

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	150
Program Memory Size	1.6MB (1.6M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	138K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-176-12
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2299h200f100labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Device Information

Pin	Symbol	Ctrl.	Туре	Function
14	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output
	CCU60_CC6 1	O1	St/B	CCU60 Channel 1 Output
	CC1_CC1	02	St/B	CC1 Channel 1 Output
	U4C1_MCLK OUT	O3	St/B	USIC4 Channel 1 Master Clock Output
	CCU60_CC6 1INB	1	St/B	CCU60 Channel 1 Input
	RxDC1F	I	St/B	CAN Node 1 Receive Data Input
15	P8.0	O0 / I	St/B	Bit 0 of Port 8, General Purpose Input/Output
	CCU60_CC6 0	O1	St/B	CCU60 Channel 0 Output
	CC1_CC0	02	St/B	CC1 Channel 0 Output
	U4C1_SELO 1	O3	St/B	USIC4 Channel 1 Select/Control 1 Output
	CCU60_CC6 0INB	I	St/B	CCU60 Channel 0 Input
18	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)
	TxDC2	O2	DA/A	CAN Node 2 Transmit Data Output
	BRKOUT	O3	DA/A	OCDS Break Signal Output
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input
19	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)
	T3OUT	02	DA/A	GPT12E Timer T3 Toggle Latch Output
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1
	RxDC2E	I	DA/A	CAN Node 2 Receive Data Input
	ESR1_6	Ι	DA/A	ESR1 Trigger Input 6

Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
42	P5.2	1	In/A	Bit 2 of Port 5, General Purpose Input		
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0		
	TDI_A	I	In/A	JTAG Test Data Input		
43	P5.3	I	In/A	Bit 3 of Port 5, General Purpose Input		
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0		
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input		
47	P5.4	1	In/A	Bit 4 of Port 5, General Purpose Input		
	ADC0_CH4	1	In/A	Analog Input Channel 4 for ADC0		
	CCU63_T12 HRB	I	In/A	External Run Control Input for T12 of CCU63		
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input		
	TMS_A	1	In/A	JTAG Test Mode Selection Input		
48	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input		
	ADC0_CH5	1	In/A	Analog Input Channel 5 for ADC0		
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60		
49	P5.6	I	In/A	Bit 6 of Port 5, General Purpose Input		
	ADC0_CH6	I	In/A	Analog Input Channel 6 for ADC0		
50	P5.7	I	In/A	Bit 7 of Port 5, General Purpose Input		
	ADC0_CH7	I	In/A	Analog Input Channel 7 for ADC0		
51	P5.8	I	In/A	Bit 8 of Port 5, General Purpose Input		
	ADC0_CH8	I	In/A	Analog Input Channel 8 for ADC0		
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1		
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1/2/3		
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1/2/3		
	U2C0_DX0F	I	In/A	USIC2 Channel 0 Shift Data Input		

Table 6Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
70	P11.4	O0 / I	St/B	Bit 4 of Port 11, General Purpose Input/Output	
	CCU61_CC6 2	O1	St/B	CCU61 Channel 2 Output	
	U3C1_DOUT	02	St/B	USIC3 Channel 1 Shift Data Output	
	RxDC5B	I	St/B	CAN Node 5 Receive Data Input	
	CCU61_CC6 2INB	1	St/B	CCU61 Channel 2 Input	
	U3C1_DX0B	I	St/B	USIC3 Channel 1 Shift Data Input	
71	P12.10	O0 / I	St/B	Bit 10 of Port 12, General Purpose Input/Output	
	CC2_CC16	01	St/B	CAPCOM2 Channel 16 Compare Output	
	CCU63_COU T62	O2	St/B	CCU63 Channel 2 Output	
	U4C0_DX1C	I	St/B	USIC4 Channel 0 Shift Clock Input	
	U3C1_DX1C	I	St/B	USIC3 Channel 1 Shift Clock Input	
72	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output	
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output	
	CCU63_CC6 2	O2	St/B	CCU63 Channel 2 Output	
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15	
	CCU63_CC6 2INB	1	St/B	CCU63 Channel 2 Input	
	ESR2_5	I	St/B	ESR2 Trigger Input 5	
73	P11.3	O0 / I	St/B	Bit 3 of Port 11, General Purpose Input/Output	
	CCU61_COU T63	O1	St/B	CCU61 Channel 3 Output	
	CCU61_COU T62	O2	St/B	CCU61 Channel 2 Output	
	TxDC5	O3	St/B	CAN Node 5 Transmit Data Input	
	CCU61_T13 HRF	1	St/B	External Run Control Input for T13 of CCU61	
	U4C0_DX1A	I	St/B	USIC4 Channel 0 Shift Clock Input	

Table 6Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
81	P12.8	O0 / I	St/B	Bit 8 of Port 12, General Purpose Input/Output		
	CC1_CC8	01 / I	St/B	CAPCOM1 CC8IO Capture Inp./ Compare Out.		
	U3C1_DOUT	O3	St/B	USIC3 Channel 1 Shift Data Output		
	U4C0_DX0C	I	St/B	USIC4 Channel 0 Shift Data Input		
82	P11.0	O0 / I	St/B	Bit 0 of Port 11, General Purpose Input/Output		
	CCU61_COU T60	01	St/B	CCU61 Channel 0 Output		
	U3C1_SCLK OUT	O2	St/B	USIC3 Channel 1 Shift Clock Output		
	U4C0_SCLK OUT	O3	St/B	USIC4 Channel 0 Shift Clock Output		
	U4C0_DX1D	I	St/B	USIC4 Channel 0 Shift Clock Input		
	CCU63_CCP OS0A	I	St/B	CCU63 Position Input 0		
	RxDC0F	I	St/B	CAN Node 0 Receive Data Input		
	U3C1_DX1A	I	St/B	USIC3 Channel 1 Shift Clock Input		
	ESR1_7	I	St/B	ESR1 Trigger Input 7		
83	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output		
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output		
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output		
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.		
	A18	ОН	St/B	External Bus Interface Address Line 18		
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input		
	ESR1_10	I	St/B	ESR1 Trigger Input 10		
	U3C1_DX0D	1	St/B	USIC3 Channel 1 Shift Data Input		

Table	e 6 Pin De	finitior	is and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
153	P9.4	O0 / I	St/B	Bit 4 of Port 9, General Purpose Input/Output
	CCU63_COU T61	O1	St/B	CCU63 Channel 1 Output
	U2C0_DOUT	02	St/B	USIC2 Channel 0 Shift Data Output
	CCU62_COU T63	O3	St/B	CCU62 Channel 3 Output
154	P9.5	O0 / I	St/B	Bit 5 of Port 9, General Purpose Input/Output
	CCU63_COU T62	O1	St/B	CCU63 Channel 2 Output
	U2C0_DOUT	02	St/B	USIC2 Channel 0 Shift Data Output
	CCU62_COU T62	O3	St/B	CCU62 Channel 2 Output
	U2C0_DX0E	I	St/B	USIC2 Channel 0 Shift Data Input
	CCU60_CCP OS2B	1	St/B	CCU60 Position Input 2
156	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output
	U3C0_SCLK OUT	O3	St/B	USIC3 Channel 0 Shift Clock Output
	RD	ОН	St/B	External Bus Interface Read Strobe Output
	ESR2_2	I	St/B	ESR2 Trigger Input 2
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input
	RxDC3C	I	St/B	CAN Node 3 Receive Data Input
	U3C0_DX1A	I	St/B	USIC3 Channel 0 Shift Clock Input

Functional Description

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes			
Dualport RAM (DPRAM)	00'F600 _H	00'FDFF _H	2 Kbytes				
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbytes				
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbytes				
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes				
Data SRAM (DSRAM)	00'8000 _H	00'DFFF _H	24 Kbytes				
External memory area	00'000 _H	00'7FFF _H	32 Kbytes				

Table 8XC229[89]H Memory Map (cont'd)1)

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated, see column "Notes".

3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

4) Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 112 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Note: The actual size of the PSRAM depends on the quoted device type.

Functional Description

Up to 24 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

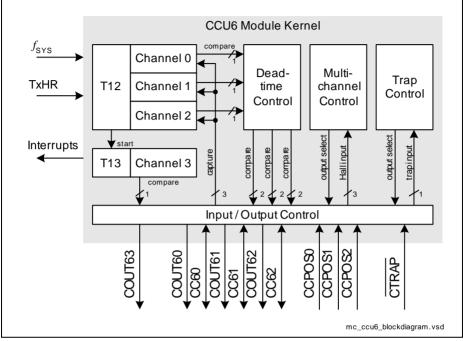
8 Kbytes of on-chip Stand-By SRAM (SBRAM) provide storage for system-relevant user data that must be preserved while the major part of the device is powered down. The SBRAM is accessed via a specific interface and is powered in domain M.

1024 bytes (2 × **512 bytes)** of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word-wide registers which are used to control and monitor functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC2000 Family. In order to ensure upward compatibility they should either not be accessed or written with zeros.

In order to meet the requirements of designs where more memory is required than is available on chip, up to 12 Mbytes (approximately, see **Table 8**) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals.

The on-chip Flash memory stores code, constant data, and control data. The 1,600 Kbytes of on-chip Flash memory consist of 1 module of 64 Kbytes (preferably for data storage) and 6 modules of 256 Kbytes. Each module is organized in 4-Kbyte sectors.

The uppermost 4-Kbyte sector of segment 0 (located in Flash module 0) is used internally to store operation control parameters and protection information.


Note: The actual size of the Flash memory depends on the chosen device type.

Each sector can be separately write protected¹⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A user-defined password sequence temporarily unlocks protected areas. The Flash modules combine 128-bit read access with protected and efficient writing algorithms for programming and erasing. Dynamic error correction provides extremely high read data security for all read access operations. Access to different Flash modules can be executed in parallel. For Flash parameters, please see Section 4.6.

To save control bits, sectors are clustered for protection purposes, they remain separate for programming/erasing.

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

Functional Description

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

Functional Description

MultiCAN Features

- CAN functionality conforming to CAN specification V2.0 B active for each CAN node (compliant to ISO 11898)
- Independent CAN nodes
- Set of independent message objects (shared by the CAN nodes)
- Dedicated control registers for each CAN node
- Data transfer rate up to 1 Mbit/s, individually programmable for each node
- · Flexible and powerful message transfer control and error handling capabilities
- Full-CAN functionality for message objects:
 - Can be assigned to one of the CAN nodes
 - Configurable as transmit or receive objects, or as message buffer FIFO
 - Handle 11-bit or 29-bit identifiers with programmable acceptance mask for filtering
 - Remote Monitoring Mode, and frame counter for monitoring
- Automatic Gateway Mode support
- 16 individually programmable interrupt nodes
- Analyzer mode for CAN bus monitoring

Functional Description

Mnemonic	Description	Bytes			
ROL/ROR	Rotate left/right direct word GPR	2			
ASHR	Arithmetic (sign bit) shift right direct word GPR	2			
MOV(B)	Move word (byte) data	2/4			
MOVBS/Z	Move byte operand to word op. with sign/zero extension				
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4			
JMPS	Jump absolute to a code segment	4			
JB(C)	Jump relative if direct bit is set (and clear bit)	4			
JNB(S)	Jump relative if direct bit is not set (and set bit)	4			
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4			
CALLS	Call absolute subroutine in any code segment	4			
PCALL	Push direct word register onto system stack and call absolute subroutine	4			
TRAP	Call interrupt service routine via immediate trap number	2			
PUSH/POP	Push/pop direct word register onto/from system stack	2			
SCXT	Push direct word register onto system stack and update register with word operand				
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2			
RETS	Return from inter-segment subroutine	2			
RETI	Return from interrupt service subroutine	2			
SBRK	Software Break	2			
SRST	Software Reset	4			
IDLE	Enter Idle Mode	4			
PWRDN	Unused instruction ¹⁾	4			
SRVWDT	Service Watchdog Timer				
DISWDT/ENWDT	Disable/Enable Watchdog Timer				
EINIT	End-of-Initialization Register Lock				
ATOMIC	Begin ATOMIC sequence	2			
EXTR	Begin EXTended Register sequence	2			
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4			
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4			

4.2 Voltage Range definitions

The XC229[89]H timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	4.5	5	5.5	V	

Table 15 Lower Voltage Range Definition

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	3.3	4.5	V	

4.2.1 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC229[89]H and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC229[89]H provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC229[89]H.

4.3 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XC229[89]H can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XC229[89]H are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.7.4**.

Pullup/Pulldown Device Behavior

Most pins of the XC229[89]H feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 14** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

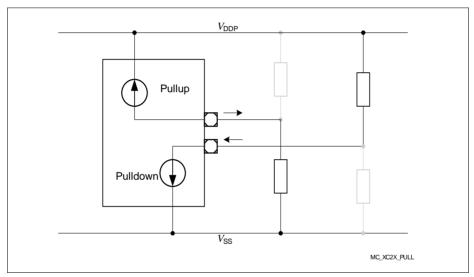


Figure 14 Pullup/Pulldown Current Definition

4.3.3 Power Consumption

The power consumed by the XC229[89]H depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off. DMP_M domain is supplied by ultra low power electronic voltage regulator (ULPEVR). The alternate regulator EVR_M is switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for V_{DDIM} and V_{DDI1} are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Parameter	Symbol		Values	i	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Leakage supply current	$I_{\rm LK0} {\rm CC}$	-	20	35	μA	<i>T</i> _J = 25 °C
(DMP_1 off) ¹⁾²⁾		-	115	330	μA	<i>T</i> _J = 85 °C
		-	270	880	μA	<i>T</i> _J = 125 °C
		-	420	1.445	μA	<i>T</i> _J = 150 °C
Leakage supply current (DMP_1 powered) ¹⁾²⁾	I _{LK1} CC	-	0.04	0.06	mA	<i>T</i> _J = 25 °C
		-	0.7	1.8	mA	<i>T</i> _J = 85 °C
		-	3.1	8.6	mA	<i>T</i> _J = 125 °C
		-	6.6	19.2	mA	<i>T</i> _J = 150 °C

Table 19 Leakage Power Consumption

 The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.

 All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} - 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × $e^{-\alpha}$, with $\alpha = 5000 / (273 + 1.3 \times T_J)$. For $T_J = 150^{\circ}$ C, this results in a current of 160 μ A.

The leakage power consumption can be calculated according to the following formulas: $I_{I K0} = 500,000 \times e^{-\alpha}$ with $\alpha = 3000 / (273 + B \times T_J)$

Parameter B must be replaced by

- 1.0 for typical values
- 1.6 for maximum values

 $I_{LK1} = 600,000 \times e^{-\alpha}$ with $\alpha = 5000 / (273 + B \times T_{J})$

Parameter B must be replaced by

- 1.1 for typical values
- 1.4 for maximum values

Coding of bit fields LEVxV in SWD and PVC Configuration Registers

County of bit netus LEVXV	
Default Voltage Level	Notes ¹⁾
2.9 V	
3.0 V	LEV1V: reset request
3.1 V	
3.2 V	
3.3 V	
3.4 V	
3.6 V	
4.0 V	
4.2 V	
4.5 V	LEV2V: no request
4.6 V	
4.7 V	
4.8 V	
4.9 V	
5.0 V	
5.5 V	
	Default Voltage Level 2.9 V 3.0 V 3.1 V 3.2 V 3.3 V 3.4 V 3.6 V 4.0 V 4.2 V 4.5 V 4.6 V 4.7 V 4.8 V 4.9 V 5.0 V

Table 23 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels are selected automatically after a power reset.

Table 24 Coding of bit fields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Rise and Fall times (10% - 90%)	t _{RF} CC	_	_	37 + 0.65 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Medium
		_	_	24 + 0.3 x C _L	ns	$\begin{array}{l} C_{L} \geq 20 \text{ pF};\\ C_{L} \leq 100 \text{ pF};\\ \text{Driver_Strength}\\ = \text{Strong};\\ \text{Driver_Edge}\\ \text{Medium} \end{array}$
		-	-	6.2 + 0.24 x <i>C</i> _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Sharp
		_	-	34 + 0.3 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Strong; Driver_Edge= Slow
		_	_	500 + 2.5 x C _L	ns	$C_{L} \ge 20 \text{ pF};$ $C_{L} \le 100 \text{ pF};$ Driver_Strength = Weak

Table 30 Standard Pad Parameters for Lower Voltage Range (cont'd)

An output current above |I_{OXnom}| may be drawn from up to three pins at the same time. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

Electrical Parameters

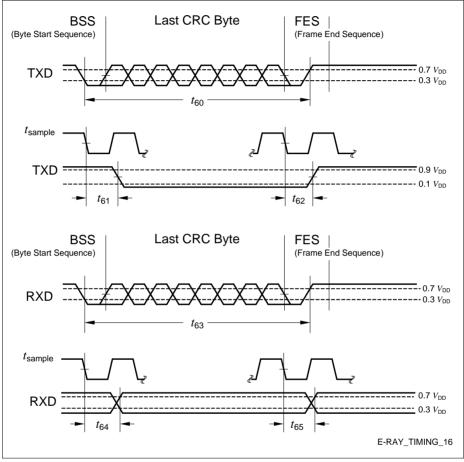


Figure 28 FlexRay Timing