

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed48MHzConnectivityPC, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-AMM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP (7x7)	Core ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed48MHz	
Core Size32-Bit Single-CoreSpeed48MHzConnectivityIPC, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Core Size32-Bit Single-CoreSpeed48MHz	
Speed48MHzConnectivityI²C, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Speed 48MHz	
ConnectivityI²C, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	·	
PeripheralsBrown-out Detect/Reset, DMA, LVD, POR, PWM, WDTNumber of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Connectivity I ² C, SPI, UART/USART	
Number of I/O28Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	-	
Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Peripherals Brown-out Detect/Reset, DMA, LVD, POR, PWM	I, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Number of I/O 28	
EEPROM Size-RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Program Memory Size 32KB (32K x 8)	
RAM Size4K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Program Memory Type FLASH	
Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	EEPROM Size -	
Data ConvertersA/D 14x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	RAM Size 4K x 8	
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V	
Operating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-LQFP	Data ConvertersA/D 14x12b	
Mounting Type Surface Mount Package / Case 32-LQFP	Oscillator Type Internal	
Package / Case 32-LQFP	Operating Temperature -40°C ~ 105°C (TA)	
	Mounting Type Surface Mount	
Supplier Device Package32-LQFP (7x7)	Package / Case 32-LQFP	
	Supplier Device Package32-LQFP (7x7)	
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl04z32vlc4	Purchase URL https://www.e-xfl.com/product-detail/nxp-semi	conductors/mkl04z32vlc4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Part Number	Mer	Memory		
	Flash (KB)	SRAM (KB)		
MKL04Z8VFK4	8	1	22	
MKL04Z16VFK4	16	2	22	
MKL04Z32VFK4	32	4	22	
MKL04Z8VLC4	8	1	28	
MKL04Z16VLC4	16	2	28	
MKL04Z32VLC4	32	4	28	
MKL04Z8VFM4	8	1	28	
MKL04Z16VFM4	16	2	28	
MKL04Z32VFM4	32	4	28	
MKL04Z16VLF4	16	2	41	
MKL04Z32VLF4	32	4	41	

Related Resources

Туре	Description
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.
Package drawing	Package dimensions are provided in package drawings.

Table of Contents

1	Rati	ngs		4
	1.1	Therm	al handling ratings	4
	1.2	Moistu	re handling ratings	4
	1.3	ESD h	andling ratings	4
	1.4	Voltag	e and current operating ratings	4
2	Ger	neral		5
	2.1	AC ele	ectrical characteristics	5
	2.2	Nonsw	vitching electrical specifications	5
		2.2.1	Voltage and current operating requirements	5
		2.2.2	LVD and POR operating requirements	6
		2.2.3	Voltage and current operating behaviors	7
		2.2.4	Power mode transition operating behaviors	8
		2.2.5	Power consumption operating behaviors	9
		2.2.6	EMC performance	
		2.2.7	Capacitance attributes	16
	2.3	Switch	ing specifications	16
		2.3.1	Device clock specifications	16
		2.3.2	General switching specifications	17
	2.4	Therm	al specifications	
		2.4.1	Thermal operating requirements	
		2.4.2	Thermal attributes	17
3	Peri	pheral	operating requirements and behaviors	18
	3.1	Core n	nodules	18
		3.1.1	SWD electricals	18
	3.2	System	n modules	19
	3.3	Clock	modules	20
		3.3.1	MCG specifications	
		3.3.2	Oscillator electrical specifications	21
	3.4	Memo	ries and memory interfaces	23
		3.4.1	Flash electrical specifications	23
	3.5	Securi	ty and integrity modules	25
	3.6	Analog]	25

		3.6.1	ADC electrical specifications	25
		3.6.2	CMP and 6-bit DAC electrical specifications	28
	3.7	Timers	5	30
	3.8	Comm	unication interfaces	30
		3.8.1	SPI switching specifications	30
		3.8.2	Inter-Integrated Circuit Interface (I2C) timing	34
		3.8.3	UART	36
4	Dim	ensions	5	36
	4.1	Obtain	ing package dimensions	36
5	Pino	out		36
	5.1	KL04 s	signal multiplexing and pin assignments	36
	5.2	KL04 p	pinouts	38
6	Ord	ering pa	arts	42
	6.1	Detern	nining valid orderable parts	42
7	Par	t identifi	cation	42
	7.1	Descri	ption	42
	7.2	Forma	t	43
	7.3	Fields.		43
	7.4	Examp	ble	43
8	Terr	minolog	y and guidelines	44
	8.1	Definit	ion: Operating requirement	44
	8.2	Definit	ion: Operating behavior	44
	8.3	Definit	ion: Attribute	44
	8.4	Definit	ion: Rating	45
	8.5	Result	of exceeding a rating	45
	8.6	Relatio	onship between ratings and operating	
		require	ements	45
	8.7		ines for ratings and operating requirements	
	8.8	Definit	ion: Typical value	46
	8.9	Typica	I value conditions	47
9	Rev	rision hi	story	48

1 Ratings

1.1 Thermal handling ratings

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.2 Moisture handling ratings

Table 2. Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, *Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components*.

3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	_
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	_
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	—
V _{IH}	Input high voltage				_
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				_
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	 IO pin negative DC injection current—single pin V_{IN} < V_{SS}-0.3V (negative current injection) V_{IN} < V_{SS}-0.3V (positive current injection) 	-3		mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				_
	Negative current injection	-25	—	mA	
	Positive current injection	_	+25		
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	_

All IO pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{IO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{IO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{IO_MAX})/II_{CIO}I. Select the larger of these two calculated resistances.

2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	—
	Low-voltage warning thresholds — high range					1

Table continues on the next page ...

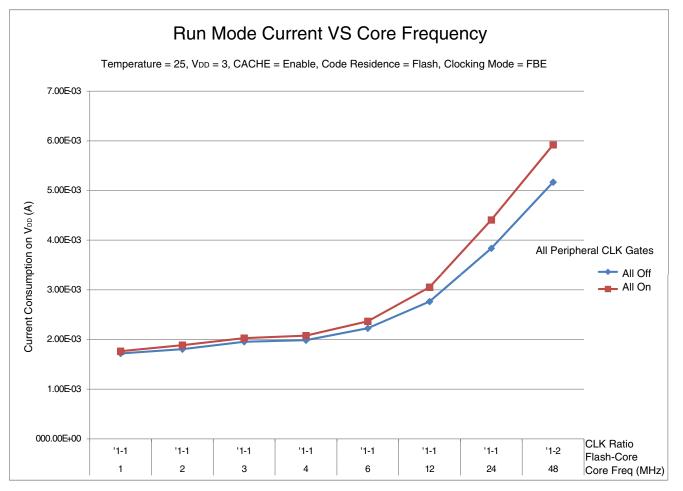


Figure 2. Run mode supply current vs. core frequency

Peripheral operating requirements and behaviors

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal V _{DD} and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM]		_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of frequency over vo		+0.5/-0.7	± 3	%f _{dco}	1, 2	
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70 °C		_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C	_	4	—	MHz	
∆f _{intf_ft}	Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal V _{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal $V_{\rm DD}$ and 25 $^{\circ}{\rm C}$		3	_	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00		(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external cl	ock minimum frequency —	(16/5) x f _{ints_t}	_	—	kHz	
	•	FI	L				
f _{fll_ref}	FLL reference free	luency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output	Low range (DRS = 00)	20	20.97	25	MHz	3, 4
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS = 01)	40	41.94	48	MHz	
		$1280 \times f_{fll_ref}$					
f _{dco_t_DMX3}	DCO output	Low range (DRS = 00)	—	23.99	—	MHz	5, 6
2	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97		MHz	1

Table 17. MCG specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 24 MHz 32 MHz					
C _x	EXTAL load capacitance	_	_			2, 3
Cy	XTAL load capacitance	_	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	—	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_	_	-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	—	—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	-	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	-	V	

Table 18. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.

- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
: osc_hi_2	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—		—	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—		_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

3.3.2.2 Oscillator frequency specifications Table 19. Oscillator frequency specifications

1. Other frequency limits may apply when external clock is being used as a reference for the FLL

2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_		5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0	_	18.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 12-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	6

 Table 24.
 12-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to < 1 ns.
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

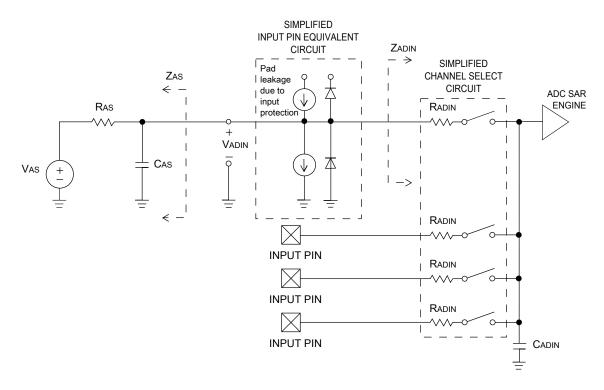


Figure 6. ADC input impedance equivalency diagram

3.6.1.2 12-bit ADC electrical characteristics

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9	MHz	t _{ADACK} = 1
	asynchronous clock source	0	2.4	4.0	6.1	MHz	f _{ADACK}
		• ADLPC = 1, ADHSC =	3.0	5.2	7.3	MHz	
f _{ADACK}		• ADLPC = 0, ADHSC = 0	4.4	6.2	9.5	MHz	
		 ADLPC = 0, ADHSC = 1 					
	Sample Time	See Reference Manual chapte	er for sample	e times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	<12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 		±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization error	12-bit modes	_	_	±0.5	LSB ⁴	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	6
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	6

Table 25. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

Symbol	Description	Min.	Тур.	Max.	Unit
	CR0[HYSTCTR] = 10		20		mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 26. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to $V_{DD} - 0.7 V$.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to

DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

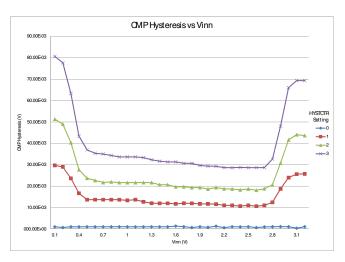


Figure 8. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

Peripheral operating requirements and behaviors

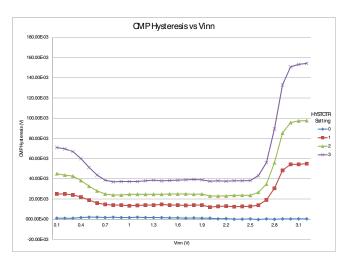


Figure 9. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—

 Table 27. SPI master mode timing on slew rate disabled pads

Table continues on the next page...

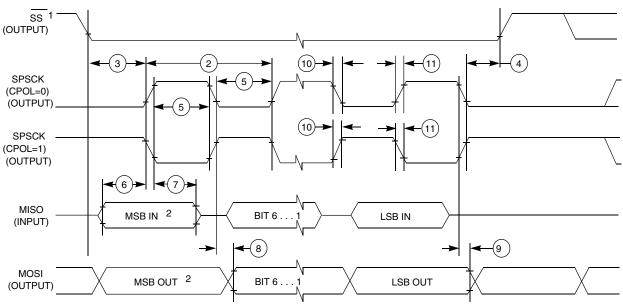
Num.	Symbol	Description	Min.	Max.	Unit	Note
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	16	_	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 27. SPI master mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

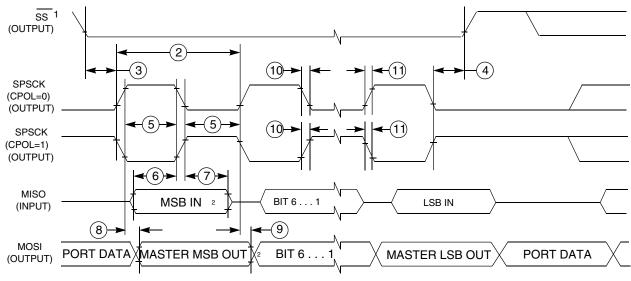
2. $t_{periph} = 1/f_{periph}$

Table 28. SPI master mode timing on slew rate enabled pads


Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)		52	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	
10	t _{RI}	Rise time input	-	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$


Peripheral operating requirements and behaviors

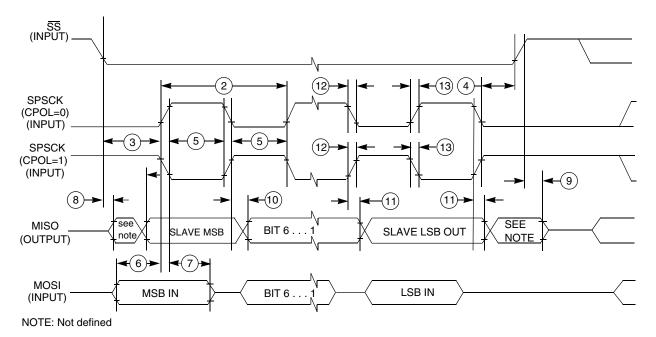
1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

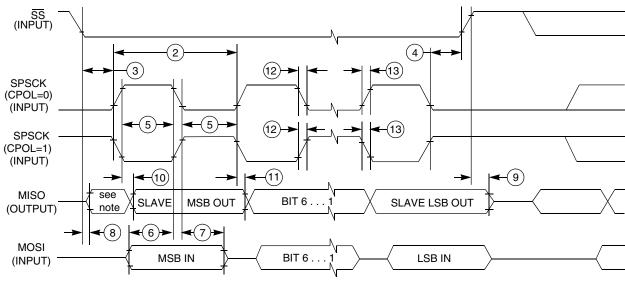
1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 11. SPI master mode timing (CPHA = 1)


Table 29. SPI slave mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1		t _{periph}	—


Table continues on the next page...

Peripheral operating requirements and behaviors

NOTE: Not defined

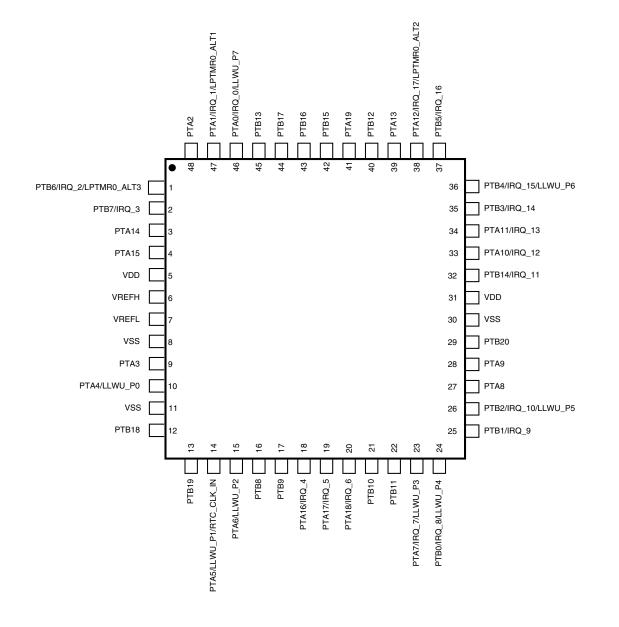


Figure 15. KL04 48-pin LQFP pinout diagram

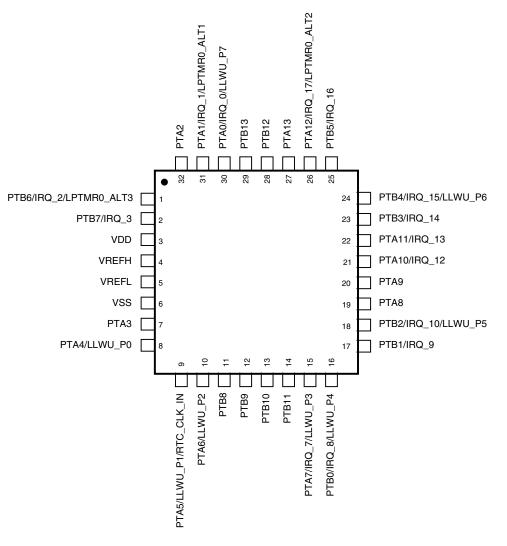


Figure 16. KL04 32-pin LQFP pinout diagram

MKL04Z8VLC4

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V _{DD}	3.3 V supply voltage	3.3	V

Table 33. Typical value condition	ns
-----------------------------------	----

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	9/2012	Initial public release.
3	11/2012	Completed all the TBDs.
4	3/2014	 Updated the front page and restructured the chapters Added a note to the I_{LAT} in the ESD handling ratings Updated Voltage and current operating ratings Added V_{ODPU} in the Voltage and current operating requirements Updated Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Power consumption operating behaviors Updated Capacitance attributes Updated t_{ersall} in the Flash timing specifications — commands Updated Temp sensor slope and voltage and added a note to them in the 12-bit ADC electrical characteristics Removed T_A in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL04P48M48SF1 Revision 4 03/2014

