

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	41
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl04z32vlf4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Part Number	Memory		Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MKL04Z8VFK4	8	1	22
MKL04Z16VFK4	16	2	22
MKL04Z32VFK4	32	4	22
MKL04Z8VLC4	8	1	28
MKL04Z16VLC4	16	2	28
MKL04Z32VLC4	32	4	28
MKL04Z8VFM4	8	1	28
MKL04Z16VFM4	16	2	28
MKL04Z32VFM4	32	4	28
MKL04Z16VLF4	16	2	41
MKL04Z32VLF4	32	4	41

Related Resources

Туре	Description
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.
Package drawing	Package dimensions are provided in package drawings.

1.4 Voltage and current operating ratings

Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{OL}	Output low voltage — High drive pad				1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$	_	0.5	v	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	3
I _{IN}	Input leakage current (per pin) at 25 °C	—	0.025	μA	3
I _{IN}	Input leakage current (total all pins) for full temperature range	_	41	μA	3
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	4

Table 7. Voltage and current operating behaviors (continued)

- 1. PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
- 2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output.
- 3. Measured at $V_{DD} = 3.6 V$
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

POR and VLLSx \rightarrow RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.

Table 8.	Power mode transitio	n operating behaviors
----------	----------------------	-----------------------

Symbol	Description	Min.	Тур.	Max.	Unit	
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	95	115	μs	
	• VLLS1 → RUN					

Table continues on the next page...

8

- 2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode.
- 6. No brownout

Table 10. Low power mode peripheral adders — typical value

Symbol	Description	Temperature (°C)				Unit		
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by	440	490	540	560	570	580	
	entering all modes with the crystal	440	490	540	560	570	580	nA
	• VLLS1	490	490	540	560	570	680	
	VLLS3	510	560	560	560	610	680	
	LLSVLPSSTOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
Iuart	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. • MCGIRCLK (4 MHz internal reference clock) • OSCERCLK (4 MHz external	66 214	66 237	66 246	66 254	66 260	66 268	μA

Table continues on the next page ...

Figure 2. Run mode supply current vs. core frequency

Figure 3. VLPR mode current vs. core frequency

2.2.6 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz					
	• 32 MHz					
C _x	EXTAL load capacitance	_	—	—		2, 3
Cy	XTAL load capacitance	_	—	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	—		_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1	_	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_		—	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	

Table 18. Oscillator DC electrical specifications (continued)

1. V_{DD}=3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.

- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	52	452	ms	1

Table 20. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	_	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	_	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	_	0.5	ms	
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	
t _{ersall}	Erase All Blocks execution time	—	61	500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	_	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol Description		Min.	Typ. ¹	Max.	Unit	Notes
	Program	m Flash				

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit
	 CR0[HYSTCTR] = 10 	_	20		mV
	 CR0[HYSTCTR] = 11 	—	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low		—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

Table 26. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to $V_{DD} - 0.7 V$.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to

DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 8. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	16	—	ns	
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	10	ns	
9	t _{HO}	Data hold time (outputs)	0	—	ns	
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

Table 27. SPI master mode timing on slew rate disabled pads (continued)

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Table 28. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	—
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	—
6	t _{SU}	Data setup time (inputs)	96	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	-	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	36	ns	_
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Peripheral operating requirements and behaviors

NOTE: Not defined

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
24-pin QFN	98ASA00474D
32-pin QFN	98ASA00473D
32-pin LQFP	98ASH70029A
48-pin LQFP	98ASH00962A

5 Pinout

5.1 KL04 signal multiplexing and pin assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
1	1	1	1	PTB6/ IRQ_2/ LPTMR0_ALT3	DISABLED	DISABLED	PTB6/ IRQ_2/ LPTMR0_ALT3	TPM0_CH3	TPM_CLKIN1
2	2	2	2	PTB7/ IRQ_3	DISABLED	DISABLED	PTB7/ IRQ_3	TPM0_CH2	
3	-	-	_	PTA14	DISABLED	DISABLED	PTA14		TPM_CLKIN0
4	_	_	_	PTA15	DISABLED	DISABLED	PTA15		CLKOUT

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
5	3	3	3	VDD	VDD	VDD			
6	4	4	3	VREFH	VREFH	VREFH			
7	5	5	4	VREFL	VREFL	VREFL			
8	6	6	4	VSS	VSS	VSS			
9	7	7	5	PTA3	EXTALO	EXTAL0	PTA3	I2C0_SCL	I2C0_SDA
10	8	8	6	PTA4/ LLWU_P0	XTALO	XTAL0	PTA4/ LLWU_P0	I2C0_SDA	12C0_SCL
11	-	-	-	VSS	VSS	VSS			
12	-	-	-	PTB18	DISABLED	DISABLED	PTB18		
13	-	Ι	-	PTB19	DISABLED	DISABLED	PTB19		
14	9	9	7	PTA5/ LLWU_P1/ RTC_CLK_IN	DISABLED	DISABLED	PTA5/ LLWU_P1/ RTC_CLK_IN	TPM0_CH5	SPI0_SS_b
15	10	10	8	PTA6/ LLWU_P2	DISABLED	DISABLED	PTA6/ LLWU_P2	TPM0_CH4	SPI0_MISO
16	11	11	-	PTB8	ADC0_SE11	ADC0_SE11	PTB8	TPM0_CH3	
17	12	12	-	PTB9	ADC0_SE10	ADC0_SE10	PTB9	TPM0_CH2	
18	Ι	-	-	PTA16/ IRQ_4	DISABLED	DISABLED	PTA16/ IRQ_4		
19	-	Ι	-	PTA17/ IRQ_5	DISABLED	DISABLED	PTA17/ IRQ_5		
20	-	Ι	-	PTA18/ IRQ_6	DISABLED	DISABLED	PTA18/ IRQ_6		
21	13	13	9	PTB10	ADC0_SE9	ADC0_SE9	PTB10	TPM0_CH1	
22	14	14	10	PTB11	ADC0_SE8	ADC0_SE8	PTB11	TPM0_CH0	
23	15	15	11	PTA7/ IRQ_7/ LLWU_P3	ADC0_SE7	ADC0_SE7	PTA7/ IRQ_7/ LLWU_P3	SPI0_MISO	SPI0_MOSI
24	16	16	12	PTB0/ IRQ_8/ LLWU_P4	ADC0_SE6	ADC0_SE6	PTB0/ IRQ_8/ LLWU_P4	EXTRG_IN	SPI0_SCK
25	17	17	13	PTB1/ IRQ_9	ADC0_SE5/ CMP0_IN3	ADC0_SE5/ CMP0_IN3	PTB1/ IRQ_9	UARTO_TX	UARTO_RX
26	18	18	14	PTB2/ IRQ_10/ LLWU_P5	ADC0_SE4	ADC0_SE4	PTB2/ IRQ_10/ LLWU_P5	UARTO_RX	UARTO_TX
27	19	19	15	PTA8	ADC0_SE3	ADC0_SE3	PTA8		
28	20	20	16	PTA9	ADC0_SE2	ADC0_SE2	PTA9		
29	-	-	_	PTB20	DISABLED	DISABLED	PTB20		
30	-	-	_	VSS	VSS	VSS			
31	_	-	-	VDD	VDD	VDD			
32	_	_	_	PTB14/ IRQ_11	DISABLED	DISABLED	PTB14/ IRQ_11	EXTRG_IN	

48 LQFP	32 QFN	32 LQFP	24 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
33	21	21	_	PTA10/ IRQ_12	DISABLED	DISABLED	PTA10/ IRQ_12		
34	22	22	-	PTA11/ IRQ_13	DISABLED	DISABLED	PTA11/ IRQ_13		
35	23	23	17	PTB3/ IRQ_14	DISABLED	DISABLED	PTB3/ IRQ_14	I2C0_SCL	UARTO_TX
36	24	24	18	PTB4/ IRQ_15/ LLWU_P6	DISABLED	DISABLED	PTB4/ IRQ_15/ LLWU_P6	I2C0_SDA	UARTO_RX
37	25	25	19	PTB5/ IRQ_16	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_16	TPM1_CH1	NMI_b
38	26	26	20	PTA12/ IRQ_17/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_17/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0
39	27	27	_	PTA13	DISABLED	DISABLED	PTA13		
40	28	28	-	PTB12	DISABLED	DISABLED	PTB12		
41	-	Ι	-	PTA19	DISABLED	DISABLED	PTA19		SPI0_SS_b
42	-	-	-	PTB15	DISABLED	DISABLED	PTB15	SPI0_MOSI	SPI0_MISO
43	-	-	-	PTB16	DISABLED	DISABLED	PTB16	SPI0_MISO	SPI0_MOSI
44	-	-	-	PTB17	DISABLED	DISABLED	PTB17	TPM_CLKIN1	SPI0_SCK
45	29	29	21	PTB13	ADC0_SE13	ADC0_SE13	PTB13	TPM1_CH1	RTC_CLKOUT
46	30	30	22	PTA0/ IRQ_0/ LLWU_P7	SWD_CLK	ADC0_SE12/ CMP0_IN2	PTA0/ IRQ_0/ LLWU_P7	TPM1_CH0	SWD_CLK
47	31	31	23	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b	DISABLED	PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b
48	32	32	24	PTA2	SWD_DIO	DISABLED	PTA2	CMP0_OUT	SWD_DIO

5.2 KL04 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL04 signal multiplexing and pin assignments.

Figure 16. KL04 32-pin LQFP pinout diagram

Figure 17. KL04 32-pin QFN pinout diagram

Figure 18. KL04 24-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL04 and MKL04

7 Part identification

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	۵°
V _{DD}	3.3 V supply voltage	3.3	V

Table 33. T	ypical va	alue conditions
-------------	-----------	-----------------

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
2	9/2012	Initial public release.	
3	11/2012	Completed all the TBDs.	
4	3/2014	 Updated the front page and restructured the chapters Added a note to the I_{LAT} in the ESD handling ratings Updated Voltage and current operating ratings Added V_{ODPU} in the Voltage and current operating requirements Updated Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Power consumption operating behaviors Updated Capacitance attributes Updated footnote in the Device clock specifications Updated Temp sensor slope and voltage and added a note to them in the 12-bit ADC electrical characteristics Removed T_A in the 12-bit DAC operating requirements Added Inter-Integrated Circuit Interface (I2C) timing 	