
NXP USA Inc. - KMC8144SVT800A Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3400 Core
Interface	EBI/EMI, Ethernet, I ² C, PCI, Serial RapidIO, SPI, TDM, UART, UTOPIA
Clock Rate	800MHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8144svt800a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments and Reset States4
	1.1	FC-PBGA Ball Layout Diagrams4
	1.2	Signal List By Ball Location
2	Elect	rical Characteristics
	2.1	Maximum Ratings
	2.2	Recommended Operating Conditions27
	2.3	Default Output Driver Characteristics
	2.4	Thermal Characteristics
	2.5	DC Electrical Characteristics
	2.6	AC Timings
3	Hard	ware Design Considerations64
	3.1	Start-up Sequencing Recommendations64
	3.2	Power Supply Design Considerations
	3.3	Clock and Timing Signal Board Layout Considerations 67
	3.4	Connectivity Guidelines
4	Orde	ring Information
5	Pack	age Information
6	Produ	uct Documentation
7	Revis	ion History

List of Figures

Figure 1.	MSC8144 Block Diagram
Figure 2.	StarCore SC3400 DSP Core Subsystem Block Diagram 3
Figure 3.	MSC8144 FC-PBGA Package, Top View 4
Figure 4.	MSC8144 FC-PBGA Package, Bottom View 5
Figure 5.	SerDes Reference Clocks Input Stage
Figure 6.	Start-Up Sequence with V _{DD} Raised Before V _{DDIO} with
	CLKIN Started with V _{DDIO}
	Timing for a Reset Configuration Write
Figure 8.	Timing for t _{DDKHMH}
	DDR SDRAM Output Timing
Figure 10	.DDR AC Test Load 42
Figure 11	.Differential V _{PP} of Transmitter or Receiver

Figure 12. I ransmitter Output Compliance Mask	46
Figure 13.Single Frequency Sinusoidal Jitter Limits	48
Figure 14. Receiver Input Compliance Mask	49
Figure 15.PCI AC Test Load	51
Figure 16.PCI Input AC Timing Measurement Conditions	
Figure 17.PCI Output AC Timing Measurement Condition	51
Figure 18.TDM Inputs Signals	52
Figure 20.TDM Output Signals	
Figure 21.UART Input Timing	
Figure 22.UART Output Timing	53
Figure 23.Timer Timing	
Figure 24.MII Management Interface Timing	55
Figure 25.MII Transmit AC Timing	55
Figure 26.AC Test Load	56
Figure 27.MII Receive AC Timing	
Figure 28.RMII Transmit and Receive AC Timing	57
Figure 29.AC Test Load	
Figure 30.SMII Mode Signal Timing.	
Figure 31.RGMII AC Timing and Multiplexing	
Figure 32.ATM/UTOPIA/POS AC Test Load	
Figure 33.ATM/UTOPIAPOS AC Timing (External Clock)	
Figure 34.SPI AC Test Load	
Figure 35.SPI AC Timing in Slave Mode (External Clock)	
Figure 36.SPI AC Timing in Master Mode (Internal Clock)	
Figure 37.Asynchronous Signal Timing	
Figure 38.Test Clock Input Timing	
Figure 39.Boundary Scan (JTAG) Timing	
Figure 40.Test Access Port Timing	64
Figure 41.TRST Timing	
Figure 42.V_DDM3, V_DDM3IO and V_25M3 Power-on Sequence	65
Figure 44.MSC8144 Mechanical Information, 783-ball FC-PBGA	
Package	77

		Power- I/O Multiplexing Mode ²									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
B10	Reserved ¹										—
B11	Reserved ¹										_
B12	SRIO_RXD0										V _{DDSXC}
B13	GND _{SXC}										GND _{SXC}
B14	SRIO_RXD1										V _{DDSXC}
B15	GND _{SXC}										GND _{SXC}
B16	SRIO_REF_CLK										V _{DDSXC}
B17	Reserved ¹										_
B18	V _{DDSXC}										V _{DDSXC}
B19	SRIO_RXD2/ GE1_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXC}
B20	GND _{SXC}										GND _{SXC}
B21	SRIO_RXD3/ GE2_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by F	Reset Con	figuration V	Vord	V _{DDSXC}
B22	GND _{SXC}										GND _{SXC}
B23	GND _{SXP}										GND _{SXP}
B24	MDQ27										V _{DDDDR}
B25	V _{DDDDR}										V _{DDDDR}
B26	GND										GND
B27	V _{DDDDR}										V _{DDDDR}
B28	MDQS3										V _{DDDDR}
C1	Reserved ¹										_
C2	GE2_RX_CLK/PCI_AD29			Ethe	rnet 2	1	PCI		Ethernet 2	1	V _{DDGE2}
C3	V _{DDGE2}										V _{DDGE2}
C4	TDM7RSYN/GE2_TD2/ PCI_AD2/UTP_TER		Т	DM		PCI		Ethe	ernet 2	UTOPIA	
C5	TDM7RCLK/GE2_RD2/ PCI_AD0/UTP_RVL		т	DM		PCI		Ethe	ernet 2	UTOPIA	V _{DDGE2}
C6	V _{DDGE2}										V _{DDGE2}
C7	GE2_RD0/PCI_AD27			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
C8	Reserved ¹										—
C9	Reserved ¹										_
C10	Reserved ¹										—
C11	Reserved ¹										—
C12	V _{DDSXP}										V _{DDSXP}
C13	SRIO_TXD0										V _{DDSXP}
C14	V _{DDSXP}										V _{DDSXP}
C15	SRIO_TXD1										V _{DDSXP}
C16	GND _{SXC}										GND _{SXC}
C17	GND _{RIOPLL}										GND _{RIOPLL}
C18	Reserved ¹										_
C19	V _{DDSXP}										V _{DDSXP}
C20	SRIO_TXD2/GE1_SGMII_T		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	figuration V	Vord	V _{DDSXP}

Table 1. Signal List by Ball Number (continued)

		Power- I/O Multiplexing Mode ²									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
K23	MBA2										V _{DDDDR}
K24	MA10										V _{DDDDR}
K25	MA12										V _{DDDDR}
K26	MA14										V _{DDDDR}
K27	MA4										V _{DDDDR}
K28	MV _{REF}										V _{DDDDR}
L1	Reserved ¹										_
L2	CLKOUT										V _{DDIO}
L3	TMR1/UTP_IR/PCI_CBE3/ GPIO17 ^{3, 6}		UTC	OPIA	TMR/ GPIO	UTOPIA	PCI		UTOPIA		V _{DDIO}
L4	TMR4/PCI_PAR/GPIO20 ^{3,} ⁶ / UTP_REOP			TIMEF	R/GPIO		PCI	Г	IMER/GPI	0	V _{DDIO}
L5	GND										GND
L6	TMR2/PCI_FRAME/ GPIO18 ^{3, 6}			TIMEF	R/GPIO		PCI	TIME	R/GPIO	UTOPIA	V _{DDIO}
L7	SCL/GPIO26 ^{3, 4, 6}					l ² C/	GPIO				V _{DDIO}
L8	UTXD/GPIO15/IRQ9 ^{3, 6}					UART/C	SPIO/IRQ				V _{DDIO}
L9	GND										GND
L10	V _{DD}										V _{DD}
L11	GND										GND
L12	V _{DD}										V _{DD}
L13	GND										GND
L14	V _{DD}										V _{DD}
L15	Reserved ¹										GND
L16	V _{DD}										V _{DD}
L17	GND										GND
L18	V _{DD}										V _{DD}
L19	GND										GND
L20	V _{DD}										V _{DD}
L21	GND										GND
L22	GND										GND
L23	MCKE1										V _{DDDDR}
L24	MA1										V _{DDDDR}
L25	V _{DDDDR}										V _{DDDDR}
L26	GND										GND
L27	V _{DDDDR}										V _{DDDDR}
L28	MCK1										V _{DDDDR}
M1	Reserved ¹										_
M2	TRST										V _{DDIO}
M3	EE0										V _{DDIO}
M4	EE1										V _{DDIO}
M5	UTP_RCLK/PCI_AD13		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
M6	UTP_RADDR0/PCI_AD7		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
M7	UTP_TD8/PCI_AD30		UTC	OPIA	PCI			UTOPIA			V _{DDIO}

Table 1. Signal List by Ball Number (continued)

	Signal Name	Power-									
Ball Number		On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
V8	V _{DDIO}										V _{DDIO}
V9	Reserved ¹										V _{DDIO}
V10	GND										GND
V11	V _{DDM3}										V _{DDM3}
V12	GND										GND
V13	V _{DDM3}										V _{DDM3}
V14	GND										GND
V15	V _{DDM3}										V _{DDM3}
V16	GND										GND
V17	V _{DDM3}										V _{DDM3}
V18	GND										GND
V19	V _{DDM3}										V _{DDM3}
V20	GND										GND
V21	GND										GND
V22	V _{DDDDR}										V _{DDDDR}
V23	MDQ2										V _{DDDDR}
V24	V _{DDDDR}										V _{DDDDR}
V25	MDQ6										V _{DDDDR}
V26	GND										GND
V27	V _{DDDDR}										V _{DDDDR}
V28	MDQS0										V _{DDDDR}
W1	Reserved ¹										_
W2	UTP_TD12/PCI_CBE2		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W3	UTP_TD11/PCI_CBE1		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W4	V _{DDIO}										V _{DDIO}
W5	GND										GND
W6	UTP_TD15/PCI_IRDY		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W7	UTP_TD0/PCI_SERR		UTC	OPIA	Р	CI		UT	OPIA		V _{DDIO}
W8	UTP_RSOC/PCI_AD22		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W9	Reserved ¹										V _{DDIO}
W10	V _{DDM3}										V _{DDM3}
W11	GND										GND
W12	V _{25M3}										V _{25M3}
W13	GND										GND
W14	V _{DDM3}										V _{DDM3}
W15	V _{25M3}										V _{25M3}
W16	V _{DDM3}										V _{DDM3}
W17	GND										GND
W18	V _{25M3}									1	V _{25M3}
W19	GND									1	GND
W20	V _{DDM3}										V _{DDM3}
W21	GND										GND
W22	GND										GND

Table 1. Signal List by Ball Number (continued)

rical Characteristics

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8144 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8144.

	1	1	n
Rating	Symbol	Value	Unit
Core supply voltage	V _{dd}	-0.3 to 1.1	V
PLL supply voltage ³	V _{DDPLL0} V _{DDPLL1} V _{DDPLL2}	-0.3 to 1.1	V
M3 memory Internal voltage	V _{DDM3}	-0.3 to 1.32	V
DDR memory supply voltage DDR mode DDR2 mode 	V _{ddddr}	-0.3 to 2.75 -0.3 to 1.98	V V
DDR reference voltage	MV _{REF}	–0.3 to 0.51 \timesV_{DDDDR}	V
Input DDR voltage	V _{INDDR}	–0.3 to V _{DDDDR} + 0.3	V
Ethernet 1 I/O voltage	V _{DDGE1}	-0.3 to 3.465	V
Input Ethernet 1 I/O voltage	V _{INGE1}	–0.3 to V _{DDGE1} + 0.3	V
Ethernet 2 I/O voltage	V _{DDGE2}	-0.3 to 3.465	V
Input Ethernet 2I/O voltage	V _{INGE2}	–0.3 to V _{DDGE2} + 0.3	V
I/O voltage excluding Ethernet, DDR, M3, and RapidIO lines	V _{DDIO}	-0.3 to 3.465	V
Input I/O voltage	V _{INIO}	–0.3 to V _{DDIO} + 0.3	V

Table 2. Absolute Maximum Ratings

2.5 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8144.

2.5.1 DDR SDRAM DC Electrical Characteristics

This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8144.

Note: DDR SDRAM uses $V_{DDDDR}(typ) = 2.5 V$ and DDR2 SDRAM uses $V_{DDDDR}(typ) = 1.8 V$.

2.5.1.1 DDR2 (1.8 V) SDRAM DC Electrical Characteristics

Table 6 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MSC8144 when $V_{DDDDR}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit
I/O supply voltage ¹	V _{DDDDR}	1.7	1.9	V
I/O reference voltage ²	MV _{REF}	$0.49 \times V_{DDDDR}$	$0.51 imes V_{DDDDR}$	V
I/O termination voltage ³	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V
Input high voltage	V _{IH}	MV _{REF} + 0.125	V _{DDDDR} + 0.3	V
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.125	V
Output leakage current ⁴	I _{OZ}	-50	50	μA
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	—	mA
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA

2. MV_{REF} is expected to be equal to $0.5 \times V_{DDDDR}$, and to track V_{DDDDR} DC variations as measured at the receiver.

Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of V_{DDDDR}.

4. Output leakage is measured with all outputs are disabled, $0 V \le V_{OUT} \le V_{DDDDR}$.

rical Characteristics

2.5.2.2 Spread Spectrum Clock

SRIO_REF_CLK/ SRIO_REF_CLK is designed to work with a spread spectrum clock (0 to 0.5% spreading at 3033 kHz rate is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended modulation.

2.5.3 PCI DC Electrical Characteristics

Table 9. PCI DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDPCI}	3.135	3.465	V
Input high voltage	V _{IH}	$0.5 imes V_{DDPCI}$	3.465	V
Input low voltage	V _{IL}	-0.5	$0.3 imes V_{DDPCI}$	V
Input Pull-up voltage ¹	V _{IPU}	$0.7 \times V_{DDPCI}$		
Input leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{IN}	-30	30	μA
Tri-state (high impedance off state) leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{OZ}	-30	30	μA
Signal low input current, V _{IL} = 0.4 V ¹	ΙL	-30	30	μA
Signal high input current, V _{IH} = 2.0 V ¹	Ι _Η	-30	30	μA
Output high voltage, I _{OH} = -0.5 mA, except open drain pins	V _{OH}	$0.9 \times V_{DDPCI}$	—	V
Output low voltage, I _{OL} = 1.5 mA	V _{OL}	—	$0.1 \times V_{DDPCI}$	V
Input Pin Capacitance ¹	C _{IN}		10	pF
Notes: 1. Not tested. Guaranteed by design.	•		•	•

2.5.4 TDM DC Electrical Characteristics

Table 10. TDM DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDTDM}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current 0 <v<sub>IN <v<sub>DDTDM</v<sub></v<sub>	I _{IN}	-30	30	μΑ
Tri-state (high impedance off state) leakage current	I _{OZ}	-30	30	μΑ
Output high voltage, I _{OH} = -1.6 mA	V _{OH}	2.4	—	V
Output low voltage, I _{OL} = 0.4mA	V _{OL}	—	0.4	V

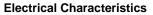
rical Characteristics

2.5.6 ATM/UTOPIA/POS DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μΑ
Signal low input current, V _{IL} = 0.4 V ¹	ΙL	-30	30	μΑ
Signal high input current, $V_{IH} = 2.4 V^1$	I _Н	-30	30	μΑ
Output high voltage, $I_{OH} = -4 \text{ mA}$	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 4 mA	V _{OL}	_	0.5	V
Notes: 1. Not tested. Guaranteed by design.			-	

2.5.7 SPI DC Electrical Characteristics

Table 14 provides the SPI DC electrical characteristics.


Table 14. SPI DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}		30	μΑ
Output high voltage, I _{OH} = -4.0 mA	V _{OH}	2.4	_	V
Output low voltage, I _{OL} = 4.0 mA	V _{OL}	_	0.5	V

2.5.8 GPIO, UART, TIMER, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, JTAG Ports DC Electrical Characteristics

Table 15. GPIO, UART, Timer, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, and JTAG Port¹ DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μA
Tri-state (high impedance off state) leakage current, V_{IN} = supply voltage	I _{OZ}	-30	30	μA
Signal low input current, $V_{IL} = 0.4 V^2$	ΙL	-30	30	μΑ
Signal high input current, $V_{IH} = 2.0 V^2$	Ι _Η	-30	30	μA
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}		0.4	V
 Notes: 1. This does not include TDI and TMS, which have internal pu 2. Not tested. Guaranteed by design. 	ullup resistors.			·

Reset Action/Reset Source	Po <u>wer-On Re</u> set (PORESET)	Hard Reset (HRESET)	Sof	t Reset (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog, Software or RapidIO)	External or internal Software	JTAG Command: EXTEST, CLAMP, or HIGHZ
HRESET driven	Yes	Yes	No	No
IPBus modules reset (TDM, UART, SWT, DDRC, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET driven	Yes	Yes	Yes	Depends on command
Extended cores reset	Yes	Yes	Yes	Yes
CLASS registers reset	Yes	Yes	Some registers	Some registers
Timers, Performance Monitor	Yes	Yes	No	No
QUICC Engine subsystem, PCI, DMA	Yes	Yes	Most registers	Most registers

Table 18. Reset Actions for Each Reset Source (continued)

2.6.3.1 Power-On Reset (PORESET) Pin

Asserting $\overrightarrow{PORESET}$ initiates the power-on reset flow. $\overrightarrow{PORESET}$ must be asserted externally for at least 32 CLKIN cycles after V_{DD} and V_{DDIO} are both at their nominal levels.

2.6.3.2 Reset Configuration

The MSC8144 has two mechanisms for writing the reset configuration:

- Through the I^2C port
- Through external pins
- Through internal hard coded

Twenty-three signals (see **Section 1** for signal description details) are sampled during the power-on reset sequence to define the Reset Word Configuration Source and operating conditions:

- RCW_SRC[2–0]
- RC[16–0]

The RCFG_CLKIN_RNG pin must be valid during power-on or hard reset sequence. The STOP_BS pin must be always valid and is also sampled during power-on reset sequence for RCW loading from an I²C EEPROM.

2.6.3.3 Reset Timing Tables

Table 19 and Figure 7 describe the reset timing for a reset configuration.

Table 19	. Timing f	or a Reset	Configuration	Write
----------	------------	------------	---------------	-------

No.	Characteristics	Expression	Max	Min	Unit
1	Required external PORESET duration minimum	32/CLKIN			
	• 33 MHz <= CLKIN < 44 MHz		1280	727	ns
	• 44 MHz <= CLKIN < 66 MHz		728	484	ns
	• 66 MHz <= CLKIN < 100 MHz		485	320	ns
	 100 MHz <= CLKIN < 133 MHz 		320	241	ns

NP-

Figure 8 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

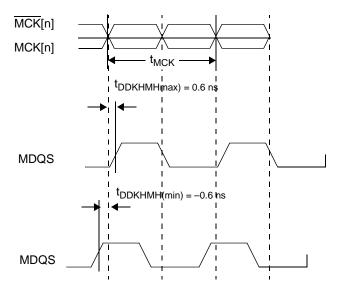


Figure 8. Timing for t_{DDKHMH}

Figure 9. DDR SDRAM Output Timing

rical Characteristics

Ol and startistic	Cumb al	Rai	nge	11	Natar
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		22	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	320	320	ps	±100 ppm

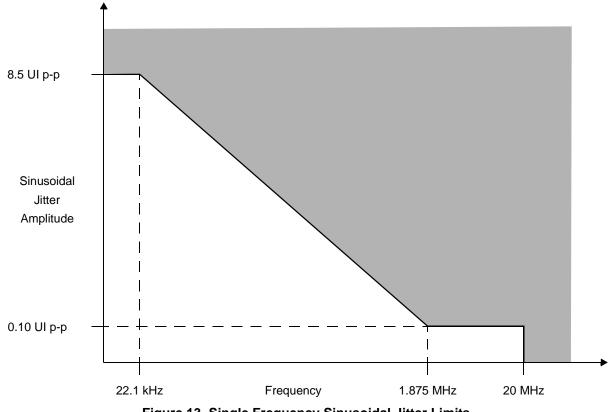


Figure 13. Single Frequency Sinusoidal Jitter Limits

Figure 28 shows the RMII transmit and receive AC timing diagram.

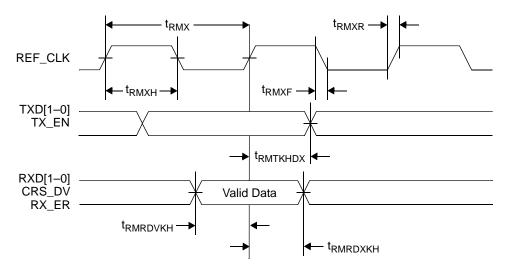


Figure 28. RMII Transmit and Receive AC Timing

Figure 29 provides the AC test load.

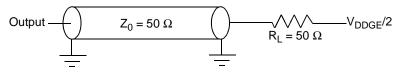


Figure 29. AC Test Load

2.6.10.5 SMII AC Timing Specification

Table 44. SMII Mode Signal Timing

Characteristics	Symbol	Min	Max	Unit
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge setup time	t _{SMDVKH}	1.5	—	ns
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	t _{SMDXKH}	1.0	—	ns
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay	t _{SMXR}	1.5	5.0	ns
Notes:1.Typical REF_CLK clock period is 8ns2.Measured using a 5 pF load.3.Measured using a 15 pF load4.Program GCR4 as 0x00002008				

Figure 30 shows the SMII Mode signal timing.

Figure 31 shows the RGMII AC timing and multiplexing diagrams.

Figure 31. RGMII AC Timing and Multiplexing

2.6.14 JTAG Signals

Characteristics	Cumula al	All frequencies		11
Characteristics	Symbol	Min	Max	Unit
TCK cycle time	t _{TCKX}	36.0	—	ns
TCK clock high phase measured at $V_{M} = 1.6 V$	t _{тскн}	15.0	—	ns
Boundary scan input data setup time	t _{BSVKH}	0.0	—	ns
Boundary scan input data hold time	t _{вsxкн}	15.0	—	ns
TCK fall to output data valid	tтскноv	—	20.0	ns
TCK fall to output high impedance	t _{тскног}	—	24.0	ns
TMS, TDI data setup time	t _{тоіvкн}	0.0	_	ns
TMS, TDI data hold time	t _{тоіхкн}	5.0	_	ns
TCK fall to TDO data valid	tтроноv	_	10.0	ns
TCK fall to TDO high impedance	t _{TDOHOZ}	—	12.0	ns
TRST assert time	t _{TRST}	100.0	—	ns
Note: All timings apply to OnCE module data transfers as well as any other	er transfers via the JTAG port.	•	•	

Table 50. JTAG Timing

Figure 38 shows the Test Clock Input Timing Diagram

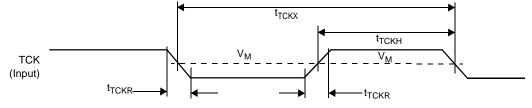


Figure 38. Test Clock Input Timing

Figure 39 shows the boundary scan (JTAG) timing diagram.

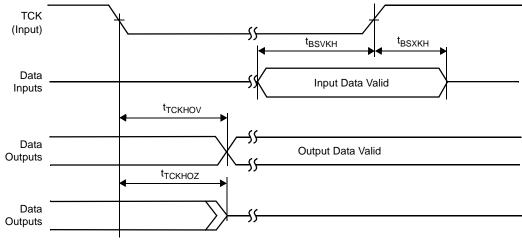


Figure 39. Boundary Scan (JTAG) Timing

Figure 40 shows the test access port timing diagram

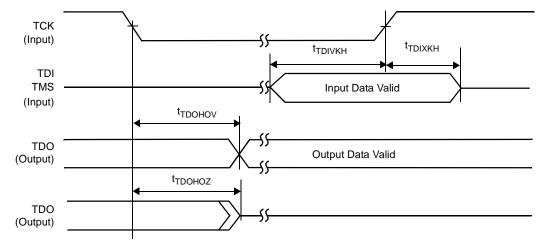
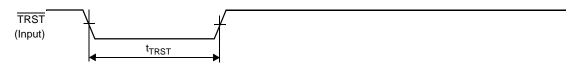



Figure 40. Test Access Port Timing

Figure 41 shows the TRST timing diagram.

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8144 device is designed into a system.

3.1 Start-up Sequencing Recommendations

3.1.1 Power-on Sequence

Use the following guidelines for power-on sequencing:

- There are no dependencies in power-on/power-off sequence between V_{DDM3} and V_{DD} supplies.
- There are no dependencies in power-on/power-off sequence between RapidIO supplies: V_{DDSXC}, V_{DDSXP}, V_{DDSXP}, V_{DDRIOPLL} and other MSC8144 supplies.
- V_{DDPLL} should be coupled with the V_{DD} power rail with extremely low impedance path.

External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8144 device in the system during start-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4 V/ns.

3.3 Clock and Timing Signal Board Layout Considerations

When laying out the system board, use the following guidelines:

- Keep clock and timing signal paths as short as possible and route with 50 Ω impedance.
- Use a serial termination resistor placed close to the clock buffer to minimize signal reflection. Use the following equation to compute the resistor value:

Rterm = Rim - Rbuf

where Rim = trace characteristic impedance

Rbuf = clock buffer internal impedance.

Note: See MSC8144 CLKIN and PCI_CLK_IN Board Layout (AN3440) for an example layout.

3.4 Connectivity Guidelines

Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal connections in this discussion.

First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following subsections for board design and connections. The following conventions are used in describing the connectivity requirements:

- 1. GND indicates using a $10 \text{ k}\Omega$ pull-down resistor (recommended) or a direct connection to the ground plane. Direct connections to the ground plane may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.
- 2. V_{DD} indicates using a 10 k Ω pull-up resistor (recommended) or a direct connection to the appropriate power supply. Direct connections to the supply may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.
- 3. Mandatory use of a pull-up or pull-down resistor it is clearly indicated as "pull-up/pull-down".
- 4. NC indicates "not connected" and means do not connect anything to the pin.
- 5. The phrase "in use" indicates a typical pin connection for the required function.
- **Note:** Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of subset interface connection.

3.4.1 DDR Memory Related Pins

This section discusses the various scenarios that can be used with DDR1 and DDR2 memory.

Note: For information about unused differential/non-differential pins in DDR1/DDR2 modes (that is, unused negative lines of strobes in DDR1), please refer to Table 51.

3.4.1.1 DDR Interface Is Not Used

Signal Name	Pin Connection
MDQ[0-31]	NC
MDQS[0-3]	NC
MDQS[0-3]	NC
MA[0–15]	NC
MCK[0-2]	NC
MCK[0-2]	NC
MCS[0-1]	NC

Table 51. Connectivity of DDR Related Pins When the DDR Interface Is Not Used

ware Design Considerations

Signal Name	Pin Connection
MDM[0-3]	NC
MBA[0-2]	NC
MCAS	NC
MCKE[0-1]	NC
MODT[0-1]	NC
MDIC[0-1]	NC
MRAS	NC
MWE	NC
MECC[0-7]	NC
ECC_MDM	NC
ECC_MDQS	NC
ECC_MDQS	NC
MV _{REF}	GND
V _{DDDDR}	GND

Table 51. Connectivity of DDR Related Pins When the DDR Interface Is Not Used (continued)

3.4.1.2 16-Bit DDR Memory Only

Table 52 lists unused pin connection when using 16-bit DDR memory. The 16 most significant data lines are not used.

Signal Name	Pin connection
MDQ[0-15]	in use
MDQ[16-31]	pull-up to V _{DDDDR}
MDQS[0-1]	in use
MDQS[2-3]	pull-down to GND
MDQS[0-1]	in use
MDQS[2-3]	pull-up to V _{DDDDR}
MA[0–15]	in use
MCK[0-2]	in use
MCK[0-2]	in use
MCS[0-1]	in use
MDM[0-1]	in use
MDM[2-3]	NC
MBA[0-2]	in use
MCAS	in use
MCKE[0-1]	in use
MODT[0-1]	in use
MDIC[0-1]	in use
MRAS	in use

Table 52. Connectivity	of DDR Related Pin	s When Usina 16-	bit DDR Memory Only
		o	

Table 60. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	NC
GE2_TD[0-3]	NC
GE2_TX_EN	NC

3.4.4.3 GE1 and GE2 Management Pins

GE_MDC and GE_MDIO pins should be connected as required by the specified protocol. If neither GE1 nor GE2 is used (that is, V_{DDGE2} is connected to GND), Table 61 lists the recommended management pin connections.

Table 61. Connectivity of GE Management Pins When GE1 and GE2 Are Not Used

Signal Name	Pin Connection
GE_MDC	NC
GE_MDIO	NC

3.4.5 UTOPIA/POS Related Pins

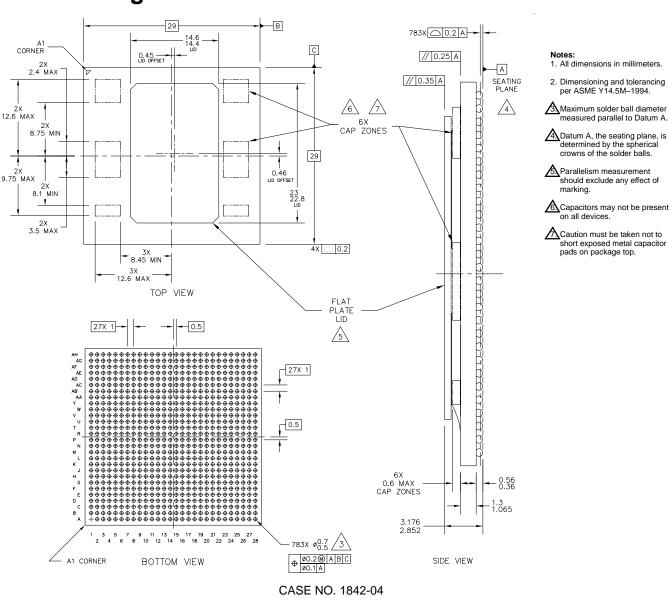

Table 62 lists the board connections of the UTOPIA/POS pins when the entire UTOPIA/POS interface is not used or subset of UTOPIA/POS interface is used. For multiplexing options that select a subset of the UTOPIA/POS interface, use the connections described in Table 62 for those signals that are not selected. Table 62 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 62. Connectivity of UTOPIA/POS Related Pins When UTOPIA/POS Interface Is Not Used

Signal Name	Pin Connection
UTP_IR	GND
UTP_RADDR[0-4]	V _{DDIO}
UTP_RCLAV_PDRPA	NC
UTP_RCLK	GND
UTP_RD[0-15]	GND
UTP_REN	V _{DDIO}
UTP_RPRTY	GND
UTP_RSOC	GND
UTP_TADDR[0-4]	V _{DDIO}
UTP_TCLAV	NC
UTP_TCLK	GND
UTP_TD[0-15]	NC
UTP_TEN	V _{DDIO}
UTP_TPRTY	NC
UTP_TSOC	NC
V _{DDIO}	3.3 V

5

Package Information

6 **Product Documentation**

- *MSC8144 Technical Data Sheet* (MSC8144). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8144 device.
- *MSC8144 Reference Manual* (MSC8144RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8144 device.
- *SC3400 DSP Core Reference Manual*. Covers the SC3400 core architecture, control registers, clock registers, program control, and instruction set.
- *MSC8144 SC3400 DSP Core Subsystem Reference Manual*. Covers core subsystem architecture, functionality, and registers.

Table 66. Document Revision History (continued)

Rev.	Date	Description
7	Dec 2007	• Changed minimum voltage level for V _{DDM3} to 1.213 (1.25 – 3%) in Table 3.
		• Added POS to titles in Section 2.6.6.
		 Added additional signals to titles in Section 2.6.8. Added high and low voltage ranges to Table 19. Added ATM and POS to headings in Section 2.7.11. Changed characteristics to generic input/output in Table 52,
		Figure 33, and Figure 34.
		• Replaced Sections 2.7.13 and 2.7.14 with new Section 2.7.13, Asynchronous Signal Timing. Renumbered
		 subsequent sections, tables, and figures. Added POS to all UTOPIA references in Section 3.4.5.
8	Dec 2007	 Changed GCR4 program value to 0x0004C130 in Note 7 in Table 51.
9	Mar 2008	Changed description of Table 20 in Section 2.7.2.
10	Apr 2008	• Added ³ to the PLL supply voltage row in Table 2 .
	•	• Changed the first sentence in Section 3.4.8 to reflect that Table 70 indicates what to do with pins if they are
		"not" required by the design. Changed the Pin Connection for GPIO[0–31] to GND.
		 Updated ordering information in Section 4. Multiple corrections of minor punctuation errors.
11	Aug 2008	 Removed the comment about preliminary estimates before Table 4 and removed non-DDR rows in the table.
	/ ldg 2000	 Table 9 and Table 11 for DDR and DDR2 SDRAM capacitance removed and subsequent tables renumbered.
		• Changed units for I_{OH} and I_{OL} to mA in Table 9.
		 Removed signal low and high input current from Table 12. Added a note to Table 15 to exclude TDM and TMS. Removed reference to overshoot and undershoot and
		associated figure.
		• Changed minimum clock frequency to 33 MHz and maximum clock frequency to 133 MHz in Table 16.
		Deleted old Table 17 Clock Parameters.
		 Changed minimum input clock frequency to 33 MHz in Table 19. Changed the t_{DDKHAX} minimum value in Table 23 to 1.85 ns.
		 Removed t_{REFPJ} and t_{REFCJ} from Table 24 because the specifications are not required or tested.
		 Removed t_{PCRSTCLK}, t_{PCRSTOFF}, t_{PCRST}, and t_{PCRHFA} from Table 36 because the specifications are not required or tested.
		 Removed t_{UAVKH} and t_{UAVXH} from Table 38 because the specifications are not required or tested.
		 The parameters t_{MDCH}, t_{MDCR}, and t_{MDHF} were removed from Table 40 because the specifications are not required or tested.
		• The parameters t_{MTXH}/t_{MTX} , t_{MTXR} , and t_{MTXF} were removed from Table 41 because the specifications are not
		required or tested.
		 The parameters t_{MRXH}/t_{MRX}, t_{MRXR}, and t_{MRXF} were removed from Table 42 because the specifications are not required or tested.
		 The parameters t_{RMXH}/t_{RMX}, t_{RMXR}, and t_{RMXF} were removed from Table 43 because the specifications are not required or tested.
		• Removed the parameters t_{RGT} , t_{RGTH}/t_{RGT} (1000Base-T), t_{RGTH}/t_{RGT} (10Base-T), t_{RGTR} , t_{RGTF} , t_{G12} , and
		 t_{G125H}/t_{G125} were removed from Table 45 and Table 46 because the specifications are not required or tested. Changed t_{UEKHOX} to guaranteed by design in Table 47.
		 Updated Figure 35 and Figure 36 SPI timing diagrams.
		• Removed TCK rise and fall time from Table 50.
		Updated orderable part numbers in Section 4.
12	Aug 2008	• Changed b8t to bit in the M3 memory description on the first page.
		 Changed maximum input high voltage (VIH) for SPI to 3.465 in the first row of Table 14. Changed packet processor to QUICC Engine Subsystem in the last row of Table 18.
13	Feb 2009	 In Figure 31, for GTX_CLK, changed (at transmitter) to (at DSP) and for RX_CLK, changed (at PHY) to (at DSP).
		 Updated package drawing to the latest revision, Case No. 1842-04 in Figure 44.
14	Jul 2009	Updated MV _{REF} equations and temperature ranges in Table 3.
		• Updated orderable part numbers to Section 4.
15	Nov 2009	Updated Core and PLL input voltage tolerance in Table 3.
16	May 2010	Corrected typo in Table 23. Changed MCLK minimum time to 5 ns.