Timing Characteristics

Table 2-152 • HSTL Class I

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	3.18	0.04	2.12	0.43	3.24	3.14			5.47	5.38	ns
-1	0.56	2.70	0.04	1.81	0.36	2.75	2.67			4.66	4.58	ns
-2	0.49	2.37	0.03	1.59	0.32	2.42	2.35			4.09	4.02	ns

Input Register

Figure 2-139 • Input Register Timing Diagram

Timing Characteristics

Table 2-176 • Input Data Register Propagation DelaysCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

 $P_{S-CELL} = 0 W$ $P_{C-CELL} = 0 W$ $P_{NET} = 0 W$ $P_{LOGIC} = 0 W$

I/O Input and Output Buffer Contribution—P_{I/O}

This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA–capable, configured with high output slew and driving a 35 pF output load.

 $F_{CLK} = 50 \text{ MHz}$ Number of input pins used: N_{INPUTS} = 30 Number of output pins used: N_{OUTPUTS} = 40 Estimated I/O buffer toggle rate: α_2 = 0.1 (10%) Estimated IO buffer enable rate: β_1 = 1 (100%)

Operating Mode

$$\begin{split} \mathsf{P}_{\mathsf{INPUTS}} &= \mathsf{N}_{\mathsf{INPUTS}} * (\alpha_2 \,/\, 2) * \mathsf{PAC9} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{INPUTS}} &= 30 * (0.1 \,/\, 2) * 0.01739 * 50 \\ \mathsf{P}_{\mathsf{INPUTS}} &= 1.30 \text{ mW} \end{split}$$

$$\begin{split} \mathsf{P}_{\text{OUTPUTS}} &= \mathsf{N}_{\text{OUTPUTS}} * (\alpha_2 / 2) * \beta_1 * \mathsf{PAC10} * \mathsf{F}_{\text{CLK}} \\ \mathsf{P}_{\text{OUTPUTS}} &= 40 * (0.1 / 2) * 1 * 0.4747 * 50 \\ \mathsf{P}_{\text{OUTPUTS}} &= 47.47 \text{ mW} \end{split}$$

 $P_{I/O} = P_{INPUTS} + P_{OUTPUTS}$ $P_{I/O} = 1.30 \text{ mW} + 47.47 \text{ mW}$

P_{I/O} = 48.77 mW

Standby Mode and Sleep Mode

 $P_{INPUTS} = 0 W$

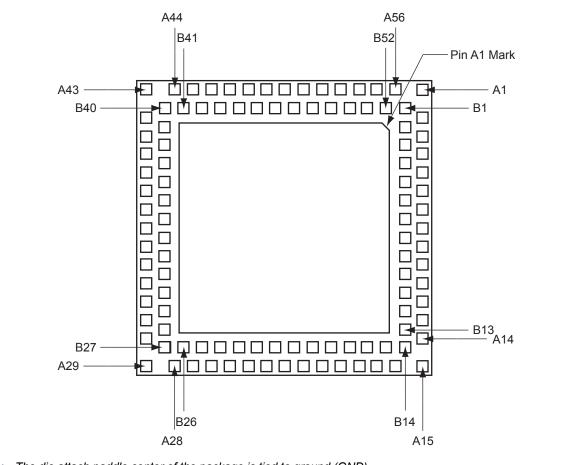
 $P_{OUTPUTS} = 0 W$ $P_{I/O} = 0 W$

RAM Contribution—P_{MEMORY}

Frequency of Read Clock: $F_{READ-CLOCK} = 10 \text{ MHz}$ Frequency of Write Clock: $F_{WRITE-CLOCK} = 10 \text{ MHz}$ Number of RAM blocks: $N_{BLOCKS} = 20$ Estimated RAM Read Enable Rate: $\beta_2 = 0.125 (12.5\%)$ Estimated RAM Write Enable Rate: $\beta_3 = 0.125 (12.5\%)$

Operating Mode

$$\begin{split} \mathsf{P}_{\mathsf{MEMORY}} &= (\mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{PAC11} * \beta_2 * \mathsf{F}_{\mathsf{READ-CLOCK}}) + (\mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{PAC12} * \beta_3 * \mathsf{F}_{\mathsf{WRITE-CLOCK}}) \\ \mathsf{P}_{\mathsf{MEMORY}} &= (20 * 0.025 * 0.125 * 10) + (20 * 0.030 * 0.125 * 10) \\ \mathsf{P}_{\mathsf{MEMORY}} &= 1.38 \text{ mW} \end{split}$$


Standby Mode and Sleep Mode

P_{MEMORY} = 0 W

4 – Package Pin Assignments

QN108

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Microsemi

Package Pin Assignments

	QN108		QN108		QN108
Pin Number	AFS090 Function	Pin Number	AFS090 Function	Pin Number	AFS090 Function
A1	NC	A39	GND	B21	AC2
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB
A8	XTAL2	A46	GND	B28	VCC33A
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI
A13	VCC15A	A51	IO09RSB0V0	B33	TDO
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V
A16	GNDA	A54	GND		0
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V
A20	AT1	B2	VCCIB3	D20	
A21	AC1	B3	GAB2/IO52NDB3V0	B39	GBB2/IO31NDB1V0
A22	AV2	B4	VCCIB3	B40	VCCIB1
A23	AG2	B5	GFA0/IO47NDB3V0	B41	GNDQ
A24	AT2	B6	GEB0/IO45NDB3V0	B42	GBA0/IO29RSB0V0
A25	AT3	B7	XTAL1	B43	VCCIB0
A26	AC3	B8	GNDOSC	B44	GBB0/IO27RSB0V0
A27	GNDAQ	B9	GEC2/IO43PSB3V0	B45	GBC0/IO25RSB0V0
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B46	IO20RSB0V0
A29	NC	B11	VCC	B47	IO10RSB0V0
A30	GNDA	B12	GNDNVM	B48	GAC1/IO05RSB0V0
A31	PTEM	B13	NCAP	B49	GAB1/IO03RSB0V0
A32	GNDNVM	B14	VCC33PMP	B50	VCC
A33	VPUMP	B15	VCC33N	B51	GAA1/IO01RSB0V0
A34	ТСК	B16	GNDAQ	B52	VCCPLA
A35	TMS	B17	AC0		
A36	TRST	B18	AT0		
A37	GDB1/IO39PSB1V0	B19	AG1		
A38	GDC1/IO38PDB1V0	B20	AV1		

	FG484			FG484	
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
B5	IO05NDB0V0	IO04NDB0V0	C18	VCCIB1	VCCIB1
B6	IO05PDB0V0	IO04PDB0V0	C19	VCOMPLB	VCOMPLB
B7	GND	GND	C20	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0
B8	IO10NDB0V1	IO09NDB0V1	C21	NC	IO48PSB2V0
B9	IO13PDB0V1	IO11PDB0V1	C22	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0
B10	GND	GND	D1	IO82NDB4V0	IO121NDB4V0
B11	IO17NDB1V0	IO24NDB1V0	D2	GND	GND
B12	IO18NDB1V0	IO26NDB1V0	D3	IO83NDB4V0	IO123NDB4V0
B13	GND	GND	D4	GAC2/IO83PDB4V0	GAC2/IO123PDB4V0
B14	IO21NDB1V0	IO31NDB1V1	D5	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0
B15	IO21PDB1V0	IO31PDB1V1	D6	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0
B16	GND	GND	D7	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0
B17	GBC1/IO26PDB1V1	GBC1/IO40PDB1V2	D8	IO09NDB0V1	IO10NDB0V1
B18	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2	D9	IO09PDB0V1	IO10PDB0V1
B19	GND	GND	D10	IO11NDB0V1	IO14NDB0V2
B20	VCCPLB	VCCPLB	D11	IO16NDB1V0	IO23NDB1V0
B21	GND	GND	D12	IO16PDB1V0	IO23PDB1V0
B22	VCC	NC	D13	NC	IO32NPB1V1
C1	IO82PDB4V0	IO121PDB4V0	D14	IO23NDB1V1	IO34NDB1V1
C2	NC	IO122PSB4V0	D15	IO23PDB1V1	IO34PDB1V1
C3	IO00NDB0V0	IO00NDB0V0	D16	IO25PDB1V1	IO37PDB1V2
C4	IO00PDB0V0	IO00PDB0V0	D17	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2
C5	VCCIB0	VCCIB0	D18	VCCIB2	VCCIB2
C6	IO06NDB0V0	IO05NDB0V1	D19	NC	IO47PPB2V0
C7	IO06PDB0V0	IO05PDB0V1	D20	IO30NDB2V0	IO44NDB2V0
C8	VCCIB0	VCCIB0	D21	GND	GND
C9	IO13NDB0V1	IO11NDB0V1	D22	IO31NDB2V0	IO45NDB2V0
C10	IO11PDB0V1	IO14PDB0V2	E1	IO81NDB4V0	IO120NDB4V0
C11	VCCIB0	VCCIB0	E2	IO81PDB4V0	IO120PDB4V0
C12	VCCIB1	VCCIB1	E3	VCCIB4	VCCIB4
C13	IO20NDB1V0	IO29NDB1V1	E4	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0
C14	IO20PDB1V0	IO29PDB1V1	E5	IO85NDB4V0	IO125NDB4V0
C15	VCCIB1	VCCIB1	E6	GND	GND
C16	IO25NDB1V1	IO37NDB1V2	E7	VCCIB0	VCCIB0
C17	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2	E8	NC	IO08NDB0V1

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance 1.0 (continued)	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	2-121
	The V_{CC33ACAP} signal name was changed to "XTAL1 Crystal Oscillator Circuit Input".	2-228
	Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.	2-123
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} is new.	2-124
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-125
	In Table 2-57 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*, the following I/O Bank names were changed: Hot-Swap changed to Standard LVDS changed to Advanced	2-131
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3), the following I/O Bank names were changed: Hot-Swap changed to Standard LVDS changed to Advanced	2-132
	In the title of Table 2-64 • I/O Standards Supported by Bank Type, LVDS I/O was changed to Advanced I/O.	2-134
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-136
	 This sentence was deleted from the "Slew Rate Control and Drive Strength" section: The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed: From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O 	2-152
	The "Cold-Sparing Support" section was significantly updated.	2-143
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-153
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-153
	In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-157
	In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed:	2-160
	Hot-Swap changed to Standard LVDS changed to Advanced	
	The Figure 2-113 • Timing Model was updated.	2-161
	In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T_J was changed to T_A .	2-101

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page			
Advance v0.3	The "Temperature Monitor" section was updated.	2-96			
(continued)	EQ 2 is new.	2-103			
	The "ADC Description" section was updated.	2-102			
	Figure 2-16 • Fusion Clocking Options was updated.	2-20			
	Table 2-46 · Analog Channel Specifications was updated.	2-118			
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.	2-144			
	The "Simultaneously Switching Outputs and PCB Layout" section is new.	2-149			
	LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.	2-157			
	LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.	2-158			
	The "Timing Model" was updated.	2-161			
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.				
	All Timing Characteristic tables were updated	N/A			
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated.				
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.				
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171			
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211			
	The "CoreMP7 and Cortex-M1 Software Tools" section is new.	2-257			
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.	2-165			
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134			
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171			
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211			
	The "108-Pin QFN" table for the AFS090 device is new.	3-2			
	The "180-Pin QFN" table for the AFS090 device is new.	3-4			
	The "208-Pin PQFP" table for the AFS090 device is new.	3-8			
	The "256-Pin FBGA" table for the AFS090 device is new.	3-12			
	The "256-Pin FBGA" table for the AFS250 device is new.	3-12			