

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl04z16vfm4

Table of Contents

1	Rati	ngs		4
	1.1	Therm	al handling ratings	4
	1.2	Moistu	re handling ratings	4
	1.3	ESD h	andling ratings	4
	1.4	Voltag	e and current operating ratings	4
2	Ger	eral		5
	2.1	AC ele	ectrical characteristics	5
	2.2	Nonsw	vitching electrical specifications	5
		2.2.1	Voltage and current operating requirements	5
		2.2.2	LVD and POR operating requirements	6
		2.2.3	Voltage and current operating behaviors	7
		2.2.4	Power mode transition operating behaviors	8
		2.2.5	Power consumption operating behaviors	9
		2.2.6	EMC performance	15
		2.2.7	Capacitance attributes	16
	2.3	Switch	ing specifications	16
		2.3.1	Device clock specifications	16
		2.3.2	General switching specifications	17
	2.4	Therm	al specifications	17
		2.4.1	Thermal operating requirements	17
		2.4.2	Thermal attributes	17
3	Peri	pheral	operating requirements and behaviors	18
	3.1	Core n	nodules	18
		3.1.1	SWD electricals	18
	3.2	System	n modules	19
	3.3	Clock	modules	20
		3.3.1	MCG specifications	20
		3.3.2	Oscillator electrical specifications	21
	3.4	Memo	ries and memory interfaces	23
		3.4.1	Flash electrical specifications	23
	3.5	Securi	ty and integrity modules	25
	3.6	Analoc	1	25

		3.6.1	ADC electrical specifications	25
		3.6.2	CMP and 6-bit DAC electrical specifications	28
	3.7	Timers		30
	3.8	Commi	unication interfaces	30
		3.8.1	SPI switching specifications	30
		3.8.2	Inter-Integrated Circuit Interface (I2C) timing	34
		3.8.3	UART	36
4	Dim	ensions	3	36
	4.1	Obtaini	ing package dimensions	36
5	Pinc	out		36
	5.1	KL04 s	ignal multiplexing and pin assignments	36
	5.2	KL04 p	inouts	38
6	Ord	ering pa	arts	42
	6.1	Determ	nining valid orderable parts	42
7	Part	identifi	cation	42
	7.1	Descrip	otion	42
	7.2	Format		43
	7.3	Fields		43
	7.4	Examp	le	43
8	Terr	ninolog	y and guidelines	44
	8.1	Definiti	on: Operating requirement	44
	8.2	Definiti	on: Operating behavior	44
	8.3	Definiti	on: Attribute	44
	8.4	Definiti	on: Rating	45
	8.5	Result	of exceeding a rating	45
	8.6	Relatio	nship between ratings and operating	
		require	ments	45
	8.7	Guideli	nes for ratings and operating requirements	46
	8.8	Definiti	on: Typical value	46
	8.9	Typical	value conditions	47
9	Rev	ision his	story	48

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

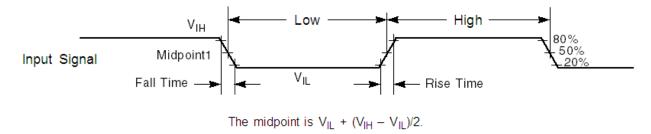


Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

Table 8. Power mode transition operating behaviors (continued	Table 8.	Power mode transition	operating	behaviors	(continued
---	----------	-----------------------	-----------	-----------	------------

Symbol	Description	Min.	Тур.	Max.	Unit	
		_	93	115	μs	
	VLLS3 → RUN					
		_	42	53	μs	
	• LLS → RUN					
		_	4	4.6	μs	
	VLPS → RUN					
		_	4	4.4	μs	
	STOP → RUN					
		_	4	4.4	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V	_	4.0	4.3	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash • at 3.0 V	_	4.9	5.3	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code executing from flash				mA	3, 4
	• at 3.0 V	_	5.7	5.8	IIIA	
	• at 25 °C	_	6.0	6.2		
	• at 125 °C					
I _{DD_WAIT}	Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	2.7	2.9	mA	3

Table continues on the next page...

General

- 2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode.
- 6. No brownout

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)			Unit			
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μΑ
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μА
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by	440	490	540	560	570	580	
	entering all modes with the crystal	440	490	540	560	570	580	nA
	enabled. • VLLS1	490	490	540	560	570	680	
	• VLLS3	510	560	560	560	610	680	
	• LLS • VLPS • STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μА
Івтс	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power	66 214	66 237	66 246	66 254	66 260	66 268	μΑ
	consumption. • MCGIRCLK (4 MHz internal reference clock) • OSCERCLK (4 MHz external crystal)							

Table continues on the next page...

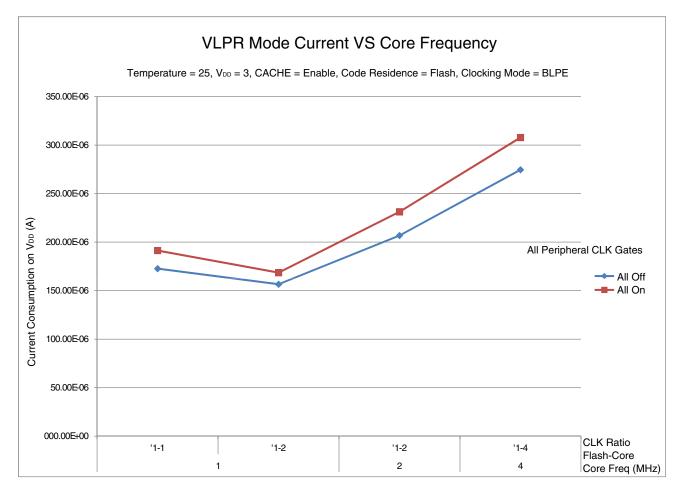


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

Table 15. Thermal attributes (continued)

Board type	Symbol	Description	48 LQFP	32 LQFP	32 QFN	24 QFN	Unit	Notes
Single-layer (1S)	R _{θЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	70	74	81	92	°C/W	
Four-layer (2s2p)	R _{θЈМА}	Thermal resistance, junction to ambient (200 ft./min. air speed)	52	52	28	36	°C/W	
_	R _{0JB}	Thermal resistance, junction to board	36	35	13	18	°C/W	2
_	R _{0JC}	Thermal resistance, junction to case	27	26	2.3	3.7	°C/W	3
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	8	8	8	10	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 16. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			

Table continues on the next page...

Table 16.	SWD full voltage range	electricals	(continued)
-----------	------------------------	-------------	-------------

Symbol	Description	Min.	Max.	Unit
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

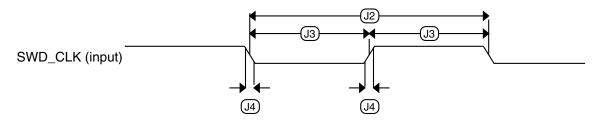


Figure 4. Serial wire clock input timing

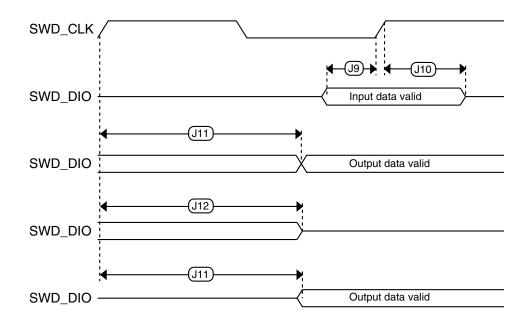


Figure 5. Serial wire data timing

3.3.2.2 Oscillator frequency specifications Table 19. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_		_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_		_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 26.	Comparator and	I 6-bit DAC electrical:	specifications	(continued)
-----------	----------------	-------------------------	----------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit
	CR0[HYSTCTR] = 10	_	20	_	mV
	CR0[HYSTCTR] = 11	_	30	_	mV
V_{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

- 1. Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} 0.7 V.
- 2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
- 3. $1 LSB = V_{reference}/64$

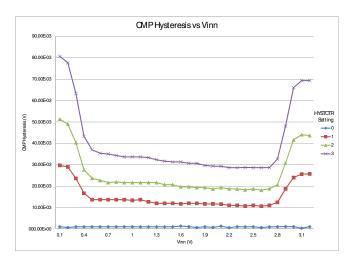
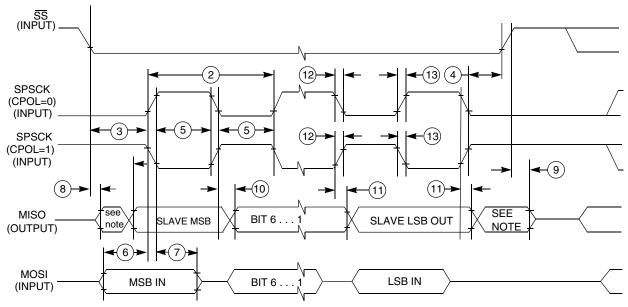


Figure 8. Typical hysteresis vs. Vin level ($V_{DD} = 3.3 \text{ V}$, PMODE = 0)

Table 29.	SPI slave mode timino	on slew rate disabled	pads (continued)
-----------	-----------------------	-----------------------	------------------

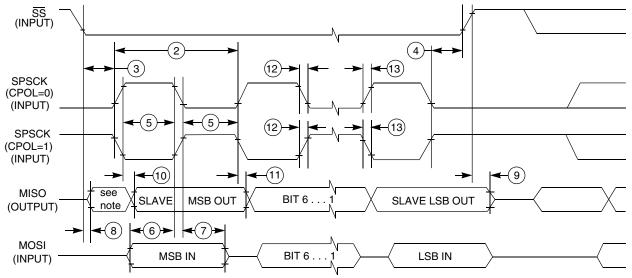
Num.	Symbol	Description	Min.	Max.	Unit	Note
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	22	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- For SPI0, f_{periph} is the bus clock (f_{BUS}).
 t_{periph} = 1/f_{periph}
 Time to data active from high-impedance state
- 4. Hold time to high-impedance state


Table 30. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	_
8	ta	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

- 1. For SPI0, f_{periph} is the bus clock (f_{BUS}).
- 2. t_{periph} = 1/f_{periph}
 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state



Peripheral operating requirements and behaviors

NOTE: Not defined

Figure 12. SPI slave mode timing (CPHA = 0)

NOTE: Not defined

Figure 13. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 31. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Unit	
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

- The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V
- 2. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 7. $C_b = \text{total capacitance of the one bus line in pF}$.

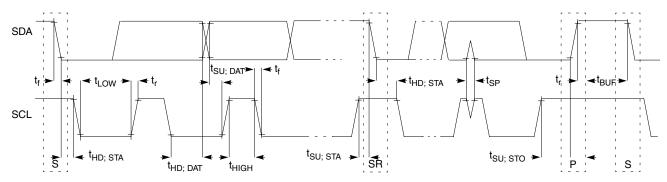


Figure 14. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 **UART**

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
24-pin QFN	98ASA00474D
32-pin QFN	98ASA00473D
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A

5 Pinout

5.1 KL04 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3
1	1	1	1	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED	DISABLED	PTB6/ IRQ_2/ LPTMR0_ALT3	TPM0_CH3	TPM_CLKIN1
2	2	2	2	PTB7/ IRQ_3	DISABLED	DISABLED	PTB7/ IRQ_3	TPM0_CH2	
3	-	_	_	PTA14	DISABLED	DISABLED	PTA14		TPM_CLKIN0
4	-	-	_	PTA15	DISABLED	DISABLED	PTA15		CLKOUT

Pinout

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3
33	21	21	-	PTA10/ IRQ_12	DISABLED	DISABLED	PTA10/ IRQ_12		
34	22	22	-	PTA11/ IRQ_13	DISABLED	DISABLED	PTA11/ IRQ_13		
35	23	23	17	PTB3/ IRQ_14	DISABLED	DISABLED	PTB3/ IRQ_14	I2C0_SCL	UARTO_TX
36	24	24	18	PTB4/ IRQ_15/ LLWU_P6	DISABLED	DISABLED	PTB4/ IRQ_15/ LLWU_P6	I2CO_SDA	UARTO_RX
37	25	25	19	PTB5/ IRQ_16	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_16	TPM1_CH1	NMI_b
38	26	26	20	PTA12/ IRQ_17/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_17/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0
39	27	27	_	PTA13	DISABLED	DISABLED	PTA13		
40	28	28	_	PTB12	DISABLED	DISABLED	PTB12		
41	_	_	_	PTA19	DISABLED	DISABLED	PTA19		SPI0_SS_b
42	_	_	_	PTB15	DISABLED	DISABLED	PTB15	SPI0_MOSI	SPI0_MISO
43	_	_	-	PTB16	DISABLED	DISABLED	PTB16	SPI0_MISO	SPI0_MOSI
44	_	_	-	PTB17	DISABLED	DISABLED	PTB17	TPM_CLKIN1	SPI0_SCK
45	29	29	21	PTB13	ADC0_SE13	ADC0_SE13	PTB13	TPM1_CH1	RTC_CLKOUT
46	30	30	22	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE12/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK
47	31	31	23	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b	DISABLED	PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b
48	32	32	24	PTA2	SWD_DIO	DISABLED	PTA2	CMP0_OUT	SWD_DIO

5.2 KL04 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL04 signal multiplexing and pin assignments.

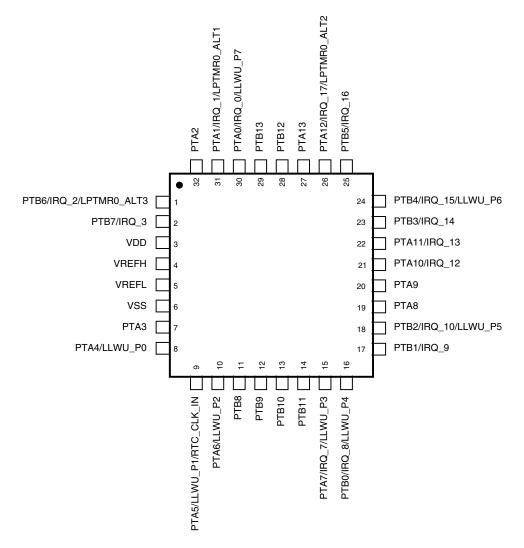


Figure 16. KL04 32-pin LQFP pinout diagram

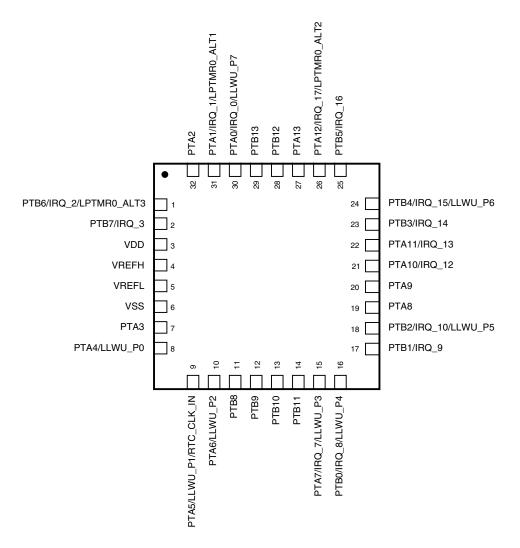


Figure 17. KL04 32-pin QFN pinout diagram

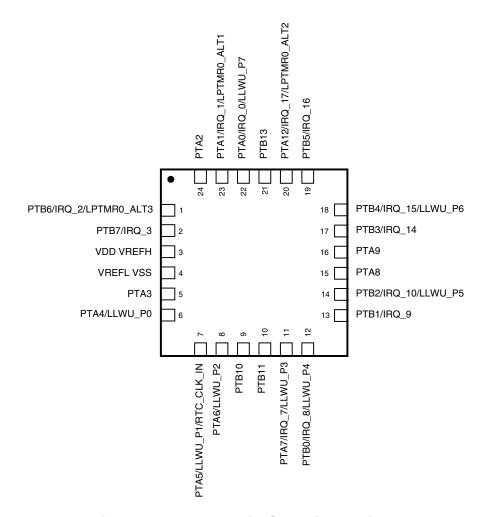


Figure 18. KL04 24-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL04 and MKL04

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field **Description Values** Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family KL04 Z = Cortex-M0+ Key attribute **FFF** Program flash memory size • 8 = 8 KB 16 = 16 KB • 32 = 32 KB Silicon revision • (Blank) = Main • A = Revision after main • V = -40 to 105 Temperature range (°C) PP Package identifier • FK = 24 QFN (4 mm x 4 mm) • LC = 32 LQFP (7 mm x 7 mm) • FM = 32 QFN (5 mm x 5 mm) • LF = 48 LQFP (7 mm x 7 mm) CC Maximum CPU frequency (MHz) • 4 = 48 MHz Packaging type • R = Tape and reel

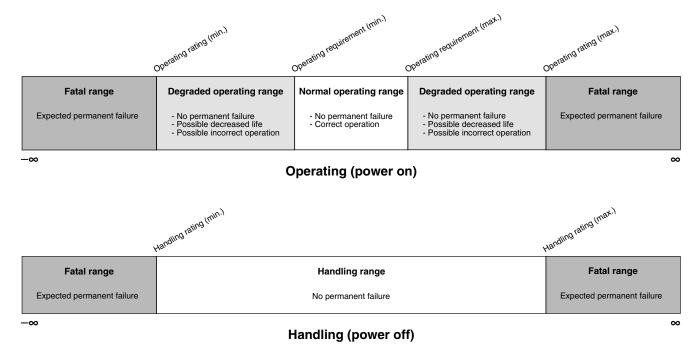

(Blank) = Trays

Table 32. Part number fields descriptions

7.4 Example

This is an example part number:

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A typical value is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL04P48M48SF1 Revision 4 03/2014

