

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	95
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/m1afs600-pqg208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-19 • Flash Memory Block Pin Names (continued)

Interface Name	Width	Direction	Description
STATUS[1:0]	2	Out	Status of the last operation completed:
			00: Successful completion
			01: Read-/Unprotect-Page: single error detected and corrected
			Write: operation addressed a write-protected page Erase-Page: protection violation Program: Page Buffer is unmodified Protection violation
			10: Read-/Unprotect-Page: two or more errors detected
			11: Write: attempt to write to another page before programming current page
			Erase-Page/Program: page write count has exceeded the 10-year retention threshold
UNPROTECTPAGE	1	In	When asserted, the page addressed is copied into the Page Buffer and the Page Buffer is made writable.
WD[31:0]	32	In	Write data
WEN	1	In	When asserted, stores WD in the page buffer.

All flash memory block input signals are active high, except for RESET.

RAM4K9 Description

Figure 2-48 • RAM4K9

Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of one. An Ideal Prescaler will have offset equal to $\frac{1}{2}$ of LSB voltage. Offset error is a positive or negative when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example

ADC Description

The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models. Figure 2-80 shows a block diagram of the Fusion ADC.

- · Configurable resolution: 8-bit, 10-bit, and 12-bit mode
- DNL: 0.6 LSB for 10-bit mode
- INL: 0.4 LSB for 10-bit mode
- No missing code
- Internal VAREF = 2.56 V
- Maximum Sample Rate = 600 Ksps
- Power-up calibration and dynamic calibration after every sample to compensate for temperature drift over time

Figure 2-80 • ADC Simplified Block Diagram

ADC Theory of Operation

An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and provide a discrete binary representation of the signal. Analog-to-digital converters are generally characterized in three ways:

- Input voltage range
- Resolution
- Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to 2.56 V.

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter. Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each second. The bandwidth of an ADC is constrained by its architecture and several key performance characteristics.

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Pe	erformance					
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate	ŀ				
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: ((2ⁿ) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Table 2-82 • Advanced I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	Refer to the following	Refer to the following tables	Off	None	35 pF	-
LVCMOS 2.5 V	information:	Table 2-78 on page 2-152	Off	None	35 pF	-
LVCMOS 2.5/5.0 V	Table 2-78 on page 2-152	Table 2-79 on page 2-152	Off	None	35 pF	-
LVCMOS 1.8 V	Table 2-79 on page 2-152	Table 2-80 on page 2-152	Off	None	35 pF	-
LVCMOS 1.5 V	Table 2-80 on page 2-152		Off	None	35 pF	-
PCI (3.3 V)			Off	None	10 pF	-
PCI-X (3.3 V)			Off	None	10 pF	-
LVDS, BLVDS, M-LVDS			Off	None	_	_
LVPECL			Off	None	-	-

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	IL	v	н	VOL	VОН	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to Pro I/O Banks												
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10
Applicable to	Advanced	I/O Bank	s		•					-		
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10
Applicable to	Standard	I/O Banks						<u>.</u>				
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-120 • AC Loading

Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)		
0	2.5	1.2	_	35		

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

2.5 GTL		VIL VIH			VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	124	169	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-125 • AC Loading

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-143 • 2.5 V GTL

```
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.56	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.49	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-138 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ..., x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software (where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground. It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.

Refer to the "User I/O Naming Convention" section on page 2-158 for a description of naming of global pins.

JTAG Pins

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the Fusion part must be supplied to allow JTAG signals to transition the Fusion device.

Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND or VJTAG through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 2-183 for more information.

VJTAG	Tie-Off Resistance ^{2, 3}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-183 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on JTAG chain.
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin can only be pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

ISP

Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

JTAG IEEE 1532

Programming with IEEE 1532

Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

Boundary Scan

Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-146 on page 2-230). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-230).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-226 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-146 on page 2-230. The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-184 • TRST and TCK Pull-Down Recommendations

Note: **Equivalent parallel resistance if more than one device is on JTAG chain.*

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are

The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 7:

$$\theta_{ja(total)} = \frac{T_J - T_A}{P} = \frac{100^{\circ}C - 70^{\circ}C}{3.00 \text{ W}} = 10.00^{\circ}\text{C/W}$$

Determining the heat sink's thermal performance proceeds as follows:

$$\theta_{\text{JA(TOTAL)}} = \theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}}$$

EQ 8

EQ 7

where

- $\theta_{JA} = 0.37^{\circ}C/W$
 - Thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = Thermal resistance of the heat sink in °C/W

$$\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$$

EQ 9

$$\theta_{SA} = 13.33^{\circ}C/W - 8.28^{\circ}C/W - 0.37^{\circ}C/W = 5.01^{\circ}C/W$$

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)							
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C		
1.425	0.88	0.93	0.95	1.00	1.02	1.05		
1.500	0.83	0.88	0.90	0.95	0.96	0.99		
1.575	0.80	0.85	0.87	0.91	0.93	0.96		

RAM Dynamic Contribution—P_{MEMORY}

Operating Mode

 $P_{MEMORY} = (N_{BLOCKS} * PAC11 * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * PAC12 * \beta_3 * F_{WRITE-CLOCK})$ $N_{BLOCKS} \text{ is the number of RAM blocks used in the design.}$

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 3-17 on page 3-27.

 β_3 the RAM enable rate for write operations—guidelines are provided in Table 3-17 on page 3-27.

 $\mathsf{F}_{\mathsf{WRITE}\text{-}\mathsf{CLOCK}}$ is the memory write clock frequency.

Standby Mode and Sleep Mode

P_{MEMORY} = 0 W

PLL/CCC Dynamic Contribution—PPLL

Operating Mode

P_{PLL} = PAC13 * F_{CLKOUT}

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency.¹

Standby Mode and Sleep Mode

 $P_{PLL} = 0 W$

Nonvolatile Memory Dynamic Contribution—P_{NVM}

Operating Mode

The NVM dynamic power consumption is a piecewise linear function of frequency.

 $P_{NVM} = N_{NVM-BLOCKS} * \beta_4 * PAC15 * F_{READ-NVM}$ when $F_{READ-NVM} \le 33$ MHz,

 $P_{NVM} = N_{NVM-BLOCKS} * \beta_4 * (PAC16 + PAC17 * F_{READ-NVM} \text{ when } F_{READ-NVM} > 33 \text{ MHz}$

N_{NVM-BLOCKS} is the number of NVM blocks used in the design (2 inAFS600).

 β_4 is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state). F_{READ-NVM} is the NVM read clock frequency.

Standby Mode and Sleep Mode

P_{NVM} = 0 W

Crystal Oscillator Dynamic Contribution—P_{XTL-OSC}

Operating Mode

 $P_{XTL-OSC} = PAC18$

Standby Mode

 $P_{XTL-OSC} = PAC18$

Sleep Mode

 $P_{XTL-OSC} = 0 W$

The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution (P_{AC14} * F_{CLKOUT} product) to the total PLL contribution.

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—P_{AB}

Operating Mode

P_{AB} = PAC20

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%
β ₄	NVM enable rate for read operations	0%

	QN180		QN180				
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function		
B9	XTAL2	XTAL2	B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0		
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	B46	GNDQ	GNDQ		
B11	GEB2/IO42PDB3V0	IO60NDB3V0	B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0		
B12	VCC	VCC	B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0		
B13	VCCNVM	VCCNVM	B49	VCC	VCC		
B14	VCC15A	VCC15A	B50	GBC0/IO25RSB0V0	IO31RSB0V0		
B15	NCAP	NCAP	B51	IO23RSB0V0	IO28RSB0V0		
B16	VCC33N	VCC33N	B52	IO20RSB0V0	IO25RSB0V0		
B17	GNDAQ	GNDAQ	B53	VCC	VCC		
B18	AC0	AC0	B54	IO11RSB0V0	IO14RSB0V0		
B19	AT0	AT0	B55	IO08RSB0V0	IO11RSB0V0		
B20	AT1	AT1	B56	GAC1/IO05RSB0V0	IO08RSB0V0		
B21	AV1	AV1	B57	VCCIB0	VCCIB0		
B22	AC2	AC2	B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0		
B23	ATRTN1	ATRTN1	B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0		
B24	AG3	AG3	B60	VCCPLA	VCCPLA		
B25	AV3	AV3	C1	NC	NC		
B26	AG4	AG4	C2	NC	VCCIB3		
B27	ATRTN2	ATRTN2	C3	GND	GND		
B28	NC	AC5	C4	NC	GFC2/IO69PPB3V0		
B29	VCC33A	VCC33A	C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0		
B30	VAREF	VAREF	C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0		
B31	PUB	PUB	C7	VCCIB3	NC		
B32	PTEM	PTEM	C8	GND	GND		
B33	GNDNVM	GNDNVM	C9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0		
B34	VCC	VCC	C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0		
B35	ТСК	ТСК	C11	NC	GEA2/IO58PSB3V0		
B36	TMS	TMS	C12	NC	NC		
B37	TRST	TRST	C13	GND	GND		
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0	C14	NC	NC		
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0	C15	NC	NC		
B40	VCCIB1	VCCIB1	C16	GNDA	GNDA		
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0	C17	NC	NC		
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0	C18	NC	NC		
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0	C19	NC	NC		
B44	VCC	VCC	C20	NC	NC		

Package Pin Assignments

PQ208			PQ208				
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function		
1	VCCPLA	VCCPLA	38	IO60NDB3V0	GEB0/IO62NDB4V0		
2	VCOMPLA	VCOMPLA	39	GND	GEA1/IO61PDB4V0		
3	GNDQ	GAA2/IO85PDB4V0	40	VCCIB3	GEA0/IO61NDB4V0		
4	VCCIB3	IO85NDB4V0	41	GEB2/IO59PDB3V0	GEC2/IO60PDB4V0		
5	GAA2/IO76PDB3V0	GAB2/IO84PDB4V0	42	IO59NDB3V0	IO60NDB4V0		
6	IO76NDB3V0	IO84NDB4V0	43	GEA2/IO58PDB3V0	VCCIB4		
7	GAB2/IO75PDB3V0	GAC2/IO83PDB4V0	44	IO58NDB3V0	GNDQ		
8	IO75NDB3V0	IO83NDB4V0	45	VCC	VCC		
9	NC	IO77PDB4V0	45	VCC	VCC		
10	NC	IO77NDB4V0	46	VCCNVM	VCCNVM		
11	VCC	IO76PDB4V0	47	GNDNVM	GNDNVM		
12	GND	IO76NDB4V0	48	GND	GND		
13	VCCIB3	VCC	49	VCC15A	VCC15A		
14	IO72PDB3V0	GND	50	PCAP	PCAP		
15	IO72NDB3V0	VCCIB4	51	NCAP	NCAP		
16	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	52	VCC33PMP	VCC33PMP		
17	IO71NDB3V0	IO75NDB4V0	53	VCC33N	VCC33N		
18	GFB2/IO70PDB3V0	GFC2/IO73PDB4V0	54	GNDA	GNDA		
19	IO70NDB3V0	IO73NDB4V0	55	GNDAQ	GNDAQ		
20	GFC2/IO69PDB3V0	VCCOSC	56	NC	AV0		
21	IO69NDB3V0	XTAL1	57	NC	AC0		
22	VCC	XTAL2	58	NC	AG0		
23	GND	GNDOSC	59	NC	AT0		
24	VCCIB3	GFC1/IO72PDB4V0	60	NC	ATRTN0		
25	GFC1/IO68PDB3V0	GFC0/IO72NDB4V0	61	NC	AT1		
26	GFC0/IO68NDB3V0	GFB1/IO71PDB4V0	62	NC	AG1		
27	GFB1/IO67PDB3V0	GFB0/IO71NDB4V0	63	NC	AC1		
28	GFB0/IO67NDB3V0	GFA1/IO70PDB4V0	64	NC	AV1		
29	VCCOSC	GFA0/IO70NDB4V0	65	AV0	AV2		
30	XTAL1	IO69PDB4V0	66	AC0	AC2		
31	XTAL2	IO69NDB4V0	67	AG0	AG2		
32	GNDOSC	VCC	68	AT0	AT2		
33	GEB1/IO62PDB3V0	GND	69	ATRTN0	ATRTN1		
34	GEB0/IO62NDB3V0	VCCIB4	70	AT1	AT3		
35	GEA1/IO61PDB3V0	GEC1/IO63PDB4V0	71	AG1	AG3		
36	GEA0/IO61NDB3V0	GEC0/IO63NDB4V0	72	AC1	AC3		
37	GEC2/IO60PDB3V0	GEB1/IO62PDB4V0	73	AV1	AV3		

Package Pin Assignments

	FG484			FG484				
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function			
V3	VCCIB4	VCCIB4	W16	GNDA	GNDA			
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	W17	AV9	AV9			
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	W18	VCCIB2	VCCIB2			
V6	GND	GND	W19	NC	IO68PPB2V0			
V7	VCC33PMP	VCC33PMP	W20	ТСК	ТСК			
V8	NC	NC	W21	GND	GND			
V9	VCC33A	VCC33A	W22	NC	IO76PPB2V0			
V10	AG4	AG4	Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0			
V11	AT4	AT4	Y2	IO60NDB4V0	IO87NDB4V0			
V12	ATRTN2	ATRTN2	Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0			
V13	AT5	AT5	Y4	IO58NDB4V0	IO85NDB4V0			
V14	VCC33A	VCC33A	Y5	NCAP	NCAP			
V15	NC	NC	Y6	AC0	AC0			
V16	VCC33A	VCC33A	Y7	VCC33A	VCC33A			
V17	GND	GND	Y8	AC1	AC1			
V18	TMS	TMS	Y9	AC2	AC2			
V19	VJTAG	VJTAG	Y10	VCC33A	VCC33A			
V20	VCCIB2	VCCIB2	Y11	AC3	AC3			
V21	TRST	TRST	Y12	AC6	AC6			
V22	TDO	TDO	Y13	VCC33A	VCC33A			
W1	NC	IO93PDB4V0	Y14	AC7	AC7			
W2	GND	GND	Y15	AC8	AC8			
W3	NC	IO93NDB4V0	Y16	VCC33A	VCC33A			
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	Y17	AC9	AC9			
W5	IO59NDB4V0	IO86NDB4V0	Y18	ADCGNDREF	ADCGNDREF			
W6	AV0	AV0	Y19	PTBASE	PTBASE			
W7	GNDA	GNDA	Y20	GNDNVM	GNDNVM			
W8	AV1	AV1	Y21	VCCNVM	VCCNVM			
W9	AV2	AV2	Y22	VPUMP	VPUMP			
W10	GNDA	GNDA		-				
W11	AV3	AV3						
W12	AV6	AV6						
W13	GNDA	GNDA						
W14	AV7	AV7						
W15	AV8	AV8						

Fusion Family of Mixed Signal FPGAs

FG676			FG676		FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function		
G13	IO22NDB1V0	H23	IO50NDB2V0	K7	IO114PDB4V0		
G14	IO22PDB1V0	H24	IO51PDB2V0	K8	IO117NDB4V0		
G15	GND	H25	NC	K9	GND		
G16	IO32PPB1V1	H26	GND	K10	VCC		
G17	IO36NPB1V2	J1	NC	K11	VCCIB0		
G18	VCCIB1	J2	VCCIB4	K12	GND		
G19	GND	J3	IO115PDB4V0	K13	VCCIB0		
G20	IO47NPB2V0	J4	GND	K14	VCCIB1		
G21	IO49PDB2V0	J5	IO116NDB4V0	K15	GND		
G22	VCCIB2	J6	IO116PDB4V0	K16	VCCIB1		
G23	IO46NDB2V0	J7	VCCIB4	K17	GND		
G24	GBC2/IO46PDB2V0	J8	IO117PDB4V0	K18	GND		
G25	IO48NPB2V0	J9	VCCIB4	K19	IO53NDB2V0		
G26	NC	J10	GND	K20	IO57PDB2V0		
H1	GND	J11	IO06NDB0V1	K21	GCA2/IO59PDB2V0		
H2	NC	J12	IO06PDB0V1	K22	VCCIB2		
H3	IO118NDB4V0	J13	IO16NDB0V2	K23	IO54NDB2V0		
H4	IO118PDB4V0	J14	IO16PDB0V2	K24	IO54PDB2V0		
H5	IO119NPB4V0	J15	IO28NDB1V1	K25	NC		
H6	IO124NDB4V0	J16	IO28PDB1V1	K26	NC		
H7	GND	J17	GND	L1	GND		
H8	VCOMPLA	J18	IO38PPB1V2	L2	NC		
H9	VCCPLA	J19	IO53PDB2V0	L3	IO112PPB4V0		
H10	VCCIB0	J20	VCCIB2	L4	IO113NDB4V0		
H11	IO12NDB0V1	J21	IO52PDB2V0	L5	GFB2/IO109PDB4V0		
H12	IO12PDB0V1	J22	IO52NDB2V0	L6	GFA2/IO110PDB4V0		
H13	VCCIB0	J23	GND	L7	IO112NPB4V0		
H14	VCCIB1	J24	IO51NDB2V0	L8	IO104PDB4V0		
H15	IO30NDB1V1	J25	VCCIB2	L9	IO111PDB4V0		
H16	IO30PDB1V1	J26	NC	L10	VCCIB4		
H17	VCCIB1	K1	NC	L11	GND		
H18	IO36PPB1V2	K2	NC	L12	VCC		
H19	IO38NPB1V2	K3	IO115NDB4V0	L13	GND		
H20	GND	K4	IO113PDB4V0	L14	VCC		
H21	IO49NDB2V0	K5	VCCIB4	L15	GND		
H22	IO50PDB2V0	K6	IO114NDB4V0	L16	VCC		
				<u>.</u>			

Datasheet Information

Revision	Changes	Page		
Advance v1.0 (continued)	This change table states that in the "208-Pin PQFP" table listed under the Advance v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to V_{CC33A} .	3-8		
Advance v0.9 (October 2007)	In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109 FG676: 252/126			
	In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pin: B25	3-2		
	In the "180-Pin QFN" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: B29 AFS250: B29	3-4		
	In the "208-Pin PQFP" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: 102 AFS250: 102	3-8		
	In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: T14 AFS250: T14 AFS600: T14 AFS1500: T14	3-12		
Advance v0.9 (continued)	In the "484-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS600: AB18 AFS1500: AB18	3-20		
	In the "676-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS1500: AD20	3-28		
Advance v0.8 (June 2007)	Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.	2-20, 2-21		
	Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.	2-25		
	The "Crystal Oscillator" section was updated to include information about controlling and enabling/disabling the crystal oscillator.	2-22		
	Table 2-11 \cdot Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	2-24		
	The "1.5 V Voltage Regulator" section was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.	2-41		
	The "1.5 V Voltage Regulator" section was updated to include information on powering down with the VR.	2-41		