

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

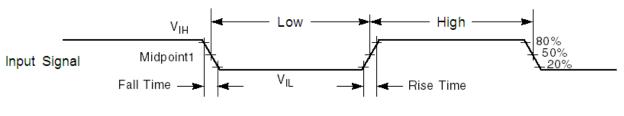
Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl04z32vlc4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Voltage and current operating ratings


Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V_{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	_
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	_
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	—
V _{IH}	Input high voltage				_
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				_
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	 IO pin negative DC injection current—single pin V_{IN} < V_{SS}-0.3V (negative current injection) V_{IN} < V_{SS}-0.3V (positive current injection) 	_3 		mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins				_
	Negative current injection	-25	—	mA	
	Positive current injection	_	+25		
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	_

All IO pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is greater than V_{IO_MIN} (=V_{SS}-0.3V) and V_{IN} is less than V_{IO_MAX}(=V_{DD}+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{CIO}I. The positive injection current limiting resistor is calculated as R=(V_{IN}-V_{IO_MAX})/II_{CIO}I. Select the larger of these two calculated resistances.

2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	—
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV = 01)	2.48	2.56	2.64	V	—
	Low-voltage warning thresholds — high range					1

Symbol	Description	Min.	Тур.	Max. ¹	Unit	Notes
I _{DD_WAIT}	Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	2.2	2.3	mA	3
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus / flash disabled (flash doze enabled) • at 3.0 V	_	1.5	1.7	mA	3
I _{DD_VLPRCO}	Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash • at 3.0 V	_	182	253	μA	5
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash • at 3.0 V	_	213	284	μA	5
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash • at 3.0 V	_	243	313	μA	4, 5
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V	_	111	170	μA	5
I _{DD_STOP}	Stop mode current • at 3.0 V					
	• at 25 °C	-	257	277	μA	
	• at 50 °C	-	265	285		
	• at 70 °C	-	278	303		
	• at 85 °C	-	295	326		
	• at 105 °C	-	353	412		
I _{DD_VLPS}	Very-low-power stop mode current • at 3.0 V					
	• at 25 °C	-	2.25	5.76	μΑ	
	• at 50 °C	-	4.08	8.27		
	• at 70 °C	-	8.10	14.52		
	• at 85 °C	-	14.18	23.78		
	• at 105 °C	-	37.07	58.58		
I _{DD_LLS}	Low-leakage stop mode current • at 3.0 V					

Table 9. Power consumption operating behaviors (continued)

- 2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode.
- 6. No brownout

Table 10. Low power mode peripheral adders — typical value

Symbol	Description		-	Tempera	ature (°C	;)		Unit
			25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by	440	490	540	560	570	580	
	entering all modes with the crystal enabled.	440	490	540	560	570	580	nA
	VLLS1	490	490	540	560	570	680	
	• VLLS3	510	560	560	560	610	680	
	LLSVLPSSTOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate.	66	66	66	66	66	66	μA
	 Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) 	214	237	246	254	260	268	

Symbol	Description		-	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare	86	86	86	86	86	86	μA
	 generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) 	235	256	265	274	280	287	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μΑ

 Table 10.
 Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

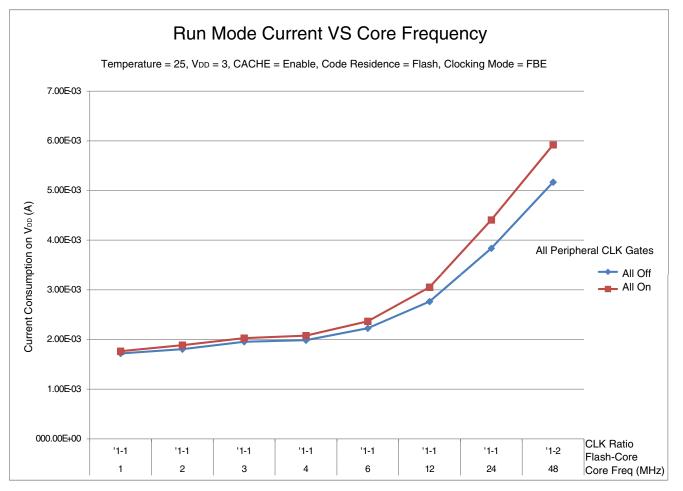


Figure 2. Run mode supply current vs. core frequency

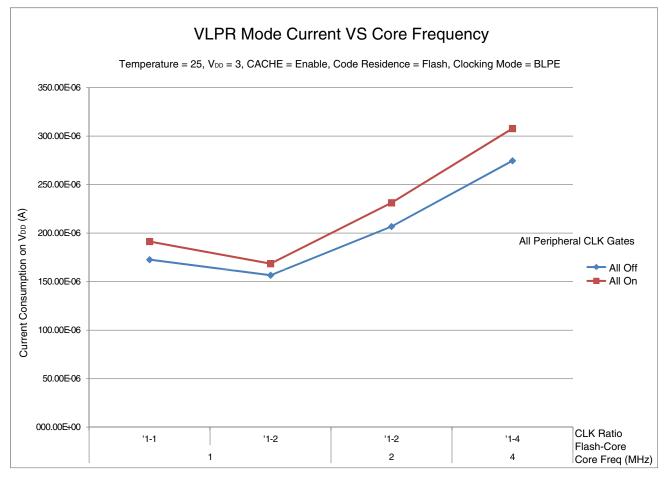


Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Table 13. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	_	ns	2
Port rise and fall time	—	36	ns	3

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 14. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

2.4.2 Thermal attributes

Table 15. Thermal attributes

Board type	Symbol	Description	48 LQFP	32 LQFP	32 QFN	24 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	82	88	97	110	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	58	59	34	42	°C/W	

Peripheral operating requirements and behaviors

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal V _{DD} and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	frequency at fixed	ned average DCO output voltage and temperature —] and C4[SCFTRIM]	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature		+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — nominal V _{DD} and 25 °C	_	4	—	MHz	
∆f _{intf_ft}	(fast clock) over te	on of internal reference clock emperature and voltage — nominal V _{DD} and 25 °C	—	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external cl	ock minimum frequency —	(16/5) x f _{ints_t}	_	—	kHz	
	•	FI	L				
f _{fll_ref}	FLL reference free	luency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output	Low range (DRS = 00)	20	20.97	25	MHz	3, 4
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS = 01)	40	41.94	48	MHz	
		1280 × f _{fll_ref}					
f _{dco_t_DMX3}	DCO output	Low range (DRS = 00)	—	23.99	—	MHz	5, 6
2	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97		MHz	

Table 17. MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 24 MHz 32 MHz					
C _x	EXTAL load capacitance	_	_			2, 3
Cy	XTAL load capacitance	_	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	—	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_	_	-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	—	—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	-	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	-	V	

Table 18. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.

- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Peripheral operating requirements and behaviors

- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. ADC conversion clock < 3 MHz

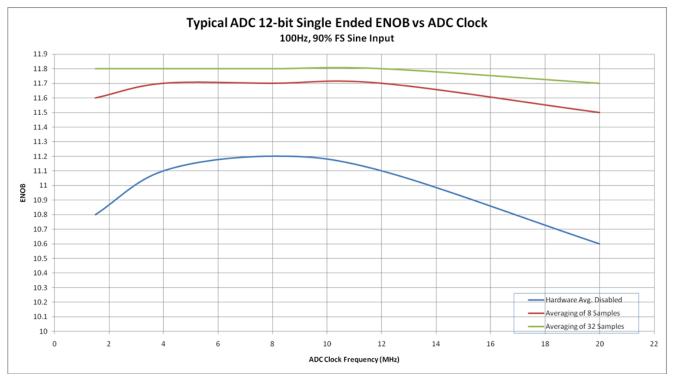


Figure 7. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 26. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	 CR0[HYSTCTR] = 01 	_	10	_	mV

Symbol	Description	Min.	Тур.	Max.	Unit
	CR0[HYSTCTR] = 10		20		mV
	 CR0[HYSTCTR] = 11 	—	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 26. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to $V_{DD} - 0.7 V$.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to

DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

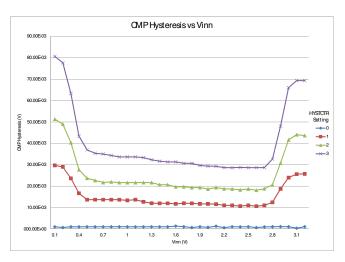


Figure 8. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

Peripheral operating requirements and behaviors

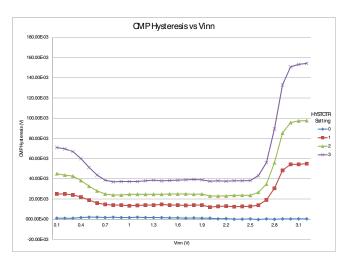


Figure 9. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	
4	t _{Lag}	Enable lag time	1/2		t _{SPSCK}	—

 Table 27. SPI master mode timing on slew rate disabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	16	_	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	10	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 27. SPI master mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Table 28. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)		52	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input	_	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	_
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
4	t _{Lag}	Enable lag time	1	_	t _{periph}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	_	ns	—
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	_	ns	—
8	ta	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	-	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	—
11	t _{HO}	Data hold time (outputs)	0	_	ns	—
12	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 29. SPI slave mode timing on slew rate disabled pads (continued)

For SPI0, f_{periph} is the bus clock (f_{BUS}).
 t_{periph} = 1/f_{periph}
 Time to data active from high-impedance state

4. Hold time to high-impedance state

Table 30. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}		ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	_	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	_	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	122	ns	_
11	t _{HO}	Data hold time (outputs)	0	—	ns	_
12	t _{RI}	Rise time input	_	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output		36	ns	_
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

- 2. $t_{periph} = 1/f_{periph}$ 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

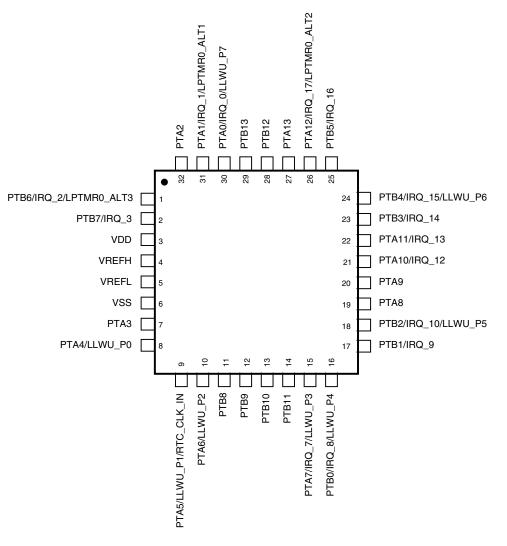


Figure 16. KL04 32-pin LQFP pinout diagram

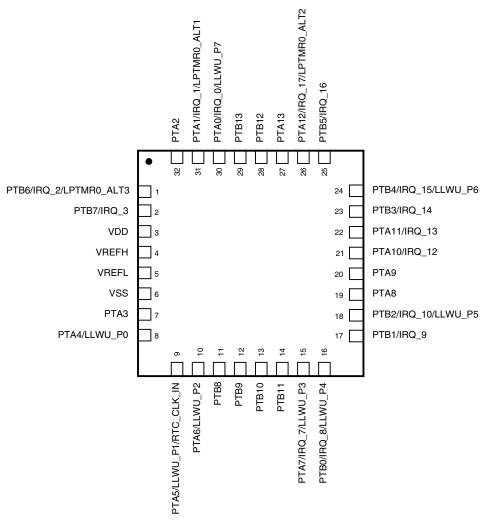
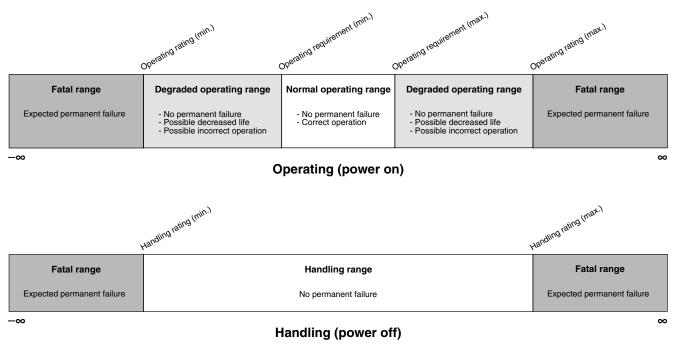



Figure 17. KL04 32-pin QFN pinout diagram

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

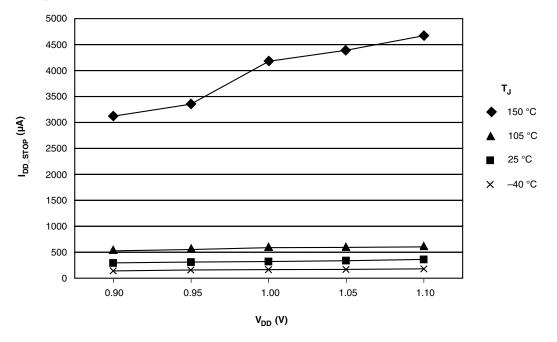
- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.


8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL04P48M48SF1 Revision 4 03/2014

