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Fusion Family of Mixed Signal FPGAs
Clock Aggregation
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock
aggregation system is achieved through long-line resources in the central rib, and also through local
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14
indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using
Global Resources in Actel Fusion Devices application note.

Figure 2-14 • Clock Aggregation Tree Architecture
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Device Architecture
RC Oscillator 
The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as
a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL
and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency
and phase.

The Fusion RC oscillator is very accurate at ±1% over commercial temperature ranges and and ±3%
over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the
user. It requires only that the power and GNDOSC pins be connected; no external components are
required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Table 2-9 • Electrical Characteristics of RC Oscillator

Parameter Description Conditions Min. Typ. Max. Units

FRC

Operating Frequency 100 MHz

Accuracy Temperature: 0°C to 85°C

Voltage: 3.3 V ± 5%

1 %

Temperature: –40°C to 125°C

Voltage: 3.3 V ± 5%

3 %

Output Jitter Period Jitter (at 5 k cycles) 100 ps

Cycle–Cycle Jitter (at 5 k cycles) 100 ps

Period Jitter (at 5 k cycles) with 1 KHz / 300 mV
peak-to-peak noise on power supply

150 ps

Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz /
300 mV peak-to-peak noise on power supply

150 ps

Output Duty Cycle 50 %

IDYNRC Operating Current 1 mA
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Fusion Family of Mixed Signal FPGAs
Modes of Operation

Standby Mode
Standby mode allows periodic power-up and power-down of the FPGA fabric. In standby mode, the real-
time counter and crystal block are ON. The FPGA is not powered by disabling the 1.5 V voltage
regulator. The 1.5 V voltage regulator can be enabled when the preset count is matched. Refer to the
"Real-Time Counter (part of AB macro)" section for details. To enter standby mode, the RTC must be first
configured and enabled. Then VRPSM is shut off by deasserting the VRPU signal. The 1.5 V voltage
regulator is then disabled, and shuts off the 1.5 V output.

Sleep Mode
In sleep mode, the real-time counter and crystal blocks are OFF. The 1.5 V voltage regulator inside the
VRPSM can only be enabled by the PUB or TRST pin. Refer to the "Voltage Regulator and Power
System Monitor (VRPSM)" section on page 2-36 for details on power-up and power-down of the 1.5 V
voltage regulator.

Standby and Sleep Mode Circuit Implementation
For extra power savings, VJTAG and VPUMP should be at the same voltage as VCC, floated or ground,
during standby and sleep modes. Note that when VJTAG is not powered, the 1.5 V voltage regulator
cannot be enabled through TRST. 

VPUMP and VJTAG can be controlled through an external switch. Microsemi recommends ADG839,
ADG849, or ADG841 as possible switches. Figure 2-28 shows the implementation for controlling
VPUMP. The IN signal of the switch can be connected to PTBASE of the Fusion device. VJTAG can be
controlled in same manner.

Figure 2-28 • Implementation to Control VPUMP
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Device Architecture
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of
512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number
of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the
proper values. To avoid halfwords being written or read, which could happen if different read and write
aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one
word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read,
the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.
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Device Architecture
Timing Characteristics

Table 2-35 • FIFO
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tENS REN, WEN Setup time 1.34 1.52 1.79 ns

tENH REN, WEN Hold time 0.00 0.00 0.00 ns

tBKS BLK Setup time 0.19 0.22 0.26 ns

tBKH BLK Hold time 0.00 0.00 0.00 ns

tDS Input data (WD) Setup time 0.18 0.21 0.25 ns

tDH Input data (WD) Hold time 0.00 0.00 0.00 ns

tCKQ1 Clock High to New Data Valid on RD (flow-through) 2.17 2.47 2.90 ns

tCKQ2 Clock High to New Data Valid on RD (pipelined) 0.94 1.07 1.26 ns

tRCKEF RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns

tWCKFF WCLK High to Full Flag Valid 1.63 1.86 2.18 ns

tCKAF Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns

tRSTFG RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns

tRSTAF RESET Low to Almost-Empty/Full Flag Valid 6.13 6.98 8.20 ns

tRSTBQ

RESET Low to Data out Low on RD (flow-through) 0.92 1.05 1.23 ns

RESET Low to Data out Low on RD (pipelined) 0.92 1.05 1.23 ns

tREMRSTB RESET Removal 0.29 0.33 0.38 ns

tRECRSTB RESET Recovery 1.50 1.71 2.01 ns

tMPWRSTB RESET Minimum Pulse Width 0.21 0.24 0.29 ns

tCYC Clock Cycle time 3.23 3.68 4.32 ns

FMAX Maximum Frequency for FIFO 310 272 231 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Analog Quad
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input
signals. The Analog Quad is divided into four sections. 

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage
range. The AV pin can also be used as a digital input pin. 

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one
addition, which is a current monitoring function. A small external current sensing resistor (typically less
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current
Monitor Block contains a current monitor circuit that converts the current through the external resistor to
a voltage that can then be read using the ADC. 

AG6 1 Output Analog Quad

AT6 1 Input Analog Quad

ATRETURN67 1 Input Temperature monitor return shared by
Analog Quads 6 and 7

Analog Quad

AV7 1 Input Analog Quad 7 Analog Quad

AC7 1 Input Analog Quad

AG7 1 Output Analog Quad

AT7 1 Input Analog Quad

AV8 1 Input Analog Quad 8 Analog Quad

AC8 1 Input Analog Quad

AG8 1 Output Analog Quad

AT8 1 Input Analog Quad

ATRETURN89 1 Input Temperature monitor return shared by
Analog Quads 8 and 9

Analog Quad

AV9 1 Input Analog Quad 9 Analog Quad

AC9 1 Input Analog Quad

AG9 1 Output Analog Quad

AT9 1 Input Analog Quad

RTCMATCH 1 Output MATCH RTC

RTCPSMMATCH 1 Output MATCH connected to VRPSM RTC

RTCXTLMODE[1:0] 2 Output Drives XTLOSC RTCMODE[1:0] pins RTC

RTCXTLSEL 1 Output Drives XTLOSC MODESEL pin RTC

RTCCLK 1 Input RTC clock input RTC

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
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Fusion Family of Mixed Signal FPGAs
INL – Integral Non-Linearity
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the
transfer function (Figure 2-85).

LSB – Least Significant Bit
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,
where N is the converter’s resolution. 

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

1 LSB = (2.56 V / 210) = 2.5 mV

EQ 13

No Missing Codes
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal
applied to the analog input.

Figure 2-85 • Integral Non-Linearity (INL)
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
Refer to Table 2-46 on page 2-109 and the "Acquisition Time or Sample Time Control" section on
page 2-107

EQ 20

STC: Sample Time Control value (0–255)

tSAMPLE is the sample time

Sample time is computed based on the period of ADCCLK.

Distribution Phase
The second phase is called the distribution phase. During distribution phase, the ADC computes the
equivalent digital value from the value stored in the input capacitor. In this phase, the output signal
SAMPLE goes back to '0', indicating the sample is completed; but the BUSY signal remains '1', indicating
the ADC is still busy for distribution. The distribution time depends strictly on the number of bits. If the
ADC is configured as a 10-bit ADC, then 10 ADCCLK cycles are needed. EQ 8 describes the distribution
time. 

EQ 21

N: Number of bits

Post-Calibration Phase
The last phase is the post-calibration phase. This is an optional phase. The post-calibration phase takes
two ADCCLK cycles. The output BUSY signal will remain '1' until the post-calibration phase is completed.
If the post-calibration phase is skipped, then the BUSY signal goes to '0' after distribution phase. As soon
as BUSY signal goes to '0', the DATAVALID signal goes to '1', indicating the digital result is available on
the RESULT output signals. DATAVAILD will remain '1' until the next ADCSTART is asserted. Microsemi
recommends enabling post-calibration to compensate for drift and temperature-dependent effects. This
ensures that the ADC remains consistent over time and with temperature. The post-calibration phase is
enabled by bit 3 of the Mode register. EQ 9 describes the post-calibration time.

EQ 22

MODE[3]: Bit 3 of the Mode register, described in Table 2-41 on page 2-106.

The calculation for the conversion time for the ADC is summarized in EQ 23.

tconv = tsync_read + tsample + tdistrib + tpost-cal + tsync_write

EQ 23

tconv: conversion time

tsync_read: maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the
worst case is a period of SYSCLK, tSYSCLK.

tsample: Sample time

tdistrib: Distribution time

tpost-cal: Post-calibration time

tsync_write: Maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the
worst case is a period of SYSCLK, tSYSCLK.

tsample 2 STC+  tADCCLK=

Table 2-46 • STC Bits Function

Name Bits Function

STC [7:0] Sample time control

tdistrib N tADCCLK=

tpost-cal MODE 3  2 tADCCLK =
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Device Architecture
Analog Quad ACM Description
Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the
Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within
each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular
configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are
loaded with default settings until the initialization and configuration state machine changes them to user-
defined settings.

Table 2-56 • Analog Quad ACM Byte Assignment

Byte Bit Signal (Bx) Function Default Setting 

Byte 0 

(AV)

0 B0[0] Scaling factor control – prescaler Highest voltage range

1 B0[1] 

2 B0[2] 

3 B0[3] Analog MUX select Prescaler 

4 B0[4] Current monitor switch Off 

5 B0[5] Direct analog input switch Off 

6 B0[6] Selects V-pad polarity Positive 

7 B0[7] Prescaler op amp mode Power-down 

Byte 1 

(AC)

0 B1[0] Scaling factor control – prescaler Highest voltage range

1 B1[1] 

2 B1[2] 

3 B1[3] Analog MUX select Prescaler 

4 B1[4] 

5 B1[5] Direct analog input switch Off 

6 B1[6] Selects C-pad polarity Positive 

7 B1[7] Prescaler op amp mode Power-down 

Byte 2 

(AG)

0 B2[0] Internal chip temperature monitor * Off 

1 B2[1] Spare –

2 B2[2] Current drive control Lowest current 

3 B2[3] 

4 B2[4] Spare –

5 B2[5] Spare –

6 B2[6] Selects G-pad polarity Positive 

7 B2[7] Selects low/high drive Low drive 

Byte 3 

(AT)

0 B3[0] Scaling factor control – prescaler Highest voltage range 

1 B3[1] 

2 B3[2] 

3 B3[3] Analog MUX select Prescaler 

4 B3[4] 

5 B3[5] Direct analog input switch Off 

6 B3[6] – –

7 B3[7] Prescaler op amp mode Power-down 

Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.
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Device Architecture
Electrostatic Discharge (ESD) Protection
Fusion devices are tested per JEDEC Standard JESD22-A114-B.

Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all
device pads against damage from ESD as well as from excessive voltage transients. 

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the Off state, except when
transient voltage is significantly above VCCI or below GND levels. 

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-75 and
Table 2-76 on page 2-143 for more information about I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment

Clamp Diode Hot Insertion 5 V Input Tolerance 1

Input 
Buffer

Output 
BufferStandard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O

3.3 V LVTTL/LVCMOS No Yes Yes No Yes1 Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes1 Enabled/Disabled

LVCMOS 2.5 V No Yes Yes No No No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V N/A Yes N/A No N/A Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential,
LVDS/BLVDS/M-
LVDS/ LVPECL 3

N/A Yes N/A No N/A No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.

Table 2-76 • Fusion Pro I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment
Clamp 
Diode 

Hot 
Insertion

5 V Input 
Tolerance Input Buffer Output Buffer

3.3 V LVTTL/LVCMOS No Yes Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X Yes No Yes1 Enabled/Disabled

LVCMOS 2.5 V 3 No Yes No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V 3 Yes No Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes No Enabled/Disabled

LVCMOS 1.5 V No Yes No Enabled/Disabled

Voltage-Referenced Input Buffer No Yes No Enabled/Disabled

Differential, LVDS/BLVDS/M-LVDS/LVPECL4 No Yes No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User Guide, select the
LVCMOS5 macro for the LVCMOS 2.5 V / 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O
standard.

4. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.
2-143 Revision 6
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Device Architecture
Selectable Skew between Output Buffer Enable/Disable Time
The configurable skew block is used to delay the output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 2-107 • Block Diagram of Output Enable Path

Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)

Figure 2-109 • Timing Diagram (option 2: enables skew circuit)
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Device Architecture
Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks
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Device Architecture
Figure 2-116 • Input Buffer Timing Model and Delays (example)
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Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-126 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Fusion Family of Mixed Signal FPGAs
Table 3-3 • Input Resistance of Analog Pads

Pads Pad Configuration Prescaler Range Input Resistance to Ground

AV, AC Analog Input (direct input to ADC) – 2 k (typical)

– > 10 M

Analog Input (positive prescaler) +16 V to +2 V 1 M (typical)

+1 V to +0.125 V > 10 M

Analog Input (negative prescaler) –16 V to –2 V 1 M (typical)

–1 V to –0.125 V > 10 M

Digital input +16 V to +2 V 1 M (typical)

Current monitor +16 V to +2 V 1 M (typical)

–16 V to –2 V 1 M (typical)

AT Analog Input (direct input to ADC) – 1 M (typical)

Analog Input (positive prescaler) +16 V, +4 V 1 M (typical)

Digital input +16 V, +4 V 1 M (typical)

Temperature monitor +16 V, +4 V > 10 M

Table 3-4 • Overshoot and Undershoot Limits 1

VCCI 
Average VCCI–GND Overshoot or Undershoot 

Duration as a Percentage of Clock Cycle2
Maximum Overshoot/ 

Undershoot2

 2.7 V or less 10% 1.4 V

5% 1.49 V

 3.0 V 10% 1.1 V

5% 1.19 V

 3.3 V 10% 0.79 V

5% 0.88 V

 3.6 V 10% 0.45 V

5% 0.54 V

Notes:

1. Based on reliability requirements at a junction temperature of 85°C.
2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles,

the maximum overshoot/undershoot has to be reduced by 0.15 V.
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Fusion Family of Mixed Signal FPGAs
Table 3-11 • AFS090 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min Typ Max Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 5 7.5 mA

TJ = 85°C 6.5 20 mA

TJ = 100°C 14 48 mA

Standby mode5 or Sleep
mode6, VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4, 
VCC33 = 3.63 V

TJ = 25°C 9.8 12 mA

TJ = 85°C 9.8 12 mA

TJ = 100°C 10.7 15 mA

Operational standby, only
Analog Quad and –3.3 V
output ON, VCC33 = 3.63 V

TJ = 25°C 0.30 2 mA

TJ = 85°C 0.30 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, 
VCC33 = 3.63 V

TJ = 25°C 2.9 2.9 mA

TJ = 85°C 2.9 3.0 mA

TJ = 100°C 3.5 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 17 18 µA

TJ = 85°C 18 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby6, 
VCCIx = 3.63 V

TJ = 25°C 260 437 µA

TJ = 85°C 260 437 µA

TJ = 100°C 260 437 µA

IJTAG JTAG I/O quiescent current Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VJTAG = 0 V

0 0 µA

IPP Programming supply
current

Non-programming mode,
VPUMP = 3.63 V

TJ = 25°C 37 80 µA

TJ = 85°C 37 80 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Package Pin Assignments
C21 AG2 AG2

C22 NC NC

C23 NC NC

C24 NC NC

C25 NC AT5

C26 GNDAQ GNDAQ

C27 NC NC

C28 NC NC

C29 NC NC

C30 NC NC

C31 GND GND

C32 NC NC

C33 NC NC

C34 NC NC

C35 GND GND

C36 GDB0/IO39NPB1V0 GDA0/IO54NPB1V0

C37 GDA1/IO37NSB1V0 GDC0/IO52NSB1V0

C38 GCA0/IO36NDB1V0 GCA0/IO49NDB1V0

C39 GCB1/IO35PPB1V0 GCB1/IO48PPB1V0

C40 GND GND

C41 GCA2/IO32NPB1V0 IO41NPB1V0

C42 GBB2/IO31NDB1V0 IO40NDB1V0

C43 NC NC

C44 NC GBA1/IO39RSB0V0

C45 NC GBB0/IO36RSB0V0

C46 GND GND

C47 NC IO30RSB0V0

C48 IO22RSB0V0 IO27RSB0V0

C49 GND GND

C50 IO13RSB0V0 IO16RSB0V0

C51 IO09RSB0V0 IO12RSB0V0

C52 IO06RSB0V0 IO09RSB0V0

C53 GND GND

C54 NC GAB1/IO03RSB0V0

C55 NC GAA0/IO00RSB0V0

C56 NC NC

QN180

Pin Number AFS090 Function AFS250 Function

D1 NC NC

D2 NC NC

D3 NC NC

D4 NC NC

QN180

Pin Number AFS090 Function AFS250 Function
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Package Pin Assignments
FG484

Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/default.aspx.
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