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Memory
4.6.2 FLASH Options Register (FOPT and NVOPT)

During reset, the contents of the nonvolatile location NVOPT are copied from FLASH into FOPT. Bits 5
through 2 are not used and always read 0. This register may be read at any time, but writes have no meaning
or effect. To change the value in this register, erase and reprogram the NVOPT location in FLASH memory
as usual and then issue a new MCU reset.

Table 4-7. FLASH Clock Divider Settings

fBus
PRDIV8
(Binary)

DIV5:DIV0
(Decimal)

fFCLK
Program/Erase Timing Pulse

(5 µs Min, 6.7 µs Max)

20 MHz 1 12 192.3 kHz 5.2 µs

10 MHz 0 49 200 kHz 5 µs

8 MHz 0 39 200 kHz 5 µs

4 MHz 0 19 200 kHz 5 µs

2 MHz 0 9 200 kHz 5 µs

1 MHz 0 4 200 kHz 5 µs

200 kHz 0 0 200 kHz 5 µs

150 kHz 0 0 150 kHz 6.7 µs

7 6 5 4 3 2 1 0

R KEYEN FNORED 0 0 0 0 SEC01 SEC00

W

Reset This register is loaded from nonvolatile location NVOPT during reset.

= Unimplemented or Reserved

Figure 4-6. FLASH Options Register (FOPT)

Table 4-8. FOPT Field Descriptions

Field Description

7
KEYEN

Backdoor Key Mechanism Enable — When this bit is 0, the backdoor key mechanism cannot be used to
disengage security. The backdoor key mechanism is accessible only from user (secured) firmware. BDM
commands cannot be used to write key comparison values that would unlock the backdoor key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5, “Security.”
0 No backdoor key access allowed.
1 If user firmware writes an 8-byte value that matches the nonvolatile backdoor key (NVBACKKEY through

NVBACKKEY+7, in that order), security is temporarily disengaged until the next MCU reset.
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Memory
4.6.3 FLASH Configuration Register (FCNFG)

Bits 7 through 5 may be read or written at any time. Bits 4 through 0 always read 0 and cannot be written.

4.6.4 FLASH Protection Register (FPROT and NVPROT)

During reset, the contents of the nonvolatile location NVPROT are copied from FLASH into FPROT. This
register may be read at any time, but user program writes have no meaning or effect. Background debug
commands can write to FPROT.

6
FNORED

Vector Redirection Disable — When this bit is 1, vector redirection is disabled.
0 Vector redirection enabled.
1 Vector redirection disabled.

1:0
SEC0[1:0]

Security State Code — This 2-bit field determines the security state of the MCU as shown below. When the
MCU is secure, the contents of RAM and FLASH memory cannot be accessed by instructions from any
unsecured source including the background debug interface. For more detailed information about security, refer
to Section 4.5, “Security.”
00 Secure
01 Secure
10 Unsecured
11 Secure
SEC0[1:0] changes to 10 after successful backdoor key entry or a successful blank check of FLASH.

7 6 5 4 3 2 1 0

R 0 0
KEYACC

0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 4-7. FLASH Configuration Register (FCNFG)

Table 4-9. FCNFG Field Descriptions

Field Description

5
KEYACC

Enable Writing of Access Key — This bit enables writing of the backdoor comparison key. For more detailed
information about the backdoor key mechanism, refer to Section 4.5, “Security.”
0 Writes to 0xFFB0–0xFFB7 are interpreted as the start of a FLASH programming or erase command.
1 Writes to NVBACKKEY (0xFFB0–0xFFB7) are interpreted as comparison key writes.

Reads of the FLASH return invalid data.

Table 4-8. FOPT Field Descriptions (continued)

Field Description
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Memory
4.6.6 FLASH Command Register (FCMD)

Only five command codes are recognized in normal user modes as shown in Table 4-13. Refer to
Section 4.4.3, “Program and Erase Command Execution” for a detailed discussion of FLASH
programming and erase operations.

5
FPVIOL

Protection Violation Flag — FPVIOL is set automatically when FCBEF is cleared to register a command that
attempts to erase or program a location in a protected block (the erroneous command is ignored). FPVIOL is
cleared by writing a 1 to FPVIOL.
0 No protection violation.
1 An attempt was made to erase or program a protected location.

4
FACCERR

Access Error Flag — FACCERR is set automatically when the proper command sequence is not followed
exactly (the erroneous command is ignored), if a program or erase operation is attempted before the FCDIV
register has been initialized, or if the MCU enters stop while a command was in progress. For a more detailed
discussion of the exact actions that are considered access errors, see Section 4.4.5, “Access Errors.” FACCERR
is cleared by writing a 1 to FACCERR. Writing a 0 to FACCERR has no meaning or effect.
0 No access error has occurred.
1 An access error has occurred.

2
FBLANK

FLASH Verified as All Blank (Erased) Flag — FBLANK is set automatically at the conclusion of a blank check
command if the entire FLASH array was verified to be erased. FBLANK is cleared by clearing FCBEF to write a
new valid command. Writing to FBLANK has no meaning or effect.
0 After a blank check command is completed and FCCF = 1, FBLANK = 0 indicates the FLASH array is not

completely erased.
1 After a blank check command is completed and FCCF = 1, FBLANK = 1 indicates the FLASH array is

completely erased (all 0xFF).

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W FCMD7 FCMD6 FCMD5 FCMD4 FCMD3 FCMD2 FCMD1 FCMD0

Reset 0 0 0 0 0 0 0 0

Figure 4-10. FLASH Command Register (FCMD)

Table 4-12. FCMD Field Descriptions

Field Description

7:0
FCMD[7:0]

FLASH Command Bits -- See Table 4-13 for a description of FCMD[7:0].

Table 4-11. FSTAT Field Descriptions (continued)

Field Description
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Central Processor Unit (S08CPUV2)
8.5 HCS08 Instruction Set Summary
Instruction Set Summary Nomenclature

The nomenclature listed here is used in the instruction descriptions in Table 8-2.

Operators

( )  = Contents of register or memory location shown inside parentheses
← = Is loaded with (read: “gets”)
& = Boolean AND
| = Boolean OR

⊕ = Boolean exclusive-OR
× = Multiply
÷ = Divide
: = Concatenate

+ = Add
– = Negate (two’s complement)

CPU registers

A = Accumulator
CCR = Condition code register

H = Index register, higher order (most significant) 8 bits
X = Index register, lower order (least significant) 8 bits

PC = Program counter
PCH = Program counter, higher order (most significant) 8 bits
PCL = Program counter, lower order (least significant) 8 bits

SP = Stack pointer

Memory and addressing

M = A memory location or absolute data, depending on addressing mode
M:M + 0x0001= A 16-bit value in two consecutive memory locations. The higher-order (most

significant) 8 bits are located at the address of M, and the lower-order (least
significant) 8 bits are located at the next higher sequential address.

Condition code register (CCR) bits

V = Two’s complement overflow indicator, bit 7
H = Half carry, bit 4
I = Interrupt mask, bit 3

N = Negative indicator, bit 2
Z = Zero indicator, bit 1
C = Carry/borrow, bit 0 (carry out of bit 7)

CCR activity notation

– = Bit not affected
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Central Processor Unit (S08CPUV2)
LDX  #opr8i
LDX opr8a
LDX opr16a
LDX oprx16,X
LDX oprx8,X
LDX   ,X
LDX oprx16,SP
LDX oprx8,SP

Load X (Index Register
Low) from Memory X ← (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9EDE
9EEE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

LSL opr8a
LSLA
LSLX
LSL oprx8,X
LSL  ,X
LSL oprx8,SP

Logical Shift Left
(Same as ASL) ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E68

dd

ff

ff

5
1
1
5
4
6

LSR opr8a
LSRA
LSRX
LSR oprx8,X
LSR  ,X
LSR oprx8,SP

Logical Shift Right ↕ – – 0 ↕ ↕

DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E64

dd

ff

ff

5
1
1
5
4
6

MOV opr8a,opr8a
MOV opr8a,X+
MOV  #opr8i,opr8a
MOV  ,X+,opr8a

Move

(M)destination ← (M)source

H:X ← (H:X) + 0x0001 in
IX+/DIR and DIR/IX+ Modes

0 – – ↕ ↕ –
DIR/DIR
DIR/IX+
IMM/DIR
IX+/DIR

4E
5E
6E
7E

dd dd
dd
ii dd
dd

5
5
4
5

MUL Unsigned multiply X:A ← (X) × (A) – 0 – – – 0 INH 42 5

NEG opr8a
NEGA
NEGX
NEG oprx8,X
NEG  ,X
NEG oprx8,SP

Negate
(Two’s Complement)

M ← – (M) = 0x00 – (M)
A ← – (A) = 0x00 – (A)
X ← – (X) = 0x00 – (X)
M ← – (M) = 0x00 – (M)
M ← – (M) = 0x00 – (M)
M ← – (M) = 0x00 – (M)

– – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

30
40
50
60
70

9E60

dd

ff

ff

5
1
1
5
4
6

NOP No Operation Uses 1 Bus Cycle – – – – – – INH 9D 1

NSA Nibble Swap
Accumulator A ← (A[3:0]:A[7:4]) – – – – – – INH 62 1

ORA  #opr8i
ORA opr8a
ORA opr16a
ORA oprx16,X
ORA oprx8,X
ORA   ,X
ORA oprx16,SP
ORA oprx8,SP

Inclusive OR Accumulator
and Memory A ← (A) | (M) 0 – – ↕ ↕ –

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AA
BA
CA
DA
EA
FA

9EDA
9EEA

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

PSHA Push Accumulator onto
Stack Push (A); SP ← (SP) – 0x0001 – – – – – – INH 87 2

PSHH Push H (Index Register
High) onto Stack Push (H); SP ← (SP) – 0x0001 – – – – – – INH 8B 2

PSHX Push X (Index Register
Low) onto Stack Push (X); SP ← (SP) – 0x0001 – – – – – – INH 89 2

PULA Pull Accumulator from
Stack SP ← (SP + 0x0001); Pull (A) – – – – – – INH 86 3

PULH Pull H (Index Register
High) from Stack SP ← (SP + 0x0001); Pull (H) – – – – – – INH 8A 3

PULX Pull X (Index Register
Low) from Stack SP ← (SP + 0x0001); Pull (X) – – – – – – INH 88 3

ROL opr8a
ROLA
ROLX
ROL oprx8,X
ROL  ,X
ROL oprx8,SP

Rotate Left through Carry ↕ – – ↕ ↕ ↕

DIR
INH
INH
IX1
IX
SP1

39
49
59
69
79

9E69

dd

ff

ff

5
1
1
5
4
6

Table 8-2. HCS08 Instruction Set Summary (Sheet 5 of 7)

Source
Form

Operation Description

Effect
on CCR

A
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d
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ss
M

o
d

e

O
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co
d

e

O
p

er
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d

B
u

s 
C

yc
le

s1

V H I N Z C

C

b0b7

0

b0b7

C0

C

b0b7
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Internal Clock Generator (S08ICGV4)
9.4.7.1 FLL Engaged External Unlocked

FEE unlocked is entered when FEE is entered and the count error (∆n) output from the subtractor is greater
than the maximum nunlock or less than the minimum nunlock, as required by the lock detector to detect the
unlock condition.

The ICG will remain in this state while the count error (∆n) is greater than the maximum nlock or less than
the minimum nlock, as required by the lock detector to detect the lock condition.

In this state, the pulse counter, subtractor, digital loop filter, and DCO form a closed loop and attempt to
lock it according to their operational descriptions later in this section. Upon entering this state and until
the FLL becomes locked, the output clock signal ICGOUT frequency is given by fICGDCLK / (2×R) This
extra divide by two prevents frequency overshoots during the initial locking process from exceeding
chip-level maximum frequency specifications. After the FLL has locked, if an unexpected loss of lock
causes it to re-enter the unlocked state while the ICG remains in FEE mode, the output clock signal
ICGOUT frequency is given by fICGDCLK / R.

9.4.7.2 FLL Engaged External Locked

FEE locked is entered from FEE unlocked when the count error (∆n) is less than nlock (max) and greater
than nlock (min) for a given number of samples, as required by the lock detector to detect the lock
condition. The output clock signal ICGOUT frequency is given by fICGDCLK/R. In FLL engaged external
locked, the filter value is updated only once every four comparison cycles. The update made is an average
of the error measurements taken in the four previous comparisons.

9.4.8 FLL Lock and Loss-of-Lock Detection

To determine the FLL locked and loss-of-lock conditions, the pulse counter counts the pulses of the DCO
for one comparison cycle (see Table 9-9 for explanation of a comparison cycle) and passes this number to
the subtractor. The subtractor compares this value to the value in MFD and produces a count error, ∆n. To
achieve locked status, ∆n must be between nlock (min) and nlock (max). After the FLL has locked, ∆n must
stay between nunlock (min) and nunlock (max) to remain locked. If ∆n goes outside this range unexpectedly,
the LOLS status bit is set and remains set until cleared by software or until the MCU is reset. LOLS is
cleared by reading ICGS1 then writing 1 to ICGIF (LOLRE = 0), or by a loss-of-lock induced reset
(LOLRE = 1), or by any MCU reset.

If the ICG enters the off state due to stop mode when ENBDM = OSCSTEN = 0, the FLL loses locked
status (LOCK is cleared), but LOLS remains unchanged because this is not an unexpected loss-of-lock
condition. Though it would be unusual, if ENBDM is cleared to 0 while the MCU is in stop, the ICG enters
the off state. Because this is an unexpected stopping of clocks, LOLS will be set when the MCU wakes up
from stop.

Expected loss of lock occurs when the MFD or CLKS bits are changed or in FEI mode only, when the
TRIM bits are changed. In these cases, the LOCK bit will be cleared until the FLL regains lock, but the
LOLS will not be set.
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Timer/Pulse-Width Modulator (S08TPMV2)
10.3.4 Timer x Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel interrupt status flag and control bits that are used to configure the
interrupt enable, channel configuration, and pin function.

7 6 5 4 3 2 1 0

R
CHnF CHnIE MSnB MSnA ELSnB ELSnA

0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 10-8. Timer x Channel n Status and Control Register (TPMxCnSC)

Table 10-4. TPMxCnSC Register Field Descriptions

Field Description

7
CHnF

Channel n Flag — When channel n is configured for input capture, this flag bit is set when an active edge occurs
on the channel n pin. When channel n is an output compare or edge-aligned PWM channel, CHnF is set when
the value in the TPM counter registers matches the value in the TPM channel n value registers. This flag is
seldom used with center-aligned PWMs because it is set every time the counter matches the channel value
register, which correspond to both edges of the active duty cycle period.
A corresponding interrupt is requested when CHnF is set and interrupts are enabled (CHnIE = 1). Clear CHnF
by reading TPMxCnSC while CHnF is set and then writing a 0 to CHnF. If another interrupt request occurs before
the clearing sequence is complete, the sequence is reset so CHnF would remain set after the clear sequence
was completed for the earlier CHnF. This is done so a CHnF interrupt request cannot be lost by clearing a
previous CHnF. Reset clears CHnF. Writing a 1 to CHnF has no effect.
0 No input capture or output compare event occurred on channel n
1 Input capture or output compare event occurred on channel n

6
CHnIE

Channel n Interrupt Enable — This read/write bit enables interrupts from channel n. Reset clears CHnIE.
0 Channel n interrupt requests disabled (use software polling)
1 Channel n interrupt requests enabled

5
MSnB

Mode Select B for TPM Channel n — When CPWMS = 0, MSnB = 1 configures TPM channel n for
edge-aligned PWM mode. For a summary of channel mode and setup controls, refer to Table 10-5.

4
MSnA

Mode Select A for TPM Channel n — When CPWMS = 0 and MSnB = 0, MSnA configures TPM channel n for
input capture mode or output compare mode. Refer to Table 10-5 for a summary of channel mode and setup
controls.

3:2
ELSn[B:A]

Edge/Level Select Bits — Depending on the operating mode for the timer channel as set by
CPWMS:MSnB:MSnA and shown in Table 10-5, these bits select the polarity of the input edge that triggers an
input capture event, select the level that will be driven in response to an output compare match, or select the
polarity of the PWM output.
Setting ELSnB:ELSnA to 0:0 configures the related timer pin as a general-purpose I/O pin unrelated to any timer
channel functions. This function is typically used to temporarily disable an input capture channel or to make the
timer pin available as a general-purpose I/O pin when the associated timer channel is set up as a software timer
that does not require the use of a pin.
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Timer/Pulse-Width Modulator (S08TPMV2)
If the associated port pin is not stable for at least two bus clock cycles before changing to input capture
mode, it is possible to get an unexpected indication of an edge trigger. Typically, a program would clear
status flags after changing channel configuration bits and before enabling channel interrupts or using the
status flags to avoid any unexpected behavior.

10.3.5 Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the
output compare value for the output compare or PWM functions. The channel value registers are cleared
by reset.

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes
into a buffer where they remain latched until the other byte is read. This latching mechanism also resets
(becomes unlatched) when the TPMxCnSC register is written.

Table 10-5. Mode, Edge, and Level Selection

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration

X XX 00 Pin not used for TPM channel; use as an external clock for the TPM or
revert to general-purpose I/O

0 00 01 Input capture Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01 00 Output
compare

Software compare only

01 Toggle output on compare

10 Clear output on compare

11 Set output on compare

1X 10 Edge-aligned
PWM

High-true pulses (clear output on compare)

X1 Low-true pulses (set output on compare)

1 XX 10 Center-aligned
PWM

High-true pulses (clear output on compare-up)

X1 Low-true pulses (set output on compare-up)

7 6 5 4 3 2 1 0

R
Bit 15 14 13 12 11 10 9 Bit 8

W

Reset 0 0 0 0 0 0 0 0

Figure 10-9. Timer x Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R
Bit 7 6 5 4 3 2 1 Bit 0

W

Reset 0 0 0 0 0 0 0 0

Figure 10-10. Timer Channel Value Register Low (TPMxCnVL)
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Timer/Pulse-Width Modulator (S08TPMV2)
10.4.2.2 Output Compare Mode

With the output compare function, the TPM can generate timed pulses with programmable position,
polarity, duration, and frequency. When the counter reaches the value in the channel value registers of an
output compare channel, the TPM can set, clear, or toggle the channel pin.

In output compare mode, values are transferred to the corresponding timer channel value registers only
after both 8-bit bytes of a 16-bit register have been written. This coherency sequence can be manually reset
by writing to the channel status/control register (TPMxCnSC).

An output compare event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.

10.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS = 0) and can
be used when other channels in the same TPM are configured for input capture or output compare
functions. The period of this PWM signal is determined by the setting in the modulus register
(TPMxMODH:TPMxMODL). The duty cycle is determined by the setting in the timer channel value
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by the setting in the
ELSnA control bit. Duty cycle cases of 0 percent and 100 percent are possible.

As Figure 10-11 shows, the output compare value in the TPM channel registers determines the pulse width
(duty cycle) of the PWM signal. The time between the modulus overflow and the output compare is the
pulse width. If ELSnA = 0, the counter overflow forces the PWM signal high and the output compare
forces the PWM signal low. If ELSnA = 1, the counter overflow forces the PWM signal low and the output
compare forces the PWM signal high.

Figure 10-11. PWM Period and Pulse Width (ELSnA = 0)

When the channel value register is set to 0x0000, the duty cycle is 0 percent. By setting the timer channel
value register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus setting, 100% duty cycle
can be achieved. This implies that the modulus setting must be less than 0xFFFF to get 100% duty cycle.

Because the HCS08 is a family of 8-bit MCUs, the settings in the timer channel registers are buffered to
ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to either register,
TPMxCnVH or TPMxCnVL, write to buffer registers. In edge-PWM mode, values are transferred to the
corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have been written and
the value in the TPMxCNTH:TPMxCNTL counter is 0x0000. (The new duty cycle does not take effect
until the next full period.)
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Serial Communications Interface (S08SCIV1)
11.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character
time (10 or 11 bit times because of the start and stop bits).

When the RWU bit is set, the idle character that wakes a receiver does not set the receiver idle bit, IDLE,
or the receive data register full flag, RDRF. It therefore will not generate an interrupt when this idle
character occurs. The receiver will wake up and wait for the next data transmission which will set RDRF
and generate an interrupt if enabled.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle
bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward
the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time,
so the idle detection is not affected by the data in the last character of the previous message.

11.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth
bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved
for use in address frames. The logic 1 MSB of an address frame clears the receivers RWU bit before the
stop bit is received and sets the RDRF flag.

11.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events.
Another interrupt vector is associated with the receiver for RDRF and IDLE events, and a third vector is
used for OR, NF, FE, and PF error conditions. Each of these eight interrupt sources can be separately
masked by local interrupt enable masks. The flags can still be polled by software when the local masks are
cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that optionally can generate hardware interrupt requests. Transmit
data register empty (TDRE) indicates when there is room in the transmit data buffer to write another
transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt will be
requested whenever TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished
transmitting all data, preamble, and break characters and is idle with TxD1 high. This flag is often used in
systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt
enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1. Instead of hardware
interrupts, software polling may be used to monitor the TDRE and TC status flags if the corresponding TIE
or TCIE local interrupt masks are 0s.

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive
data register by reading SCIxD. The RDRF flag is cleared by reading SCIxS1 while RDRF = 1 and then
reading SCIxD.
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Inter-Integrated Circuit (S08IICV1)
13.3.5 IIC Data I/O Register (IICD)

NOTE
When transmitting out of master receive mode, the IIC mode should be
switched before reading the IICD register to prevent an inadvertent
initiation of a master receive data transfer.

In slave mode, the same functions are available after an address match has occurred.

Note that the TX bit in IICC must correctly reflect the desired direction of transfer in master and slave
modes for the transmission to begin. For instance, if the IIC is configured for master transmit but a master
receive is desired, then reading the IICD will not initiate the receive.

Reading the IICD will return the last byte received while the IIC is configured in either master receive or
slave receive modes. The IICD does not reflect every byte that is transmitted on the IIC bus, nor can
software verify that a byte has been written to the IICD correctly by reading it back.

In master transmit mode, the first byte of data written to IICD following assertion of MST is used for the
address transfer and should comprise of the calling address (in bit 7–bit 1) concatenated with the required
R/W bit (in position bit 0).

7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0

Figure 13-7. IIC Data I/O Register (IICD)

Table 13-6. IICD Register Field Descriptions

Field Description

7:0
DATA

Data — In master transmit mode, when data is written to the IICD, a data transfer is initiated. The most significant
bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.
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Analog-to-Digital Converter (S08ATDV3)
Table 14-3. Available Result Data Formats

RES8 DJM SGN  Data Formats of Result

Analog Input
VREFH = VDDA, VREFL = VSSA

ATDRH:ATDRL

VDDA VSSA

1 0 0 8-bit : left justified : unsigned $FF:$00 $00:$00
1 0 1 8-bit : left justified : signed $7F:$00 $80:$00

1 1 X1

1 The SGN bit is only effective when DJM = 0. When DJM = 1, SGN is ignored.

8-bit : left justified2 : unsigned

2 8-bit results are always in ATDRH.

$FF:$00 $00:$00

0 0 0 10-bit : left justified : unsigned $FF:$C0 $00:$00
0 0 1 10-bit : left justified : signed $7F:$C0 $80:$00

0 1 X1 10-bit : right justified : unsigned $03:$FF $00:$00

Table 14-4. Clock Prescaler Values

PRS Factor = (PRS +1) × 2
Max Bus Clock

MHz
(2 MHz max ATD Clock)1

1 Maximum ATD conversion clock frequency is 2 MHz. The max bus clock frequency is computed from the max ATD conversion
clock frequency times the indicated prescaler setting; i.e., for a PRS of 0, max bus clock = 2 (max ATD conversion clock
frequency) × 2 (Factor) = 4 MHz.

Max Bus Clock
MHz

(1 MHz max ATD Clock)2

2 Use these settings if the maximum desired ATD conversion clock frequency is 1 MHz. The max bus clock frequency is
computed from the max ATD conversion clock frequency times the indicated prescaler setting; i.e., for a PRS of 0, max bus
clock =  1 (max ATD conversion clock frequency) × 2 (Factor) = 2 MHz.

Min Bus Clock3

MHz
(500 kHz min ATD Clock)

3 Minimum ATD conversion clock frequency is 500 kHz. The min bus clock frequency is computed from the min ATD conversion
clock frequency times the indicated prescaler setting; i.e., for a PRS of 1, min bus clock = 0.5 (min ATD conversion clock
frequency) × 2 (Factor) = 1 MHz.

0000 2 4 2 1
0001 4 8 4 2
0010 6 12 6 3
0011 8 16 8 4
0100 10 20 10 5
0101 12 20 12 6
0110 14 20 14 7
0111 16 20 16 8
1000 18 20 18 9
1001 20 20 20 10
1010 22 20 20 11
1011 24 20 20 12
1100 26 20 20 13
1101 28 20 20 14
1110 30 20 20 15
1111 32 20 20 16
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Analog-to-Digital Converter (S08ATDV3)
14.3.2 ATD Status and Control (ATDSC)

Writes to the ATD status and control register clears the CCF flag, cancels any pending interrupts, and
initiates a new conversion.

7 6 5 4 3 2 1 0

R CCF
ATDIE ATDCO ATDCH

W

Reset 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Figure 14-6. ATD Status and Control Register (ATDSC)

Table 14-5. ATDSC Register Field Descriptions

Field Description

7
CCF

Conversion Complete Flag — The CCF is a read-only bit which is set each time a conversion is complete. The
CCF bit is cleared whenever the ATDSC register is written. It is also cleared whenever the result registers,
ATDRH or ATDRL, are read.
0 Current conversion is not complete.
1 Current conversion is complete.

6
ATDIE

ATD Interrupt Enabled — When this bit is set, an interrupt is generated upon completion of an ATD conversion.
At this time, the result registers contain the result data generated by the conversion. The interrupt will remain
pending as long as the conversion complete flag CCF is set. If the ATDIE bit is cleared, then the CCF bit must
be polled to determine when the conversion is complete. Note that system reset clears pending interrupts.
0 ATD interrupt disabled.
1 ATD interrupt enabled.

5
ATDCO

ATD Continuous Conversion — When this bit is set, the ATD will convert samples continuously and update the
result registers at the end of each conversion. When this bit is cleared, only one conversion is completed between
writes to the ATDSC register.
0 Single conversion mode.
1 Continuous conversion mode.

4:0
ATDCH

Analog Input Channel Select — This field of bits selects the analog input channel whose signal is sampled and
converted to digital codes. Table 14-6 lists the coding used to select the various analog input channels.

Table 14-6. Analog Input Channel Select Coding

ATDCH Analog Input Channel

00 AD0

01 AD1

02 AD2

03 AD3

04 AD4

05 AD5

06 AD6

07 AD7

08–1D Reserved (default to VREFL)

1E VREFH

1F VREFL
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Analog-to-Digital Converter (S08ATDV3)
14.4 Functional Description
The ATD uses a successive approximation register (SAR) architecture. The ATD contains all the necessary
elements to perform a single analog-to-digital conversion.

A write to the ATDSC register initiates a new conversion. A write to the ATDC register will interrupt the
current conversion but it will not initiate a new conversion. A write to the ATDPE register will also abort
the current conversion but will not initiate a new conversion. If a conversion is already running when a
write to the ATDSC register is made, it will be aborted and a new one will be started.

14.4.1 Mode Control

The ATD has a mode control unit to communicate with the sample and hold (S/H) machine and the SAR
machine when necessary to collect samples and perform conversions. The mode control unit signals the
S/H machine to begin collecting a sample and for the SAR machine to begin receiving a sample. At the
end of the sample period, the S/H machine signals the SAR machine to begin the analog-to-digital
conversion process. The conversion process is terminated when the SAR machine signals the end of
conversion to the mode control unit. For VREFL and VREFH, the SAR machine uses the reference potentials
to set the sampled signal level within itself without relying on the S/H machine to deliver them.

The mode control unit organizes the conversion, specifies the input sample channel, and moves the digital
output data from the SAR register to the result register. The result register consists of a dual-port register.
The SAR register writes data into the register through one port while the module data bus reads data out
of the register through the other port.

14.4.2 Sample and Hold

The S/H machine accepts analog signals and stores them as capacitor charge on a storage node located in
the SAR machine. Only one sample can be held at a time so the S/H machine and the SAR machine can
not run concurrently even though they are independent machines. Figure 14-10 shows the placement of the
various resistors and capacitors.

Figure 14-10. Resistor and Capacitor Placement
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Development Support
15.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture
bus information and what information to capture. The system relies on the single-wire background debug
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map.
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any
of the control and status registers for the debug module. The one exception is that the debug system can
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in
Section 15.3.6, “Hardware Breakpoints.”

15.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is
actually executed as opposed to only being read from memory into the instruction queue. The comparators
are also capable of magnitude comparisons to support the inside range and outside range trigger modes.
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an
additional purpose, in full address plus data comparisons they are used to decide which of these buses to
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU

• Storage of data bus values into the FIFO

• Starting to store change-of-flow addresses into the FIFO (begin type trace)

• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

15.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and
MC9S08GT16A/GT8A Data Sheet, Rev. 1
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Development Support
15.4.3.9 Debug Status Register (DBGS)

This is a read-only status register.

7 6 5 4 3 2 1 0

R AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 15-9. Debug Status Register (DBGS)

Table 15-6. DBGS Register Field Descriptions

Field Description

7
AF

Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match

6
BF

Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match

5
ARMF

Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed

3:0
CNT[3:0]

FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO.
The external debug host is responsible for keeping track of the count as information is read out of the FIFO.
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
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Electrical Characteristics
Figure A-10. Internal Oscillator Deviation from Trimmed Frequency

A.10 AC Characteristics
This section describes ac timing characteristics for each peripheral system. For detailed information about
how clocks for the bus are generated, see Chapter 9, “Internal Clock Generator (S08ICGV4).”

1 Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.
2 Loss of reference frequency is the reference frequency detected internally, which transitions the ICG into self-clocked

mode if it is not in the desired range.
3 Loss of DCO frequency is the DCO frequency detected internally, which transitions the ICG into FLL bypassed external

mode (if an external reference exists) if it is not in the desired range.
4 This parameter is characterized before qualification rather than 100% tested.
5 Proper PC board layout procedures must be followed to achieve specifications.
6 This specification applies to the period of time required for the FLL to lock after entering FLL engaged internal or external

modes. If a crystal/resonator is being used as the reference, this specification assumes it is already running.
7 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fICGOUT.

Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the FLL circuitry via VDDA and VSSA and variation in crystal oscillator frequency increase the CJitter
percentage for a given interval.

8 See Figure A-10
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