
NXP USA Inc. - MC9S08GT16ACFCER Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor S08

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 24

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 4x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-HVQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08gt16acfcer

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08gt16acfcer-4419954
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Part Number Package Description Original (gold wire)
package document number

Current (copper wire)
package document number

MC68HC908JW32 48 QFN 98ARH99048A 98ASA00466D

MC9S08AC16

MC9S908AC60

MC9S08AC128

MC9S08AW60

MC9S08GB60A

MC9S08GT16A

MC9S08JM16

MC9S08JM60

MC9S08LL16

MC9S08QE128

MC9S08QE32

MC9S08RG60

MCF51CN128

MC9RS08LA8 48 QFN 98ARL10606D 98ASA00466D

MC9S08GT16A 32 QFN 98ARH99035A 98ASA00473D

MC9S908QE32 32 QFN 98ARE10566D 98ASA00473D

MC9S908QE8 32 QFN 98ASA00071D 98ASA00736D

MC9S08JS16 24 QFN 98ARL10608D 98ASA00734D

MC9S08QB8

MC9S08QG8 24 QFN 98ARL10605D 98ASA00474D

MC9S08SH8 24 QFN 98ARE10714D 98ASA00474D

MC9RS08KB12 24 QFN 98ASA00087D 98ASA00602D

MC9S08QG8 16 QFN 98ARE10614D 98ASA00671D

MC9RS08KB12 8 DFN 98ARL10557D 98ASA00672D

MC9S08QG8

MC9RS08KA2 6 DFN 98ARL10602D 98ASA00735D
Addendum for New QFN Package Migration, Rev. 0

Freescale Semiconductor2

Pins and Connections
2.3.5 IRQ — External Interrupt Request Pin

IRQ is a dedicated pin with both pullup and pulldown devices built in. This pin has no output capabilities.
After a system reset, the IRQ pin is disabled and must be enabled before use. See Section 5.4.2, “IRQ —
External Interrupt Request Pin” for more details.

For EMC-sensitive applications, an external RC filter is recommended on the IRQ pin. See Figure 2-5 for
an example.

2.3.6 General-Purpose I/O and Peripheral Ports

The remaining 36 pins are shared among general-purpose I/O and on-chip peripheral functions such as
timers and serial I/O systems. (Three of these pins are not bonded out on the 44-pin package, five are not
bonded out on the 42-pin package, and 15 are not bonded out on the 32-pin package.) Immediately after
reset, all 36 of these pins are configured as high-impedance general-purpose inputs with internal pullup
devices disabled.

NOTE
To avoid extra current drain from floating input pins, the reset initialization
routine in the application program should either enable on-chip pullup
devices or change the direction of unused pins to outputs so the pins do not
float.

For information about controlling these pins as general-purpose I/O pins, see Chapter 6, “Parallel
Input/Output.” For information about how and when on-chip peripheral systems use these pins, refer to the
appropriate section from Table 2-1.

Table 2-1. Pin Sharing References

Port Pins Alternate Function Reference1

1 See this section for information about modules that share these pins.

PTA7–PTA0 KBIP7–KBIP0 Chapter 7, “Keyboard Interrupt (S08KBIV1)”

PTB7–PTB0 ADP7–ADP0 Chapter 14, “Analog-to-Digital Converter (S08ATDV3)”

PTC7–PTC4

PTC3–PTC2 SCL–SDA Chapter 13, “Inter-Integrated Circuit (S08IICV1)”

PTC1–PTC0 RxD2–TxD2 Chapter 11, “Serial Communications Interface (S08SCIV1)”

PTD4–PTD3 TPM2CH1–TPM2CH0, TPM2CLK Chapter 10, “Timer/PWM (S08TPMV2)”

PTD2–PTD0 TPM1CH2–TPM1CH0, TPM1CLK Chapter 10, “Timer/PWM (S08TPMV2)”

PTE5
PTE4
PTE3
PTE2

SPSCK
MISO
MOSI
SS

Chapter 12, “Serial Peripheral Interface (S08SPIV3)”

PTE1–PTE0 RxD1–TxD1 Chapter 11, “Serial Communications Interface (S08SCIV1)”

PTG3

PTG2–PTG1 EXTAL–XTAL Chapter 9, “Internal Clock Generator (S08ICGV4)”

PTG0 BKGD/MS Chapter 15, “Development Support”
MC9S08GT16A/GT8A Data Sheet, Rev. 1

30 Freescale Semiconductor

Memory
Table 4-2. Direct-Page Register Summary (Sheet 1 of 3)

Address Register Name Bit 7 6 5 4 3 2 1 Bit 0

0x0000 PTAD PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0

0x0001 PTAPE PTAPE7 PTAPE6 PTAPE5 PTAPE4 PTAPE3 PTAPE2 PTAPE1 PTAPE0

0x0002 PTASE PTASE7 PTASE6 PTASE5 PTASE4 PTASE3 PTASE2 PTASE1 PTASE0

0x0003 PTADD PTADD7 PTADD6 PTADD5 PTADD4 PTADD3 PTADD2 PTADD1 PTADD0

0x0004 PTBD PTBD7 PTBD6 PTBD5 PTBD4 PTBD3 PTBD2 PTBD1 PTBD0

0x0005 PTBPE PTBPE7 PTBPE6 PTBPE5 PTBPE4 PTBPE3 PTBPE2 PTBPE1 PTBPE0

0x0006 PTBSE PTBSE7 PTBSE6 PTBSE5 PTBSE4 PTBSE3 PTBSE2 PTBSE1 PTBSE0

0x0007 PTBDD PTBDD7 PTBDD6 PTBDD5 PTBDD4 PTBDD3 PTBDD2 PTBDD1 PTBDD0

0x0008 PTCD PTCD7 PTCD6 PTCD5 PTCD4 PTCD3 PTCD2 PTCD1 PTCD0

0x0009 PTCPE PTCPE7 PTCPE6 PTCPE5 PTCPE4 PTCPE3 PTCPE2 PTCPE1 PTCPE0

0x000A PTCSE PTCSE7 PTCSE6 PTCSE5 PTCSE4 PTCSE3 PTCSE2 PTCSE1 PTCSE0

0x000B PTCDD PTCDD7 PTCDD6 PTCDD5 PTCDD4 PTCDD3 PTCDD2 PTCDD1 PTCDD0

0x000C PTDD 0 0 0 PTDD4 PTDD3 PTDD2 PTDD1 PTDD0

0x000D PTDPE 0 0 0 PTDPE4 PTDPE3 PTDPE2 PTDPE1 PTDPE0

0x000E PTDSE 0 0 0 PTDSE4 PTDSE3 PTDSE2 PTDSE1 PTDSE0

0x000F PTDDD 0 0 0 PTDDD4 PTDDD3 PTDDD2 PTDDD1 PTDDD0

0x0010 PTED 0 0 PTED5 PTED4 PTED3 PTED2 PTED1 PTED0

0x0011 PTEPE 0 0 PTEPE5 PTEPE4 PTEPE3 PTEPE2 PTEPE1 PTEPE0

0x0012 PTESE 0 0 PTESE5 PTESE4 PTESE3 PTESE2 PTESE1 PTESE0

0x0013 PTEDD 0 0 PTEDD5 PTEDD4 PTEDD3 PTEDD2 PTEDD1 PTEDD0

0x0014 IRQSC 0 0 IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD

0x0015 Reserved — — — — — — — —

0x0016 KBISC KBEDG7 KBEDG6 KBEDG5 KBEDG4 KBF KBACK KBIE KBIMOD

0x0017 KBIPE KBIPE7 KBIPE6 KBIPE5 KBIPE4 KBIPE3 KBIPE2 KBIPE1 KBIPE0

0x0018 SCI1BDH 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8

0x0019 SCI1BDL SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

0x001A SCI1C1 LOOPS SCISWAI RSRC M WAKE ILT PE PT

0x001B SCI1C2 TIE TCIE RIE ILIE TE RE RWU SBK

0x001C SCI1S1 TDRE TC RDRF IDLE OR NF FE PF

0x001D SCI1S2 0 0 0 0 0 0 0 RAF

0x001E SCI1C3 R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE

0x001F SCI1D Bit 7 6 5 4 3 2 1 Bit 0

0x0020 SCI2BDH 0 0 0 SBR12 SBR11 SBR10 SBR9 SBR8

0x0021 SCI2BDL SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

0x0022 SCI2C1 LOOPS SCISWAI RSRC M WAKE ILT PE PT

0x0023 SCI2C2 TIE TCIE RIE ILIE TE RE RWU SBK

0x0024 SCI2S1 TDRE TC RDRF IDLE OR NF FE PF

0x0025 SCI2S2 0 0 0 0 0 0 0 RAF

0x0026 SCI2C3 R8 T8 TXDIR 0 ORIE NEIE FEIE PEIE

0x0027 SCI2D Bit 7 6 5 4 3 2 1 Bit 0
MC9S08GT16A/GT8A Data Sheet, Rev. 1

44 Freescale Semiconductor

Memory
4.6.2 FLASH Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from FLASH into FOPT. Bits 5
through 2 are not used and always read 0. This register may be read at any time, but writes have no meaning
or effect. To change the value in this register, erase and reprogram the NVOPT location in FLASH memory
as usual and then issue a new MCU reset.

Table 4-7. FLASH Clock Divider Settings

fBus
PRDIV8
(Binary)

DIV5:DIV0
(Decimal)

fFCLK
Program/Erase Timing Pulse

(5 µs Min, 6.7 µs Max)

20 MHz 1 12 192.3 kHz 5.2 µs

10 MHz 0 49 200 kHz 5 µs

8 MHz 0 39 200 kHz 5 µs

4 MHz 0 19 200 kHz 5 µs

2 MHz 0 9 200 kHz 5 µs

1 MHz 0 4 200 kHz 5 µs

200 kHz 0 0 200 kHz 5 µs

150 kHz 0 0 150 kHz 6.7 µs

7 6 5 4 3 2 1 0

R KEYEN FNORED 0 0 0 0 SEC01 SEC00

W

Reset This register is loaded from nonvolatile location NVOPT during reset.

= Unimplemented or Reserved

Figure 4-6. FLASH Options Register (FOPT)

Table 4-8. FOPT Field Descriptions

Field Description

7
KEYEN

Backdoor Key Mechanism Enable — When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only from user (secured) firmware. BDM
commands cannot be used to write key comparison values that would unlock the backdoor key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5, “Security.”
0 No backdoor key access allowed.
1 If user firmware writes an 8-byte value that matches the nonvolatile backdoor key (NVBACKKEY through

NVBACKKEY+7, in that order), security is temporarily disengaged until the next MCU reset.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 57

Resets, Interrupts, and System Configuration
If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The
CPU will not respond until and unless the local interrupt enable is set to 1 to enable the interrupt. The I bit
in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset,
which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and
performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding
to the interrupt. The interrupt sequence follows the same cycle-by-cycle sequence as the SWI instruction
and consists of:

• Saving the CPU registers on the stack

• Setting the I bit in the CCR to mask further interrupts

• Fetching the interrupt vector for the highest-priority interrupt that is currently pending

• Filling the instruction queue with the first three bytes of program information starting from the
address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another
interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0
when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit may be cleared
inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be
serviced without waiting for the first service routine to finish. This practice is not recommended for anyone
other than the most experienced programmers because it can lead to subtle program errors that are difficult
to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR,
A, X, and PC registers to their pre-interrupt values by reading the previously saved information off the
stack.

NOTE
For compatibility with the M68HC08, the H register is not automatically
saved and restored. It is good programming practice to push H onto the stack
at the start of the interrupt service routine (ISR) and restore it just before the
RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced
first (see Table 5-1).

5.4.1 Interrupt Stack Frame

Figure 5-1 shows the contents and organization of a stack frame. Before the interrupt, the stack pointer
(SP) points at the next available byte location on the stack. The current values of CPU registers are stored
on the stack starting with the low-order byte of the program counter (PCL) and ending with the CCR. After
stacking, the SP points at the next available location on the stack which is the address that is one less than
the address where the CCR was saved. The PC value that is stacked is the address of the instruction in the
main program that would have executed next if the interrupt had not occurred.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 65

Central Processor Unit (S08CPUV2)
8.3.6.7 SP-Relative, 16-Bit Offset (SP2)

This variation of indexed addressing uses the 16-bit value in the stack pointer (SP) plus a 16-bit offset
included in the instruction as the address of the operand needed to complete the instruction.

8.4 Special Operations
The CPU performs a few special operations that are similar to instructions but do not have opcodes like
other CPU instructions. In addition, a few instructions such as STOP and WAIT directly affect other MCU
circuitry. This section provides additional information about these operations.

8.4.1 Reset Sequence

Reset can be caused by a power-on-reset (POR) event, internal conditions such as the COP (computer
operating properly) watchdog, or by assertion of an external active-low reset pin. When a reset event
occurs, the CPU immediately stops whatever it is doing (the MCU does not wait for an instruction
boundary before responding to a reset event). For a more detailed discussion about how the MCU
recognizes resets and determines the source, refer to the Resets, Interrupts, and System Configuration
chapter.

The reset event is considered concluded when the sequence to determine whether the reset came from an
internal source is done and when the reset pin is no longer asserted. At the conclusion of a reset event, the
CPU performs a 6-cycle sequence to fetch the reset vector from 0xFFFE and 0xFFFF and to fill the
instruction queue in preparation for execution of the first program instruction.

8.4.2 Interrupt Sequence

When an interrupt is requested, the CPU completes the current instruction before responding to the
interrupt. At this point, the program counter is pointing at the start of the next instruction, which is where
the CPU should return after servicing the interrupt. The CPU responds to an interrupt by performing the
same sequence of operations as for a software interrupt (SWI) instruction, except the address used for the
vector fetch is determined by the highest priority interrupt that is pending when the interrupt sequence
started.

The CPU sequence for an interrupt is:

1. Store the contents of PCL, PCH, X, A, and CCR on the stack, in that order.

2. Set the I bit in the CCR.

3. Fetch the high-order half of the interrupt vector.

4. Fetch the low-order half of the interrupt vector.

5. Delay for one free bus cycle.

6. Fetch three bytes of program information starting at the address indicated by the interrupt vector
to fill the instruction queue in preparation for execution of the first instruction in the interrupt
service routine.

After the CCR contents are pushed onto the stack, the I bit in the CCR is set to prevent other interrupts
while in the interrupt service routine. Although it is possible to clear the I bit with an instruction in the
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 111

Central Processor Unit (S08CPUV2)
TAP Transfer Accumulator to
CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 1

TAX Transfer Accumulator to
X (Index Register Low) X ← (A) – – – – – – INH 97 1

TPA Transfer CCR to
Accumulator A ← (CCR) – – – – – – INH 85 1

TST opr8a
TSTA
TSTX
TST oprx8,X
TST ,X
TST oprx8,SP

Test for Negative or Zero

(M) – 0x00
(A) – 0x00
(X) – 0x00
(M) – 0x00
(M) – 0x00
(M) – 0x00

0 – – ↕ ↕ –

DIR
INH
INH
IX1
IX
SP1

3D
4D
5D
6D
7D

9E6D

dd

ff

ff

4
1
1
4
3
5

TSX Transfer SP to Index Reg. H:X ← (SP) + 0x0001 – – – – – – INH 95 2

TXA Transfer X (Index Reg.
Low) to Accumulator A ← (X) – – – – – – INH 9F 1

TXS Transfer Index Reg. to SP SP ← (H:X) – 0x0001 – – – – – – INH 94 2

WAIT Enable Interrupts; Wait
for Interrupt I bit ← 0; Halt CPU – – 0 – – – INH 8F 2+

1 Bus clock frequency is one-half of the CPU clock frequency.

Table 8-2. HCS08 Instruction Set Summary (Sheet 7 of 7)

Source
Form

Operation Description

Effect
on CCR

A
d

d
re

ss
M

o
d

e

O
p

co
d

e

O
p

er
an

d

B
u

s
C

yc
le

s1

V H I N Z C
MC9S08GT16A/GT8A Data Sheet, Rev. 1

122 Freescale Semiconductor

Internal Clock Generator (S08ICGV4)
2
OSCSTEN

Enable Oscillator in Off Mode — The OSCSTEN bit controls whether or not the oscillator circuit remains
enabled when the ICG enters off mode. This bit has no effect if HGO = 1 and RANGE = 1.
0 Oscillator disabled when ICG is in off mode unless ENABLE is high, CLKS = 10, and REFST = 1.
1 Oscillator enabled when ICG is in off mode, CLKS = 1X and REFST = 1.

1
LOCD

Loss of Clock Disable
0 Loss of clock detection enabled.
1 Loss of clock detection disabled.

Table 9-1. ICGC1 Register Field Descriptions (continued)

Field Description
MC9S08GT16A/GT8A Data Sheet, Rev. 1

132 Freescale Semiconductor

Timer/Pulse-Width Modulator (S08TPMV2)
Figure 10-2. TPM Block Diagram

The central component of the TPM is the 16-bit counter that can operate as a free-running counter, a
modulo counter, or an up-/down-counter when the TPM is configured for center-aligned PWM. The TPM
counter (when operating in normal up-counting mode) provides the timing reference for the input capture,
output compare, and edge-aligned PWM functions. The timer counter modulo registers,
TPMxMODH:TPMxMODL, control the modulo value of the counter. (The values 0x0000 or 0xFFFF
effectively make the counter free running.) Software can read the counter value at any time without
affecting the counting sequence. Any write to either byte of the TPMxCNT counter resets the counter
regardless of the data value written.

PRESCALE AND SELECT

16-BIT COMPARATOR

MAIN 16-BIT COUNTER

16-BIT COMPARATOR

16-BIT LATCH

PORT

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL 0

CHANNEL 1

IN
TE

R
N

AL
 B

U
S

LOGIC

INTERRUPT

PORT
LOGIC

16-BIT COMPARATOR

16-BIT LATCH

CHANNEL n
PORT
LOGIC

COUNTER RESET

DIVIDE BY

CLOCK SOURCE

OFF, BUS, XCLK, EXT

BUSCLK

XCLK
SELECT

SYNC

INTERRUPT

INTERRUPT

INTERRUPT

1, 2, 4, 8, 16, 32, 64, or 128

LOGIC

LOGIC

LOGIC

LOGIC

CLKSACLKSB PS2 PS1 PS0

CPWMS

TOIE

TOF

ELS0A

CH0F

ELS0B

ELS1B ELS1A

ELSnB ELSnA

CH1F

CHnF

CH0IE

CH1IE

CHnIE

MS1B

MS0B

MSnB

MS0A

MS1A

MSnA

. .
 .

. .
 .

. .
 .

TPMxMODH:TPMxMODL

TPMxC0VH:TPMxC0VL

TPMxC1VH:TPMxC1VL

TPMxCnVH:TPMxCnVL

TPMxCHn

TPMxCH1

TPMxCH0

TPMxCLK
MC9S08GT16A/GT8A Data Sheet, Rev. 1

156 Freescale Semiconductor

Timer/Pulse-Width Modulator (S08TPMV2)
When center-aligned PWM operation is specified, the counter counts upward from 0x0000 through its
terminal count and then counts downward to 0x0000 where it returns to up-counting. Both 0x0000 and the
terminal count value (value in TPMxMODH:TPMxMODL) are normal length counts (one timer clock
period long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is
a software-accessible indication that the timer counter has overflowed. The enable signal selects between
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In
up-counting mode, the main 16-bit counter counts from 0x0000 through 0xFFFF and overflows to 0x0000
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When
the main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter
changes direction at the transition from the value set in the modulus register and the next lower count value.
This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center of a
period.)

Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter
for read operations. Whenever either byte of the counter is read (TPMxCNTH or TPMxCNTL), both bytes
are captured into a buffer so when the other byte is read, the value will represent the other byte of the count
at the time the first byte was read. The counter continues to count normally, but no new value can be read
from either byte until both bytes of the old count have been read.

The main timer counter can be reset manually at any time by writing any value to either byte of the timer
count TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency
mechanism in case only one byte of the counter was read before resetting the count.

10.4.2 Channel Mode Selection

Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits
in the channel n status and control registers determine the basic mode of operation for the corresponding
channel. Choices include input capture, output compare, and buffered edge-aligned PWM.

10.4.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an
active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter
into the channel value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge may
be chosen as the active edge that triggers an input capture.

When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support
coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to
the channel status/control register (TPMxCnSC).

An input capture event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

164 Freescale Semiconductor

Serial Communications Interface (S08SCIV1)
the transmit data register is transferred to the shift register (synchronized with the baud rate clock) and the
transmit data register empty (TDRE) status flag is set to indicate another character may be written to the
transmit data buffer at SCIxD.

If no new character is waiting in the transmit data buffer after a stop bit is shifted out the TxD1 pin, the
transmitter sets the transmit complete flag and enters an idle mode, with TxD1 high, waiting for more
characters to transmit.

Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity
that is in progress must first be completed. This includes data characters in progress, queued idle
characters, and queued break characters.

11.3.2.1 Send Break and Queued Idle

The SBK control bit in SCIxC2 is used to send break characters which were originally used to gain the
attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times
including the start and stop bits). Normally, a program would wait for TDRE to become set to indicate the
last character of a message has moved to the transmit shifter, then write 1 and then write 0 to the SBK bit.
This action queues a break character to be sent as soon as the shifter is available. If SBK is still 1 when the
queued break moves into the shifter (synchronized to the baud rate clock), an additional break character is
queued. If the receiving device is another Freescale Semiconductor SCI, the break characters will be
received as 0s in all eight data bits and a framing error (FE = 1) occurs.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake
up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last
character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This
action queues an idle character to be sent as soon as the shifter is available. As long as the character in the
shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD1 pin. If
there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin
that is shared with TxD1 is an output driving a logic 1. This ensures that the TxD1 line will look like a
normal idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.

11.3.3 Receiver Functional Description

In this section, the data sampling technique used to reconstruct receiver data is described in more detail;
two variations of the receiver wakeup function are explained. (The receiver block diagram is shown in
Figure 11-3.)

The receiver is enabled by setting the RE bit in SCIxC2. Character frames consist of a start bit of logic 0,
eight (or nine) data bits (LSB first), and a stop bit of logic 1. For information about 9-bit data mode, refer
to Section 11.3.5.1, “8- and 9-Bit Data Modes.” For the remainder of this discussion, we assume the SCI
is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full,
the data character is transferred to the receive data register and the receive data register full (RDRF) status
flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the overrun
(OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the program
MC9S08GT16A/GT8A Data Sheet, Rev. 1

182 Freescale Semiconductor

Chapter 12
Serial Peripheral Interface (S08SPIV3)

12.1 Introduction
The MC9S08GT16A/GT8A provides one serial peripheral interface (SPI) module. The four pins
associated with SPI functionality are shared with port E pins 2–5. See the Appendix A, “Electrical
Characteristics,” appendix for SPI electrical parametric information. When the SPI is enabled, the
direction of pins is controlled by module configuration. If the SPI is disabled, all four pins can be used as
general-purpose I/O.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 187

Serial Peripheral Interface (S08SPIV3)
12.1.2 Block Diagrams

This section includes block diagrams showing SPI system connections, the internal organization of the SPI
module, and the SPI clock dividers that control the master mode bit rate.

12.1.2.1 SPI System Block Diagram

Figure 12-3 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master
device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI pin) to the
slave while simultaneously shifting data in (on the MISO pin) from the slave. The transfer effectively
exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock
output from the master and an input to the slave. The slave device must be selected by a low level on the
slave select input (SS pin). In this system, the master device has configured its SS pin as an optional slave
select output.

Figure 12-3. SPI System Connections

The most common uses of the SPI system include connecting simple shift registers for adding input or
output ports or connecting small peripheral devices such as serial A/D or D/A converters. Although
Figure 12-3 shows a system where data is exchanged between two MCUs, many practical systems involve
simpler connections where data is unidirectionally transferred from the master MCU to a slave or from a
slave to the master MCU.

12.1.2.2 SPI Module Block Diagram

Figure 12-4 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register.
Data is written to the double-buffered transmitter (write to SPID) and gets transferred to the SPI shift
register at the start of a data transfer. After shifting in a byte of data, the data is transferred into the
double-buffered receiver where it can be read (read from SPID). Pin multiplexing logic controls
connections between MCU pins and the SPI module.

7 6 5 4 3 2 1 0

SPI SHIFTER

CLOCK
GENERATOR

7 6 5 4 3 2 1 0

SPI SHIFTER

SS

SPSCK

MISO

MOSI

SS

SPSCK

MISO

MOSI

MASTER SLAVE
MC9S08GT16A/GT8A Data Sheet, Rev. 1

190 Freescale Semiconductor

Serial Peripheral Interface (S08SPIV3)
12.4.3 SPI Baud Rate Register (SPIBR)

This register is used to set the prescaler and bit rate divisor for an SPI master. This register may be read or
written at any time.

Table 12-3. SPIC2 Register Field Descriptions

Field Description

4
MODFEN

Master Mode-Fault Function Enable — When the SPI is configured for slave mode, this bit has no meaning or
effect. (The SS pin is the slave select input.) In master mode, this bit determines how the SS pin is used (refer
to Table 12-2 for more details).
0 Mode fault function disabled, master SS pin reverts to general-purpose I/O not controlled by SPI
1 Mode fault function enabled, master SS pin acts as the mode fault input or the slave select output

3
BIDIROE

Bidirectional Mode Output Enable — When bidirectional mode is enabled by SPI pin control 0 (SPC0) = 1,
BIDIROE determines whether the SPI data output driver is enabled to the single bidirectional SPI I/O pin.
Depending on whether the SPI is configured as a master or a slave, it uses either the MOSI (MOMI) or MISO
(SISO) pin, respectively, as the single SPI data I/O pin. When SPC0 = 0, BIDIROE has no meaning or effect.
0 Output driver disabled so SPI data I/O pin acts as an input
1 SPI I/O pin enabled as an output

1
SPISWAI

SPI Stop in Wait Mode
0 SPI clocks continue to operate in wait mode
1 SPI clocks stop when the MCU enters wait mode

0
SPC0

SPI Pin Control 0 — The SPC0 bit chooses single-wire bidirectional mode. If MSTR = 0 (slave mode), the SPI
uses the MISO (SISO) pin for bidirectional SPI data transfers. If MSTR = 1 (master mode), the SPI uses the
MOSI (MOMI) pin for bidirectional SPI data transfers. When SPC0 = 1, BIDIROE is used to enable or disable the
output driver for the single bidirectional SPI I/O pin.
0 SPI uses separate pins for data input and data output
1 SPI configured for single-wire bidirectional operation

7 6 5 4 3 2 1 0

R 0
SPPR2 SPPR1 SPPR0

0
SPR2 SPR1 SPR0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-8. SPI Baud Rate Register (SPIBR)

Table 12-4. SPIBR Register Field Descriptions

Field Description

6:4
SPPR[2:0]

SPI Baud Rate Prescale Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate prescaler
as shown in Table 12-5. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler
drives the input of the SPI baud rate divider (see Figure 12-5).

2:0
SPR[2:0]

SPI Baud Rate Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate divider as shown in
Table 12-6. The input to this divider comes from the SPI baud rate prescaler (see Figure 12-5). The output of this
divider is the SPI bit rate clock for master mode.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 195

Serial Peripheral Interface (S08SPIV3)
Figure 12-13. Initialization Flowchart Example for SPI Master Device

INITIALIZE SPI
SPIC1 = 0x74
SPIC2 = 0x00
SPIBR = 0x00

RESET

SPTEF = 1
?

YES

NO

READ SPIS WITH SPTEF
SET TO CLEAR FLAG,
THEN WRITE DATA TO

SPID

CONTINUE
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 203

Serial Peripheral Interface (S08SPIV3)
MC9S08GT16A/GT8A Data Sheet, Rev. 1

204 Freescale Semiconductor

Inter-Integrated Circuit (S08IICV1)
13.1.1 Features

The IIC includes these distinctive features:

• Compatible with IIC bus standard

• Multi-master operation

• Software programmable for one of 64 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• START and STOP signal generation/detection

• Repeated START signal generation

• Acknowledge bit generation/detection

• Bus busy detection

13.1.2 Modes of Operation

The IIC functions the same in normal and monitor modes. A brief description of the IIC in the various
MCU modes is given here.

• Run mode — This is the basic mode of operation. To conserve power in this mode, disable the
module.

• Wait mode — The module will continue to operate while the MCU is in wait mode and can provide
a wake-up interrupt.

• Stop mode — The IIC is inactive in stop3 mode for reduced power consumption. The STOP
instruction does not affect IIC register states. Stop1 and stop2 will reset the register contents.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 207

Inter-Integrated Circuit (S08IICV1)
13.3.3 IIC Control Register (IICC)

7 6 5 4 3 2 1 0

R
IICEN IICIE MST TX TXAK

0 0 0

W RSTA

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 13-5. IIC Control Register (IICC)

Table 13-4. IICC Register Field Descriptions

Field Description

7
IICEN

IIC Enable — The IICEN bit determines whether the IIC module is enabled.
0 IIC is not enabled.
1 IIC is enabled.

6
IICIE

IIC Interrupt Enable — The IICIE bit determines whether an IIC interrupt is requested.
0 IIC interrupt request not enabled.
1 IIC interrupt request enabled.

5
MST

Master Mode Select — The MST bit is changed from a 0 to a 1 when a START signal is generated on the bus
and master mode is selected. When this bit changes from a 1 to a 0 a STOP signal is generated and the mode
of operation changes from master to slave.
0 Slave Mode.
1 Master Mode.

4
TX

Transmit Mode Select — The TX bit selects the direction of master and slave transfers. In master mode this bit
should be set according to the type of transfer required. Therefore, for address cycles, this bit will always be high.
When addressed as a slave this bit should be set by software according to the SRW bit in the status register.
0 Receive.
1 Transmit.

3
TXAK

Transmit Acknowledge Enable — This bit specifies the value driven onto the SDA during data acknowledge
cycles for both master and slave receivers.
0 An acknowledge signal will be sent out to the bus after receiving one data byte.
1 No acknowledge signal response is sent.

2
RSTA

Repeat START — Writing a one to this bit will generate a repeated START condition provided it is the current
master. This bit will always be read as a low. Attempting a repeat at the wrong time will result in loss of arbitration.
MC9S08GT16A/GT8A Data Sheet, Rev. 1

212 Freescale Semiconductor

Electrical Characteristics
Figure A-17. SPI Master Timing (CPHA = 0)

Figure A-18. SPI Master Timing (CPHA = 1)

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

SS1

(OUTPUT)

MSB IN2

BIT 6 . . . 1

LSB IN

MSB OUT2 LSB OUT

BIT 6 . . . 1

(CPOL = 0)

(CPOL = 1)

NOTES:

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
1. SS output mode (DDS7 = 1, SSOE = 1).

12 3

4

5 6

9 10

11

12

4

9

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

MSB IN(2)

BIT 6 . . . 1

LSB IN

MASTER MSB OUT(2) MASTER LSB OUT

BIT 6 . . . 1

PORT DATA

(CPOL = 0)

(CPOL = 1)

PORT DATA

SS(1)

(OUTPUT)

1. SS output mode (DDS7 = 1, SSOE = 1).
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

2

1

12 11 3

4 4 11 12

5 6

9 10
MC9S08GT16A/GT8A Data Sheet, Rev. 1

Freescale Semiconductor 281

