

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21144sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/14 Group, R8C/15 Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0102-0200 Rev.2.00 Jan 30, 2006

1. Overview

This MCU is built using the high-performance silicon gate CMOS process using a R8C/Tiny Series CPU core and is packaged in a 20-pin plastic molded LSSOP. This MCU operates using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, it is capable of executing instructions at high speed.

Furthermore, the data flash ROM (1KB × 2blocks) is embedded in the R8C/15 group.

The difference between R8C/14 and R8C/15 groups is only the existence of the data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliance, office equipment, housing equipment (sensor, security), general industrial equipment, audio, etc.

	Item	Performance
CPU	Number of Basic Instructions	89 instructions
	Minimum Instruction	50ns (f(XIN)=20MHz, VCC=3.0 to 5.5V)
	Execution Time	100ns (f(XIN)=10MHz, VCC=2.7 to 5.5V)
	Operating Mode	Single-chip
	Memory Space	1 Mbyte
	Memory Capacity	See Table 1.4 R8C/15 Group Product Information
Peripheral	Port	I/O : 13 pins (including LED drive port),
Function		Input : 2 pins
	LED drive port	I/O port: 4 pins
	Timer	Timer X: 8 bits x 1 channel, Timer Z: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Circuits of input capture and output compare)
	Serial Interface	1 channel
		Clock synchronous serial I/O, UART
	Chip-select clock	1 channel
	synchronous serial I/O (SSU)	
	A/D Converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog Timer	15 bits × 1 channel (with prescaler)
		Reset start selectable, Count source protection mode
	Interrupt	Internal: 9 factors, External: 4 factors, Software: 4 factors
		Priority level: 7 levels
	Clock Generation Circuit	2 circuits
		 Main clock generation circuit (Equipped with a built-in
		feedback resistor)
		On-chip oscillator (high speed, low speed)
		Equipped with frequency adjustment function on high-
	Oppillation Oton Data sticn	speed on-chip oscillator
	Oscillation Stop Detection	Main clock oscillation stop detection function
	Function	
	Voltage Detection Circuit	Included
	Power on Reset Circuit	
Electric	Supply Voltage	VCC=3.0 to 5.5V (f(XIN)=20MHz)
Characteristics		VCC=2.7 to 5.5V (f(XIN)=10MHz)
	Power Consumption	Typ. 9mA (VCC=5.0V, f(XIN)=20MHz)
		Typ. 5mA (VCC=3.0V, f(XIN)=10MHz)
		Typ. $35\mu A$ (VCC=3.0V, wait mode, peripheral clock off)
		Typ. 0.7µA (VCC=3.0V, stop mode)
Flash Memory	Program/Erase Supply	VCC=2.7 to 5.5V
	Voltage	
	Program/Erase Endurance	10,000 times (Data flash)
		1,000 times (Program ROM)
Operating Ambi	ent Temperature	-20 to 85°C
		-40 to 85°C (D Version)
Package		20-pin plastic mold LSSOP

Table 1.2 Performance Outline of the R8C/15 Group

1.5 Pin Assignments

Figure 1.4 shows the PLSP0020JB-A Package Pin Assignment (top view).

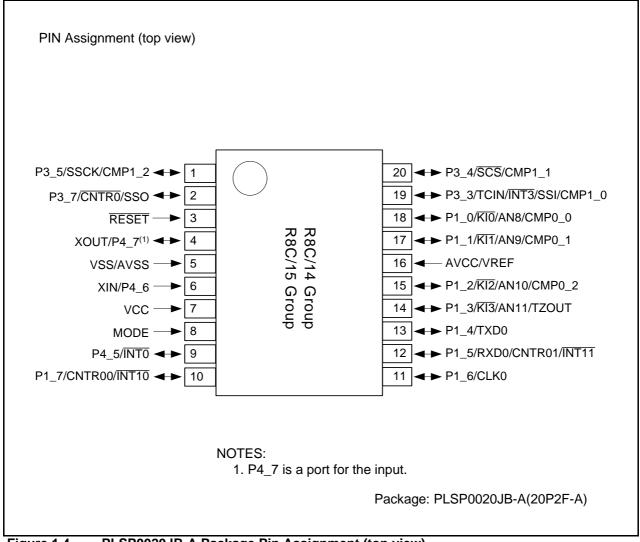


Figure 1.4 PLSP0020JB-A Package Pin Assignment (top view)

				I/O Pin o	f Peripheral	Function	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	A/D Converter
1		P3_5		CMP1_2		SSCK	
2		P3_7		CNTR0		SSO	
3	RESET						
4	XOUT	P4_7					
5	VSS/AVSS						
6	XIN	P4_6					
7	VCC						
8	MODE						
9		P4_5	INT0				
10		P1_7	INT10	CNTR00			
11		P1_6			CLK0		
12		P1_5	INT11	CNTR01	RXD0		
13		P1_4			TXD0		
14		P1_3	KI3	TZOUT			AN11
15		P1_2	KI2	CMP0_2			AN10
16	AVCC/VREF						
17		P1_1	KI1	CMP0_1			AN9
18		P1_0	KI0	CMP0_0			AN8
19		P3_3	INT3	TCIN/CMP1_0		SSI	
20		P3_4		CMP1_1		SCS	

 Table 1.6
 Pin Name Information by Pin Number

2.1 Data Registers (R0, R1, R2 and R3)

R0 is a 16-bit register for transfer, arithmetic and logic operations. The same applies to R1 to R3. The R0 can be split into high-order bit (R0H) and low-order bit (R0L) to be used separately as 8-bit data registers. The same applies to R1H and R1L as R0H and R0L. R2 can be combined with R0 to be used as a 32-bit data register (R2R0). The same applies to R3R1 as R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. They also are used for transfer, arithmetic and logic operations. The same applies to A1 as A0. A0 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC, 20 bits wide, indicates the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP and ISP, are 16 bits wide each. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is a 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic logic unit.

2.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.8.3 Zero Flag (Z)

The Z flag is set to "1" when an arithmetic operation resulted in 0; otherwise, "0".

2.8.4 Sign Flag (S)

The S flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, "0".

2.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is "0". The register bank 1 is selected when this flag is set to "1".

2.8.6 Overflow Flag (O)

The O flag is set to "1" when the operation resulted in an overflow; otherwise, "0".

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0", and are enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is set to "0", USP is selected when the U flag is set to "1". The U flag is set to "0" when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

When write to this bit, set to "0". When read, its content is indeterminate.

Table 4.3	SFR Information(3) ⁽¹⁾
-----------	-----------------------------------

Address	Register	Symbol	After reset
0080h	Timer Z Mode Register	TZMR	00h
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	00h
0085h	Prescaler Z Register	PREZ	FFh
0086h	Timer Z Secondary Register	TZSC	FFh
0087h	Timer Z Primary Register	TZPR	FFh
0088h		1211	
0088h			
	Times 7 Output Operated De sister	7700	0.01-
008Ah	Timer Z Output Control Register	TZOC	00h
008Bh	Timer X Mode Register	TXMR	00h
008Ch	Prescaler X Register	PREX	FFh
008Dh	Timer X Register	ТХ	FFh
008Eh	Timer Count Source Setting Register	TCSS	00h
008Fh			
0090h	Timer C Register	TC	00h
0091h	- °		00h
0092h			
0093h			
0093h			
0095h	Future langet Frankla Davietan		0.01
0096h	External Input Enable Register	INTEN	00h
0097h			
0098h	Key Input Enable Register	KIEN	00h
0099h			
009Ah	Timer C Control Register 0	TCC0	00h
009Bh	Timer C Control Register 1	TCC1	00h
009Ch	Capture, Compare 0 Register	TMO	00h
009Dh			00h ⁽²⁾
009Eh	Compose 1 Decistor	TM1	FFh
	Compare 1 Register	TIMIT	
009Fh			FFh
00A0h	UART0 Transmit/Receive Mode Register	UOMR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h		CONE	XXh
00A8h			XXII
00A9h			
00AAh			
00ABh			
00ACh			
00ADh			
00AEh		1	
00AFh			
00B0h	UART Transmit/Receive Control Register 2	UCON	00h
00B1h			
00B2h			
00B2h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h	SS Control Register H	SSCRH	00h
00B9h	SS Control Register L	SSCRL	7Dh
00BAh	SS Mode Register	SSMR	18h
00B/th	SS Enable Register	SSER	00h
00BCh	SS Status Register	SSSR	00h
00BDh	SS Mode Register 2	SSMR2	00h
	SS Transmit Data Register	SSTDR	FFh
00BEh 00BFh	SS Receive Data Register	SSRDR	FFh

X: Undefined

NOTES:

Blank spaces are reserved. No access is allowed.
 When output compare mode (the TCC13 bit in the TCC1 register = 1) is selected, the value after reset is "FFFFh".

Electrical Characteristics 5.

Symbol	Parameter	Condition	Rated value	Unit
Vcc	Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog Supply Voltage	Vcc = AVcc	-0.3 to 6.5	V
VI	Input Voltage		-0.3 to Vcc+0.3	V
Vo	Output Voltage		-0.3 to Vcc+0.3	V
Pd	Power Dissipation	Topr = 25°C	300	mW
Topr	Operating Ambient Temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage Temperature		-65 to 150	°C

Recommended Operating Conditions Table 5.2

Symbol	De	rameter	Conditions		Standard		Unit
Symbol	Pa	lameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage			2.7	-	5.5	V
AVcc	Analog Supply Vo	Itage		-	Vcc ⁽³⁾	-	V
Vss	Supply Voltage			-	0	-	V
AVss	Analog Supply Vo	Itage		-	0	-	V
Viн	Input "H" Voltage	-		0.8Vcc	-	Vcc	V
VIL	Input "L" Voltage			0	-	0.2Vcc	V
IOH(sum)	Peak Sum Output "H" Current	Sum of All Pins IOH (peak)		-	-	-60	mA
OH(peak)	Peak Output "H" (Current		-	-	-10	mA
OH(avg)	Average Output "I	H" Current		-	-	-5	mA
IOL(sum)	Peak Sum Output "L" Currents	Sum of All Pins IOL (peak)		-	-	60	mA
OL(peak)	Peak Output "L"	Except P1_0 to P1_3		-	-	10	mA
	Currents	P1_0 to P1_3	Drive Capacity HIGH	-	-	30	mA
			Drive Capacity LOW	-	-	10	mA
IOL(avg)	Average Output	Except P1_0 to P1_3		-	-	5	mA
	"L" Current	P1_0 to P1_3	Drive Capacity HIGH	-	-	15	mA
			Drive Capacity LOW	-	-	5	mA
f(XIN)	Main Clock Input	Oscillation Frequency	$3.0V \leq Vcc \leq 5.5V$	0	- 30 - 10 - 5 - 15	MHz	
IOL(avg)			$2.7V \leq Vcc < 3.0V$	0	-	10	MHz

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V at T_{opr} = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. The typical values when average output current is 100ms.

3. Hold Vcc = AVcc.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/Erase Endurance ⁽²⁾	R8C/14 Group	100 ⁽³⁾	-	-	times
		R8C/15 Group	1,000 ⁽³⁾	-	-	times
-	Byte Program Time	Vcc = 5.0 V at Topr = 25 °C	-	50	400	μs
-	Block Erase Time	Vcc = 5.0 V at Topr = 25 °C	-	0.4	9	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		-	-	8	ms
-	Erase Suspend Request Interval		10	_	-	ms
-	Program, Erase Voltage		2.7	-	5.5	V
-	Read Voltage		2.7	-	5.5	V
-	Program, Erase Temperature		0	-	60	°C
-	Data Hold Time ⁽⁷⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V at Topr = 0 to 60 °C, unless otherwise specified.

Definition of program and erase
 The program and erase endurance shows an erase endurance for every block.
 If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block.
 For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time.

However, do not perform multiple programs to the same address for one time ease.(disable overwriting).

3. Endurace to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).

- 4. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram endurance not to leave blank area as possible such as programming write addresses in turn. If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.
- 5. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.

7. The data hold time incudes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions	S	Standard	Max. 400 - 9 -	Unit
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Offic
-	Program/Erase Endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
_	Byte Program Time (Program/Erase Endurance ≤ 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	-	50	400	μS
_	Byte Program Time (Program/Erase Endurance > 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	-	65	-	μS
_	Block Erase Time (Program/Erase Endurance ≤ 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	-	0.2	9	S
_	Block Erase Time (Program/Erase Endurance > 1,000 Times)	Vcc = 5.0 V at Topr = 25 °C	-	0.3	-	S
td(SR-ES)	Time Delay from Suspend Request until Erase Suspend		-	_	8	ms
-	Erase Suspend Request Interval		10	-	-	ms
-	Program, Erase Voltage		2.7	I	5.5	V
-	Read Voltage		2.7	-	5.5	V
-	Program, Erase Temperature		-20 ⁽⁸⁾	-	85	°C
_	Data Hold Time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

NOTES:

1. Vcc = AVcc = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. Definition of program and erase The program and erase endurance shows an erase endurance for every block. If the program and erase endurance is "n" times (n = 100, 10000), "n" times erase can be performed for every block. For example, if performing 1-byte write to the distinct addresses on Block A of 1Kbyte block 1,024 times and then erasing that block, program and erase endurance is counted as one time. However, do not perform multiple programs to the same address for one time ease.(disable overwriting).

3. Endurace to guarantee all electrical characteristics after program and erase.(1 to "Min." value can be guaranateed).

4. Standard of Block A and Block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times aer the same as that in program area.

5. In the case of a system to execute multiple programs, perform one erase after programming as reducing effective reprogram endurance not to leave blank area as possible such as programming write addresses in turn . If programming a set of 16 bytes, programming up to 128 sets and then erasing them one time can reduce effective reprogram endurance. Additionally, averaging erase endurance for Block A and B can reduce effective reprogram endurance more. To leave erase endurance for every block as information and determine the restricted endurance are recommended.

6. If error occurs during block erase, attempt to execute the clear status register command, then the block erase command at least three times until the erase error does not occur.

7. Customers desiring Program/Erase failure rate information should contact their Renesas technical support representative.

8. -40 °C for D version.

9. The data hold time incudes time that the power supply is off or the clock is not supplied.

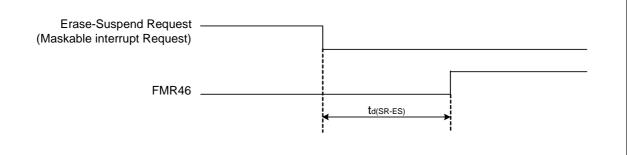


Figure 5.2 Time delay from Suspend Request until Erase Suspend

Table 5.6 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage Detection Level ⁽³⁾		2.70	2.85	3.00	V
-	Voltage Detection Circuit Self Power Consumption	VCA26 = 1, Vcc = 5.0V	_	600	-	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽²⁾		-	-	100	μS
Vccmin	Microcomputer Operating Voltage Minimum Value		2.7	_	-	V

NOTES:

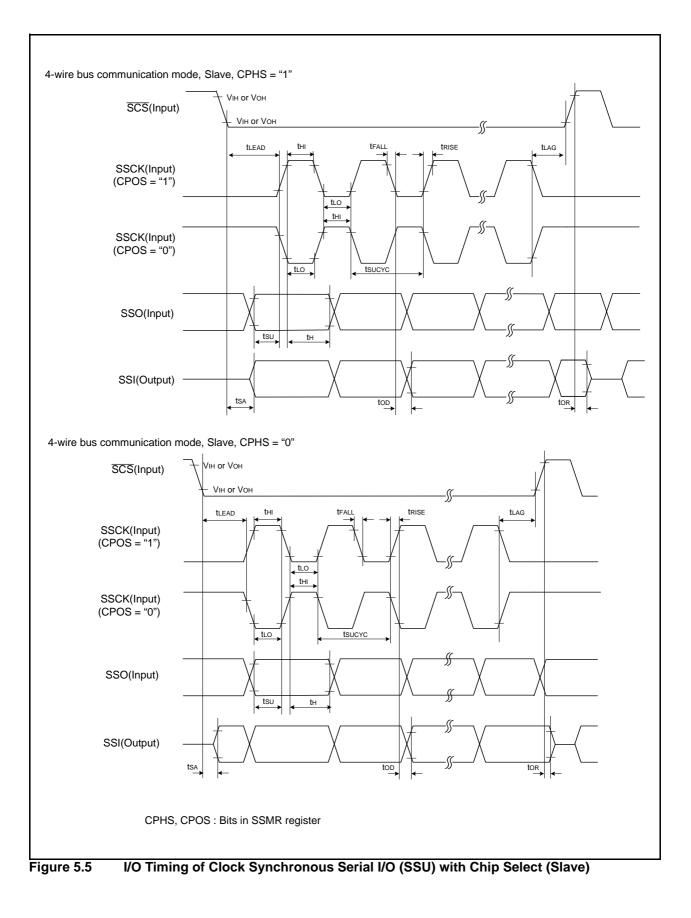
1. The measurement condition is Vcc = AVcc = 2.7V to 5.5V and Topr = -40°C to 85 °C.

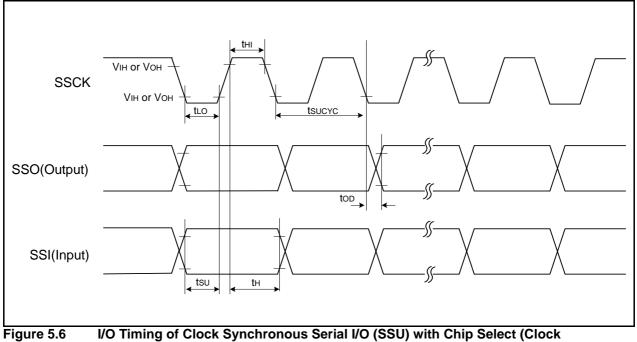
2. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA26 bit in the VCA2 register to "0".

3. Hold Vdet2 > Vdet1.

Table 5.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage Detection Level ⁽⁴⁾		3.00	3.30	3.60	V
-	Voltage Monitor 2 Interrupt Request Generation Time ⁽²⁾		-	40	-	μS
-	Voltage Detection Circuit Self Power Consumption	VCA27 = 1, Vcc = 5.0V	-	600	-	nA
td(E-A)	Waiting Time until Voltage Detection Circuit Operation Starts ⁽³⁾		-	-	100	μs


NOTES:


1. The measurement condition is Vcc = AVcc = 2.7V to 5.5V and Topr = -40°C to 85 °C.

2. Time until the voltage monitor 2 interrupt request is generated since the voltage passes $V_{det1}.$

3. Necessary time until the voltage detection circuit operates when setting to "1" again after setting the VCA27 bit in the VCA2 register to "0".

4. Hold Vdet2 > Vdet1.

Synchronous Communication Mode)

Symbol	Dor	ameter	Conc	lition	SI	andard		Unit
Symbol	Fai	ameter	Conc		Min.	Тур.	Max.	Unit
Vон	Output "H" Voltage	Except Xout	Іон = -5mA		Vcc - 2.0	-	Vcc	V
			Іон = -200μА		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Іон = -1mA	Vcc - 2.0	_	Vcc	V
			Drive capacity LOW	Іон = -500μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" Voltage	Except P1_0 to P1_3,	lo∟ = 5mA		-	-	2.0	V
		Хоит	IoL = 200μA		-	-	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	IoL = 15mA	-	_	2.0	V
			Drive capacity LOW	lo∟ = 5mA	-	-	2.0	V
			Drive capacity LOW	IOL = 200μA	-	-	0.45	V
		Хоит	Drive capacity HIGH	IOL = 1mA	-	-	2.0	V
			Drive capacity LOW	IOL = 500μA	-	-	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0, SSO			0.2	_	1.0	V
		RESET			0.2	-	2.2	V
Ін	Input "H" current		VI = 5V		-	-	5.0	μΑ
lı∟	Input "L" current		VI = 0V		-	I	-5.0	μΑ
Rpullup	Pull-Up Resistance		VI = 0V		30	50	167	kΩ
Rfxin	Feedback Resistance	XIN			-	1.0	-	MΩ
fring-s	Low-Speed On-Chip	Oscillator Frequency			40	125	250	kHz
Vram	RAM Hold Voltage		During stop mode	9	2.0	-	-	V

Table 5.13 Electrical Characteristics (1) [Vcc = 5V]

NOTES:

1. Vcc = AVcc = 4.2 to 5.5V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, f(XIN)=20MHz, unless otherwise specified.

Symbol	Parameter	Parameter Condition		Standard		Unit	
Symbol			Min.	Тур.	Max.	Unit	
	Power Supply Current (Vcc=3.3 to 5.5V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	9	15	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	8	14	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	5	-	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	4	_	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	3	_	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	2	_	mA
	High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	4	8	mA	
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.5	_	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	470	900	μΑ
	Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	-	40	80	μΑ	
	Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	38	76	μΑ	
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.8	3.0	μΑ

Table 5.14 Electrical Characteristics (2) [Vcc = 5V] (Topr = -40 to 85 °C, unless otherwise specified.)

Symbol	Do	rameter	Cond	dition	St	Standard		Unit
Symbol	Fai	ameter	Condition		Min.	Тур.	Max.	
Voн	Output "H" Voltage	Except XOUT	Iон = -1mA		Vcc - 0.5	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -0.1mA	Vcc - 0.5	ļ	Vcc	V
			Drive capacity LOW	Іон = -50μА	Vcc - 0.5	ļ	Vcc	V
Vol	Output "L" Voltage	Except P1_0 to P1_3, Xout	IOL = 1mA		-	-	0.5	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 2mA	-	-	0.5	V
			Drive capacity LOW	IOL = 1mA	-	-	0.5	V
		Хоит	Drive capacity HIGH	IOL = 0.1mA	-	-	0.5	V
			Drive capacity LOW	IOL = 50μA	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0, SSO			0.2	_	0.8	V
		RESET			0.2	-	1.8	V
Ін	Input "H" Current		VI = 3V		-	-	4.0	μA
lı∟	Input "L" Current		VI = 0V		-	-	-4.0	μA
Rpullup	Pull-Up Resistance		VI = 0V		66	160	500	kΩ
RfXIN	Feedback Resistance	XIN			-	3.0	-	MΩ
fring-s	Low-Speed On-Chi	p Oscillator Frequency			40	125	250	kHz
Vram	RAM Hold Voltage		During stop mode		2.0	-	-	V

Table 5.20 Electrical Characteristics (3) [Vcc = 3V]

NOTES:

1. Vcc = AVcc = 2.7 to 3.3V at Topr = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, f(XIN)=10MHz, unless otherwise specified.

Symbol	Paramotor	Parameter Condition	Standard			Unit	
Symbol	Falameter		Min.	Тур.	Max.	Unit	
Icc	Power Supply Current (Vcc=2.7 to 3.3V) In single-chip mode,	High-Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	8	13	mA
	the output pins are open and other pins are Vss		XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	_	7	12	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz No division	-	5	-	mA
		Medium- Speed Mode	XIN = 20MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	3	_	mA
			XIN = 16MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	2.5	_	mA
			XIN = 10MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.6	_	mA
	High-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz No division	_	3.5	7.5	mA	
			Main clock off High-speed on-chip oscillator on=8MHz Low-speed on-chip oscillator on=125kHz Divide-by-8	_	1.5	_	mA
		Low-Speed On-Chip Oscillator Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz Divide-by-8	_	420	800	μΑ
	Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock operation VCA26 = VCA27 = 0	_	37	74	μΑ	
	Wait Mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on=125kHz While a WAIT instruction is executed Peripheral clock off VCA26 = VCA27 = 0	_	35	70	μΑ	
		Stop Mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA26 = VCA27 = 0	_	0.7	3.0	μΑ

Table 5.21 Electrical Characteristics (4) [Vcc = 3V] (Topr = -40 to 85 °C, unless otherwise specified.)

Timing requirements (Unless otherwise specified: Vcc = 3V, Vss = 0V at Topr = 25 °C) [Vcc = 3V]

Table 5.22 XIN Input

Symbol	Parameter	Standard		Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(XIN)	XIN Input Cycle Time	100	-	ns
twh(XIN)	XIN Input "H" Width	40	-	ns
twl(XIN)	XIN Input "L" Width	40	-	ns

Table 5.23 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Standard		Unit
Symbol	Falanielei		Max.	
tc(CNTR0)	CNTR0 Input Cycle Time	300	-	ns
tWH(CNTR0)	CNTR0 Input "H" Width	120	-	ns
tWL(CNTR0)	CNTR0 Input "L" Width	120	-	ns

Table 5.24TCIN Input, INT3 Input

Symbol	Parameter	Standard		Unit
Symbol	Falametei		Max.	Unit
tc(TCIN)	TCIN Input Cycle Time	1,200 ⁽¹⁾	-	ns
twh(tcin)	TCIN Input "H" Width	600 ⁽²⁾	-	ns
twl(tcin)	TCIN Input "L" Width	600 ⁽²⁾	_	ns

NOTES:

1. When using the Timer C input capture mode, adjust the cycle time (1/Timer C count source frequency x 3) or above.

2. When using the Timer C input capture mode, adjust the width (1/Timer C count source frequency x 1.5) or above.

Table 5.25 Serial Interface

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CK)	CLKi Input Cycle Time	300	-	ns	
tw(CKH)	CLKi Input "H" Width	150	-	ns	
tW(CKL)	CLKi Input "L" Width	150	-	ns	
td(C-Q)	TXDi Output Delay Time	-	80	ns	
th(C-Q)	TXDi Hold Time	0	-	ns	
tsu(D-C)	RXDi Input Setup Time	70	-	ns	
th(C-D)	RCDi Input Hold Time	90	_	ns	

Table 5.26 External Interrupt INT0 Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tw(INH)	INTO Input "H" Width	380 ⁽¹⁾	-	ns
tw(INL)	INTO Input "L" Width	380(2)	I	ns

NOTES:

1. When selecting the digital filter by the INTO input filter select bit, use the INTO input HIGH width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

2. When selecting the digital filter by the INTO input filter select bit, use the INTO input LOW width to the greater value, either (1/digital filter clock frequency x 3) or the minimum value of standard.

REVISION HISTORY

R8C/14 Group, R8C/15 Group Datasheet

Day	Data		Description
Rev.	Date	Page	Summary
2.00	Jan 30, 2006	8	Figure 1.5 PRDP0020BA-A Package Pin Assignment (top view) deleted Table 1.5 Pin Description; Timer C: "CMP0_0 to CMP0_3, CMP1_0 to CMP1_3" → "CMP0_0 to CMP0_2 CMP1_0 to CMP1_2" revised
		10	"CMP0_0 to CMP0_2, CMP1_0 to CMP1_2" revised Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		12	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		13	Figure 3.1 Memory Map of R8C/14 Group revised
		14	3.2 R8C/15 Group; "(data area)" \rightarrow "(data flash)", "(program area)" \rightarrow "(program ROM)" revised Figure 3.2 Memory Map of R8C/15 Group revised
		15	Table 4.1 SFR Information(1); $0009h$: "XXXXX00b" \rightarrow "00h" $000Ah$: "00XXX000b" \rightarrow "00h"
		17	001Eh:"XXXXX000b" \rightarrow "00h"Table 4.3 SFR Information(3);0085h:"Prescaler Z" \rightarrow "Prescaler Z Register"0086h:"Timer Z Secondary" \rightarrow "Timer Z Secondary Register"0087h:"Timer Z Primary" \rightarrow "Timer Z Primary Register"008Ch:"Prescaler X" \rightarrow "Prescaler X Register"008Dh:"Timer X" \rightarrow "Timer X Register"
		21	0090h, 0091h: "Timer C" → "Timer C Register" revised Table 5.4 Flash Memory (Program ROM) Electrical Characteristics; • NOTES 1 to 7 added
		22	 "Topr" → "Ambient temperature", "Program area" → "Program ROM" revised Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; NOTE1 revised, NOTE9 added "Topr" → "Ambient temperature", "Data area" → "Data flash" revised
		23	Figure 5.2 Time delay from Suspend Request until Erase Suspend revised
		24	Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset); NOTE2 revised Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset); NOTE1 revised
		25	Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics; revised Table 5.12 Timing Requirements of Clock Synchronous Serial I/O (SSU) with Chip Select; revised
		30 31 34	Table 5.14 Electrical Characteristics (2) [Vcc = 5V]; revised "Timing Requirements (Unless at Ta = 25°C) [VCC = 5V]" \rightarrow "Timing Requirements (Unless at Topr = 25°C) [VCC = 5V]" revised Table 5.18 Serial Interface; "35" \rightarrow "50", "80" \rightarrow "50" Table 5.21 Electrical Characteristics (4) [Vcc = 3V]; revised
		35	"Timing requirements (Unless at Ta = 25°C) [VCC = 3V]" \rightarrow "Timing requirements (Unless at Topr = 25°C) [VCC = 3V]" revised Table 5.25 Serial Interface; "55" \rightarrow "70", "160" \rightarrow "80"
		37	Package Dimensions; Package "PRDP0020BA-A" deleted