E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl04z16vfk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, *Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components*.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	_
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	—
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	—
VIH	Input high voltage				_
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$		$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	IO pin negative DC injection current—single pin			_	1
	 V_{IN} < V_{SS}-0.3V (negative current injection) 	-3	—	mA	
	 V_{IN} < V_{SS}-0.3V (positive current injection) 		+3		
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of				—
	positive injection currents of 16 contiguous pins				
	Negative current injection	-25	_	mA	
	Positive current injection		+25		
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	—

All IO pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{IO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{IO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{IN})/II_{CIO}I. Select the larger of these two calculated resistances.

2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

Symbol	Description	Min.	Тур.	Max.	Unit	
			93	115	μs	
	• VLLS3 \rightarrow RUN					
		—	42	53	μs	
	• LLS \rightarrow RUN					
		—	4	4.6	μs	
	 VLPS → RUN 					
		—	4	4.4	μs	
	 STOP → RUN 					
		—	4	4.4	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V		4.0	4.3	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash • at 3.0 V		4.9	5.3	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code executing from flash				٣٨	3, 4
	• at 3.0 V	_	5.7	5.8	IIIA	
	• at 25 °C	_	6.0	6.2		
	• at 125 °C					
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V		2.7	2.9	mA	3

 Table 9. Power consumption operating behaviors

Table continues on the next page ...

9

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
	• at 25 °C	—	1.72	2.01	μA	
	• at 50 °C	_	2.52	3.18		
	• at 70 °C	—	4.32	5.94		
	• at 85 °C	_	7.18	10.00		
	• at 105 °C	_	18.67	25.65		
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current • at 3.0 V				uА	
	• at 25 °C	_	1.16	1.36	F	
	• at 50 °C	_	1.78	2.27		
	• at 70 °C	_	3.23	4.38		
	• at 95 °C	_	5.57	7.53		
	• at 105 °C	_	14.80	19.74		
I _{DD_VLLS1}	Very-low-leakage stop mode 1 current • at 3.0 V					
	• at 25°C	_	0.64	0.81	μA	
	• at 50°C	—	1.14	1.50		
	• at 70°C	—	2.35	3.20		
	• at 85°C	_	4.37	5.80		
	• at 105°C	_	12.40	16.13		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) • at 3.0 V					
	• at 25 °C		0.38	0.54	μΑ	
	• at 50 °C	_	0.88	1.23		
	• at 70 °C	—	2.10	2.95		
		_	4.14	5.59		
	• at 105 °C	_	12.00	15.73		
I _{DD_VLLS0}	Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1)					6
	• at 25 °C	_	0.30	0.45	μA	
	• at 50 °C	_	0.79	1.12		
			2.01	2.82		
	• at 70 °C	_	4.05	5.45		
		_	11.96	15.63		
	• at 105 °C					

Table 9. Power consumption operating benaviors (continue	Table 9.	9. Power consul	mption opera	ating behaviors	s (continued
--	----------	-----------------	--------------	-----------------	--------------

1. Data based on characterization results.

- 2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode.
- 6. No brownout

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)			Unit			
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by	440	490	540	560	570	580	
	entering all modes with the crystal	440	490	540	560	570	580	nA
	• VLLS1	490	490	540	560	570	680	
	VLLS3	510	560	560	560	610	680	
	LLSVLPSSTOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
Iuart	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • MCGIRCLK (4 MHz internal reference clock) • OSCERCLK (4 MHz external	66 214	66 237	66 246	66 254	66 260	66 268	μA

- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

2.2.7 Capacitance attributes

Table 11. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 12. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode			•
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹	•	•	
f _{SYS}	System and core clock	—	4	MHz
f _{BUS}	Bus clock	—	1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	—	16	MHz
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	—	16	MHz
f _{TPM}	TPM asynchronous clock	_	8	MHz
f _{UART0}	UART0 asynchronous clock	—	8	MHz

1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

Board type	Symbol	Description	48 LQFP	32 LQFP	32 QFN	24 QFN	Unit	Notes
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	70	74	81	92	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	52	52	28	36	°C/W	
	R _{θJB}	Thermal resistance, junction to board	36	35	13	18	°C/W	2
—	$R_{ extsf{ heta}JC}$	Thermal resistance, junction to case	27	26	2.3	3.7	°C/W	3
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	8	8	8	10	°C/W	4

Table 15.	Thermal	attributes	(continued)
-----------	---------	------------	-------------

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3.1 Core modules

3.1.1 SWD electricals

Table 16.	SWD fu	ll voltage	range	electricals
-----------	--------	------------	-------	-------------

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	—	ns
J3	SWD_CLK clock pulse width			

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	20	—	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 16.	SWD full	voltage range	electricals	(continued)
	• • • • • • • • • •			(•••••)

Figure 4. Serial wire clock input timing

Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal V _{DD} and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimi frequency at fixed using C3[SCTRIM	_	± 0.3	± 0.6	%f _{dco}	1	
∆f _{dco_t}	Total deviation of frequency over vo	trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
∆f _{dco_t}	Total deviation of frequency over fix range of 0–70 °C	trimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — nominal V _{DD} and 25 °C	_	4	—	MHz	
∆f _{intf_ft}	Frequency deviati (fast clock) over te factory trimmed at	_	+1/-2	± 3	%f _{intf_ft}	2	
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3		5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external c	ock minimum frequency —	(16/5) x f _{ints_t}		—	kHz	
		FI	LL				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output	Low range (DRS = 00)	20	20.97	25	MHz	3, 4
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS = 01)	40	41.94	48	MHz	
		$1280 \times f_{fll_ref}$					
f _{dco_t_DMX3}	DCO output	Low range (DRS = 00)	_	23.99	—	MHz	5, 6
2	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)		47.97	_	MHz	

Table 17. MCG specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2

Table 23. NVM reliability specifications (continued)

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

3.6.1.1 12-bit ADC operating conditions Table 24. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	3
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	3
V _{ADIN}	Input voltage		V _{REFL}	_	V _{REFH}	V	
C _{ADIN}	Input capacitance	8-bit / 10-bit / 12-bit modes	_	4	5	pF	
R _{ADIN}	Input series resistance		_	2	5	kΩ	

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0	_	18.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 12-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	6

 Table 24.
 12-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to < 1 ns.
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 6. ADC input impedance equivalency diagram

3.6.1.2 12-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2 2.4	2.4 4.0	3.9 6.1	MHz MHz	t _{ADACK} = 1/ f _{ADACK}
	clock source	• ADLPC = 1, ADHSC = 1	3.0	5.2	7.3	MHz	
f _{ADACK}		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz	
		• ADLPC = 0, ADHSC = 1					
	Sample Time	See Reference Manual chapte	er for sample	e times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non- linearity	 12-bit modes 	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.5	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA} ³
EQ	Quantization error	12-bit modes	_	—	±0.5	LSB ⁴	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 25. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Figure 9. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	

 Table 27. SPI master mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	Data setup time (inputs) 16 — ns		ns	
7	t _{HI}	Data hold time (inputs)	d time (inputs) 0 — n		ns	—
8	t _v	Data valid (after SPSCK edge)	—	10 ns		
9	t _{HO}	Data hold time (outputs)	0	— ns		
10	t _{RI}	Rise time input	—	— t _{periph} – 25 ns		—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	e time output – 25 ns		ns	_
	t _{FO}	Fall time output				

Table 27. SPI master mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Table 28. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period 2 x t _{periph} 2048 x t _{periph}		2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	Enable lag time 1/2 —		t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time $t_{periph} - 30$		1024 x t _{periph}	ns	—
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	_	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	— t _{periph} – 25 ns		ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	— 36 ns		ns	_
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 11. SPI master mode timing (CPHA = 1)

Table 29. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1		t _{periph}	_

Num.	Symbol	Description	Min.	Max.	Unit	Note
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	
6	t _{SU}	Data setup time (inputs)	2	—	ns	
7	t _{HI}	Data hold time (inputs)	ie (inputs) 7 —		ns	
8	ta	Slave access time	—	t _{periph} ns		3
9	t _{dis}	Slave MISO disable time	—	t _{periph} ns		4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	— t _{periph} – 25 ns		
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	— 25 ns		ns	—
	t _{FO}	Fall time output	1			

Table 29. SPI slave mode timing on slew rate disabled pads (continued)

For SPI0, f_{periph} is the bus clock (f_{BUS}).
 t_{periph} = 1/f_{periph}
 Time to data active from high-impedance state

4. Hold time to high-impedance state

Table 30. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description Min		Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	— ns		—
7	t _{HI}	Data hold time (inputs)	7	— ns		—
8	ta	Slave access time	—	t _{periph} ns		3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	— t _{periph} – 25 ns		_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output - 36		ns	—	
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2. $t_{periph} = 1/f_{periph}$ 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Peripheral operating requirements and behaviors

NOTE: Not defined

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
24-pin QFN	98ASA00474D
32-pin QFN	98ASA00473D
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A

5 Pinout

5.1 KL04 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
1	1	1	1	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED	DISABLED	PTB6/ IRQ_2/ LPTMR0_ALT3	TPM0_CH3	TPM_CLKIN1
2	2	2	2	PTB7/ IRQ_3	DISABLED	DISABLED	PTB7/ IRQ_3	TPM0_CH2	
3	-	-	_	PTA14	DISABLED	DISABLED	PTA14		TPM_CLKIN0
4	_	_	_	PTA15	DISABLED	DISABLED	PTA15		CLKOUT

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

Symbol Description		Value	Unit
T _A	Ambient temperature	25	۵°
V _{DD}	3.3 V supply voltage	3.3	V

Table 33. T	ypical v	alue condi	tions
-------------	----------	------------	-------

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	9/2012	Initial public release.
3	11/2012	Completed all the TBDs.
4	3/2014	 Updated the front page and restructured the chapters Added a note to the I_{LAT} in the ESD handling ratings Updated Voltage and current operating ratings Added V_{ODPU} in the Voltage and current operating requirements Updated Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Power consumption operating behaviors Updated Capacitance attributes Updated footnote in the Device clock specifications Updated Temp sensor slope and voltage and added a note to them in the 12-bit ADC electrical characteristics Removed T_A in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing