

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8144tvt1000b
Supplier Device Package	783-FCPBGA (29x29)
Package / Case	783-BBGA, FCBGA
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TJ)
Voltage - Core	1.00V
Voltage - I/O	3.30V
On-Chip RAM	10.5MB
Non-Volatile Memory	ROM (96kB)
Clock Rate	1GHz
Interface	EBI/EMI, Ethernet, I ² C, PCI, Serial RapidIO, SPI, TDM, UART, UTOPIA
Туре	SC3400 Core
Product Status	Obsolete

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ssignments and Reset States

1 Pin Assignments and Reset States

This section includes diagrams of the MSC8144 package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

Top View 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 26 27 28 А В С D Е F G н J Κ L Μ Ν Р R т U V W Υ AA AB AC AD AE AF AG AH

Figure 3. MSC8144 FC-PBGA Package, Top View

		Power-	er- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
G23	MBA1										V _{DDDDR}
G24	MA3										V _{DDDDR}
G25	MA8										V _{DDDDR}
G26	V _{DDDDR}										V _{DDDDR}
G27	GND										GND
G28	MCK0										V _{DDDDR}
H1	Reserved ¹										_
H2	CLKIN										V _{DDIO}
H3	HRESET										V _{DDIO}
H4	PCI_CLK_IN										V _{DDIO}
H5	NMI										V _{DDIO}
H6	URXD/GPIO14/IRQ8/ RC_LDF ^{3, 6}	RC_LDF			UA	RT/GPIO	/IRQ				V _{DDIO}
H7	GE1_RX <u>_ER/PCI_</u> AD6/ GPIO25/IRQ15 ^{3, 6}		GPIO/ IRQ	Ethernet 1		PCI		GPIO/ IRQ	Etherr	net 1	V _{DDIO}
H8	GE1_CRS/PCI_AD5		PCI	Ethernet 1		P	CI		Etherr	net 1	V _{DDIO}
H9	GND										GND
H10	V _{DD}										V _{DD}
H11	GND										GND
H12	V _{DD}										V _{DD}
H13	GND										GND
H14	V _{DD}										V _{DD}
H15	V _{DD}										V _{DD}
H16	V _{DD}										V _{DD}
H17	GND										GND
H18	V _{DD}										V _{DD}
H19	GND										GND
H20	V _{DD}										V _{DD}
H21	V _{DD}										V _{DD}
H22	V _{DDDDR}										V _{DDDDR}
H23	MBA0										V _{DDDDR}
H24	MA15										V _{DDDDR}
H25	V _{DDDDR}										V _{DDDDR}
H26	MA9										V _{DDDDR}
H27	MA7										V _{DDDDR}
H28	MCK0										V _{DDDDR}
J1	Reserved ¹										_
J2	GND										GND
J3	V _{DDIO}										V _{DDIO}
J4	STOP_BS										V _{DDIO}
J5	NMI_OUT ⁴										V _{DDIO}
J6	INT_OUT ⁴										V _{DDIO}
J7	SDA/GPIO27 ^{3, 4, 6}					I2C/GPIC)				V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-	er- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
T21	GND										GND
T22	V _{DDDDR}										V _{DDDDR}
T23	GND										GND
T24	V _{DDDDR}										V _{DDDDR}
T25	GND										GND
T26	V _{DDDDR}										V _{DDDDR}
T27	GND										GND
T28	V _{DDDDR}										V _{DDDDR}
U1	Reserved ¹										—
U2	UTP_TCLK/PCI_AD29		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
U3	UTP_TADDR4/PCI_AD27		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
U4	UTP_TADDR2					UT	OPIA				V _{DDIO}
U5	GND										GND
U6	UTP_REN/PCI_AD20		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
U7	PCI_AD26					F	PCI				V _{DDIO}
U8	PCI_AD25					F	PCI				V _{DDIO}
U9	Reserved ¹										V _{DDIO}
U10	V _{DDM3}										V _{DDM3}
U11	GND										GND
U12	V _{DDM3}										V _{DDM3}
U13	GND										GND
U14	V _{DDM3}										V _{DDM3}
U15	GND										GND
U16	V _{DDM3}										V _{DDM3}
U17	GND										GND
U18	V _{DDM3}										V _{DDM3}
U19	GND										GND
U20	V _{DDM3}										V _{DDM3}
U21	GND										GND
U22	GND										GND
U23	MDQ7										V _{DDDDR}
U24	MDQ3										V _{DDDDR}
U25	MDQ4										V _{DDDDR}
U26	MDQ5										V _{DDDDR}
U27	MDQ1										V _{DDDDR}
U28	MDQ0										V _{DDDDR}
V1	Reserved ¹										—
V2	UTP_TD10/PCI_CBE0		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
V3	UTP_TADDR3		UTOPIA				V _{DDIO}				
V4	UTP_TD1/PCI_PERR		UTOPIA PCI UTOPIA				V _{DDIO}				
V5	UTP_TADDR0/PCI_AD23		UTOPIA PCI UTOPIA				V _{DDIO}				
V6	UTP_TADDR1/PCI_AD24		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
V7	UTP_TCLAV/PCI_AD28		UTC	OPIA	PCI			UTOPIA			V _{DDIO}

Table 1. Signal List by Ball Number (continued)

_		Power-	er- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
W23	MDQ10										V _{DDDDR}
W24	GND										GND
W25	MDQ11										V _{DDDDR}
W26	MDM0										V _{DDDDR}
W27	GND										GND
W28	MDQS0										V _{DDDDR}
Y1	Reserved ¹										-
Y2	UTP_TD14/PCI_FRAME		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
Y3	TDM5TSYN/PCI_AD18/ GPIO12 ^{3, 6}		٦	TDM/GPIC)	P	CI		TDM/GPIO		V _{DDIO}
Y4	TDM5TCLK/PCI_AD16			TDM		P	CI		TDM		V _{DDIO}
Y5	TDM4RCLK/PCI_AD7			TDM		P	CI		TDM		V _{DDIO}
Y6	TDM4TSYN/PCI_AD12			TDM		P	CI		TDM		V _{DDIO}
Y7	UTP_TPRTY/RC14	RC14				UT	ΟΡΙΑ				V _{DDIO}
Y8	UTP_TEN/PCI_PAR		UTC	PIA	PCI			UTOPIA	L.		V _{DDIO}
Y9	Reserved ¹										V _{DDIO}
Y10	GND										GND
Y11	V _{DDM3}										V _{DDM3}
Y12	GND										GND
Y13	V _{DDM3}										V _{DDM3}
Y14	GND										GND
Y15	V _{DDM3}										V _{DDM3}
Y16	GND										GND
Y17	V _{DDM3}										V _{DDM3}
Y18	GND										GND
Y19	V _{DDM3}										V _{DDM3}
Y20	GND										GND
Y21	GND										GND
Y22	V _{DDDDR}										V _{DDDDR}
Y23	MDQ13										V _{DDDDR}
Y24	V _{DDDDR}										V _{DDDDR}
Y25	GND										GND
Y26	MDQ9										V _{DDDDR}
Y27	V _{DDDDR}										V _{DDDDR}
Y28	MDQ8										V _{DDDDR}
AA1	Reserved ¹										—
AA2	UTP_TD13/PCI_CBE3		UTC	OPIA	PCI			UTOPIA	L.		V _{DDIO}
AA3	TDM5RSYN/PCI_AD15/ GPIO10 ^{3, 6}			TDM/GPIC	0	P	CI		TDM/GPIO		V _{DDIO}
AA4	TDM5TDAT, AT/PCI_AD17/ GPIO11 ⁶			TDM/GPIC)	P	CI		TDM/GPIO		V _{DDIO}
AA5	TDM5RCLK/PCI_AD13/ GPIO28 ^{3, 6}		-	TDM/GPIC)	P	CI		TDM/GPIO		V _{DDIO}
AA6	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-			I/	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AA7	TDM4TCLK/PCI_AD10			TDM		P	CI		TDM		V _{DDIO}
AA8	TDM4TDAT/PCI_AD11			TDM		P	CI	TDM			V _{DDIO}
AA9	V _{DDIO}										V _{DDIO}
AA10	V _{DDM3}										V _{DDM3}
AA11	GND										GND
AA12	V _{DDM3}										V _{DDM3}
AA13	GND										GND
AA14	V _{DDM3}										V _{DDM3}
AA15	GND										GND
AA16	V _{DDM3}										V _{DDM3}
AA17	GND										GND
AA18	V _{DDM3}										V _{DDM3}
AA19	GND										GND
AA20	V _{DDM3}										V _{DDM3}
AA21	GND										GND
AA22	GND										GND
AA23	MDQ15										V _{DDDDR}
AA24	MDQ14										V _{DDDDR}
AA25	MDM1										V _{DDDDR}
AA26	MDQ12										V _{DDDDR}
AA27	MDQS1										V _{DDDDR}
AA28	MDQS1										V _{DDDDR}
AB1	Reserved ¹										-
AB2	UTP_TSOC/RC15	RC15				UT	ΟΡΙΑ				V _{DDIO}
AB3	V _{DDIO}										V _{DDIO}
AB4	TDM6RDAT/PCI_AD20/ GPIO5/IRQ11 ^{3, 6}		TD	M/GPIO/ I	RQ	P	CI	TC)m/gpio/ if	RQ	V _{DDIO}
AB5	TDM5RDAT/PCI_AD14/ GPIO9 ^{3, 6}		٦	rdm/gpic)	P	CI		TDM/GPIO		V _{DDIO}
AB6	TDM6TSYN/PCI_AD24/ GPIO8/ IRQ14 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TE	DM/GPIO/IF	RQ.	V _{DDIO}
AB7	TDM6RCLK/PCI_AD19/ GPIO4/IRQ10 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TE	DM/GPIO/IF	RQ.	V _{DDIO}
AB8	TDM4RSYN/PCI_AD9			TDM		P	CI		TDM		V _{DDIO}
AB9	TDM4RDAT/PCI_AD8			TDM		P	CI		TDM		V _{DDIO}
AB10	GND										GND
AB11	V _{DDM3}										V _{DDM3}
AB12	GND										GND
AB13	V _{DDM3}										V _{DDM3}
AB14	GND										GND
AB15	V _{DDM3}										V _{DDM3}
AB16	GND										GND
AB17	V _{DDM3}										V _{DDM3}
AB18	GND										GND

Table 1. Signal List by Ball Number (continued)

		Power-	er- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AD4	GPIO2 ^{3, 6}					GPIO					V _{DDIO}
AD5	GND										GND
AD6	TDM1TCLK			ТDМ							V _{DDIO}
AD7	TDM3TDAT/RC10	RC10		ТDМ							V _{DDIO}
AD8	TDM3RSYN/RC9	RC9				Т	DМ				V _{DDIO}
AD9	TDM3RDAT/RC8	RC8		-	-	Т	DM			-	V _{DDIO}
AD10	GND										GND
AD11	V _{25M3}										V _{25M3}
AD12	GND										GND
AD13	V _{DDM3}										V _{DDM3}
AD14	GND										GND
AD15	V _{25M3}										V _{25M3}
AD16	GND										GND
AD17	V _{DDM3}										V _{DDM3}
AD18	GND										GND
AD19	V _{25M3}										V _{25M3}
AD20	GND										GND
AD21	Reserved ¹										
AD22	V _{DDDDR}										V _{DDDDR}
AD23	GND										GND
AD24	V _{DDDDR}										V _{DDDDR}
AD25	GND										GND
AD26	V _{DDDDR}										V _{DDDDR}
AD27	GND										GND
AD28	V _{DDDDR}										V _{DDDDR}
AE1	Reserved ¹										
AE2	GPIO0 ^{3, 6}					G	PIO				V _{DDIO}
AE3	GPIO3 ^{3, 6}					G	PIO				V _{DDIO}
AE4	TDM1RCLK					Т	DM				V _{DDIO}
AE5	TDM1TSYN/RC3	RC3				Т	DM				V _{DDIO}
AE6	TDM1TDAT/RC2	RC2				Т	DM				V _{DDIO}
AE7	TDM1RSYN/RC1	RC1				Т	DM				V _{DDIO}
AE8	TDM3RCLK/RC16	RC16				Т	DM				V _{DDIO}
AE9	TDM3TCLK					Т	DM				V _{DDIO}
AE10	TDM2TDAT/RC6	RC6				Т	DM				V _{DDIO}
AE11	GPIO21/IRQ1 ^{3.6} /SPICLK			1	1	GPIO/	IRQ/SPI			1	V _{DDIO}
AE12	GND										GND
AE13	Reserved ¹										—
AE14	GND										GND
AE15	Reserved ¹										
AE16	Reserved ¹										—
AE17	Reserved ¹										—
AE18	GND										GND

Table 1. Signal List by Ball Number (continued)

2.5.2 Serial RapidIO DC Electrical Characteristics

DC receiver logic levels are not defined since the receiver is AC-coupled.

2.5.2.1 DC Requirements for SerDes Reference Clocks

The SerDes reference clocks SRIO_REF_CLK and $\overline{\text{SRIO}_{\text{REF}}\text{CLK}}$ are AC-coupled differential inputs. Each differential clock input has an internal 50 Ω termination to GND_{SXC} . The reference clock must be able to drive this termination. The recommended minimum operating voltage is -0.4 V; the recommended maximum operating voltage is 1.32 V; and the maximum absolute voltage is 1.72 V.

The maximum average current allowed in each input is 8 mA. This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 Ω = 8 mA) while the minimum common mode input level is GND_{SXC}. For example, a clock with a 50/50 duty cycle can be driven by a current source output that ranges from 0 mA to 16 mA (0–0.8 V). The input is AC-coupled internally, so, therefore, the exact common mode input voltage is not critical.

Note: This internal AC-couple network does not function correctly with reference clock frequencies below 90 MHz.

If the device driving the $\overline{\text{SRIO}_\text{REF}_\text{CLK}}$ inputs cannot drive 50 Ω to GND_{SXC} , or if it exceeds the maximum input current limitations, then it must use external AC-coupling. The minimum differential peak-to-peak amplitude of the input clock is 0.4 V (0.2 V peak-to-peak per phase). The maximum differential peak-to-peak amplitude of the input clock is 1.6 V peak-to-peak (see Figure 5. The termination to GND_{SXC} allows compatibility with HCSL type reference clocks specified for PCI-Express applications. Many other low voltage differential type outputs can be used but will probably need to be AC-coupled due to the limited common mode input range. LVPECL outputs can produce too large an amplitude and may need to be source terminated with a divider network to reduce the amplitude. The amplitude of the clock must be at least a 400 mV differential peak-peak for single-ended clock. If driven differentially, each signal wire needs to drive 100 mV around common mode voltage. The differential reference clock (SRIO_REF_CLK/SRIO_REF_CLK) input is HCSL-compatible DC coupled or LVDS-compatible with AC-coupling.

Figure 5. SerDes Reference Clocks Input Stage

Poset Action/Poset Source	Po <u>wer-On Re</u> set (PORESET)	Hard Reset (HRESET)	Soft Reset (SRESET)			
Reset Action/Reset Source	External only	External or Internal (Software Watchdog, Software or RapidIO)	External or internal Software	JTAG Command: EXTEST, CLAMP, or HIGHZ		
HRESET driven	Yes	Yes	No	No		
IPBus modules reset (TDM, UART, SWT, DDRC, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes		
SRESET driven	Yes	Yes	Yes	Depends on command		
Extended cores reset	Yes	Yes	Yes	Yes		
CLASS registers reset	Yes	Yes	Some registers	Some registers		
Timers, Performance Monitor	Yes	Yes	No	No		
QUICC Engine subsystem, PCI, DMA	Yes	Yes	Most registers	Most registers		

Table 18. Reset Actions for Each Reset Source (continued)

2.6.3.1 Power-On Reset (PORESET) Pin

Asserting $\overrightarrow{PORESET}$ initiates the power-on reset flow. $\overrightarrow{PORESET}$ must be asserted externally for at least 32 CLKIN cycles after V_{DD} and V_{DDIO} are both at their nominal levels.

2.6.3.2 Reset Configuration

The MSC8144 has two mechanisms for writing the reset configuration:

- Through the I^2C port
- Through external pins
- Through internal hard coded

Twenty-three signals (see **Section 1** for signal description details) are sampled during the power-on reset sequence to define the Reset Word Configuration Source and operating conditions:

- RCW_SRC[2–0]
- RC[16–0]

The RCFG_CLKIN_RNG pin must be valid during power-on or hard reset sequence. The STOP_BS pin must be always valid and is also sampled during power-on reset sequence for RCW loading from an I²C EEPROM.

2.6.3.3 Reset Timing Tables

Table 19 and Figure 7 describe the reset timing for a reset configuration.

Table 19	. Timing for	r a Reset	Configuration	Write
----------	--------------	-----------	---------------	-------

No.	Characteristics	Expression	Max	Min	Unit
1	Required external PORESET duration minimum	32/CLKIN			
	• 33 MHz <= CLKIN < 44 MHz		1280	727	ns
	• 44 MHz <= CLKIN < 66 MHz		728	484	ns
	• 66 MHz <= CLKIN < 100 MHz		485	320	ns
	• 100 MHz <= CLKIN < 133 MHz		320	241	ns

Figure 8 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 8. Timing for t_{DDKHMH}

Figure 9. DDR SDRAM Output Timing

rical Characteristics

Figure 10 provides the AC test load for the DDR bus.

Figure 10. DDR AC Test Load

2.6.5 Serial RapidIO Timing and SGMII Timing

2.6.5.1 AC Requirements for SRIO_REF_CLK and SRIO_REF_CLK

Table 24 lists AC signal specifications.

Table 24. SDn_REF	_CLK and SD <i>n</i> _R	EF_CLK AC Signal	Specifications

Parameter Description	Symbol	Min	Typical	Max	Units	Comments
REFCLK cycle time	t _{REF}	_	10 (8, 6.4)	_	ns	8 ns applies only to serial RapidIO system with 125-MHz reference clock. 6.4 ns applies only to serial RapidIO systems with a 156.25 MHz reference clock. Note: SGMII uses the 8 ns (125 MHz) value only.

2.6.5.2 Signal Definitions

LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential signals. Figure 11 shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and $\overline{\text{TD}}$) or a receiver input (RD and $\overline{\text{RD}}$). Each signal swings between voltage levels A and B, where A > B.

Figure 11. Differential V_{PP} of Transmitter or Receiver

Note: This explanation uses generic TD/TD/RD/RD signal names. These correspond to SRIO_TXD/SRIO_TXD/SRIO_RXD/SRIO_RXD respectively.

NP

2.6.5.5 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section. Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to 0.8 × baud frequency. This includes contributions from internal circuitry, the package, and any external components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ω resistive for differential return loss and 25 Ω resistive for common mode.

<u>Ob anna tariatia</u>	Characteristic Symbol Range		11	Netes	
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	800	800	ps	±100 ppm

Table 32. Receiver AC Timing Specifications—1.25 GBaud

Table 33. Receiver AC Timing Specifications—2.5 GBaud

Ol anna tariatia	0 miliot	Range		1	Netez
Characteristic	Symbol	Min	Max	Unit	NOTES
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J_{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	400	400	ps	±100 ppm

Figure 20. TDM Output Signals

Note: For some TDM modes, transmit data is output on other pins. This timing is also valid for those pins. See the *MSC8144 Reference Manual*

2.6.8 UART Timing

Table 38. UART Timing

Characteristics	Symbol	Expression	Min	Max	Unit
URXD and UTXD inputs high/low duration	TUREFCLK	16 × T _{REFCLK}	160	—	ns
Note: $T_{UREFCLK} = T_{REFCLK}$ is guaranteed by design.					

Figure 21 shows the UART input AC timing

Figure 21. UART Input Timing

Figure 22 shows the UART output AC timing

Figure 22. UART Output Timing

Figure 26 provides the AC test load.

Figure 26. AC Test Load

Figure 27 shows the MII receive AC timing diagram.

Figure 27. MII Receive AC Timing

2.6.10.4 RMII Transmit and Receive AC Timing Specifications

Table 43 provides the RMII transmit and receive AC timing specifications.

Parameter/Condition	Symbol ¹	Min	Max	Unit	
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	65	%	
REF_CLK to RMII data TXD[1–0], TX_EN delay	t _{RMTKHDX}	2	10	ns	
RXD[1–0], CRS_DV, RX_ER setup time to REF_CLK	t _{rmrdvkh}	4.0	—	ns	
RXD[1–0], CRS_DV, RX_ER hold time to REF_CLK	t _{rmrdxkh}	2.0	_	ns	
Typical REF_CLK clock period (t _{RMX}) is 20 ns					
Notes:1. Typical REF_CLK clock period (t _{RMX}) is 20 ns2. Program GCR4 as 0x00001405					

Figure 30. SMII Mode Signal Timing

2.6.10.6 RGMII AC Timing Specifications

Table 45 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.

Table 45.	RGMII with	On-Board Delay	AC Timina	Specifications
10010 101		en beara bera	,	opoonioanono

		Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to o	clock	output skew (at transmitter)	t _{SKEWT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²		t _{SKEWR}	0.9		2.6	ns	
Notes:	Notes: 1. At recommended operating conditions with LV _{DD} of 2.5 V +/- 5%.						
 This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. 			ins is				
	3.	GCR4 should be programmed as 0x00001004.					

Table 46 presents the RGMII AC timing specification for applications required non-delayed clock on board.

Table 46. RGMII with No On-Board Delay AC Timing Specifications

		Parameter/Condition	Symbol	Min	Тур	Max	Unit
Data to	clock	output skew (at transmitter)	t _{SKEWT}	-2.6	—	-0.9	ns
Data to clock input skew (at receiver) ²		t _{SKEWR}	-0.5	_	0.5	ns	
 Notes: 1. At recommended operating conditions with LV_{DD} of 2.5 V +/- 5%. 2. This implies that PC board design will require clocks to be routed with no additional trace delay 3. GCR4 should be programmed as 0x0004C130. 							

2.6.11 ATM/UTOPIA/POS Timing

Table 47 provides the ATM/UTOPIA/POS input and output AC timing specifications.

Characteristic	Symbol	Min	Мах	Unit
Outputs—External clock delay	t _{UEKHOV}	1	9	ns
Outputs—External clock High Impedance ¹	t _{UEKHOX}	1	9	ns

tUEIVKH

t_{UEIXKH}

Table 47. ATM/UTOPIA/POS AC Timing (External Clock) Specifications

Notes: 1. Not tested. Guaranteed by design.

Inputs-External clock input setup time

Inputs-External clock input hold time

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are
measured at the pin. Although the specifications generally reference the rising edge of the clock, these AC timing diagrams
also apply when the falling edge is the active edge.

4

1

Figure 32 provides the AC test load for the ATM/UTOPIA/POS.

Figure 32. ATM/UTOPIA/POS AC Test Load

Figure 33 shows the ATM/UTOPIA/UTOPIA timing with external clock.

Figure 33. ATM/UTOPIAPOS AC Timing (External Clock)

ns

ns

2.6.14 JTAG Signals

Characteristics		All frequencies		Line it
		Min	Max	Unit
TCK cycle time	t _{TCKX}	36.0	_	ns
TCK clock high phase measured at V_{M} = 1.6 V	t _{тскн}	15.0	—	ns
Boundary scan input data setup time	t _{BSVKH}	0.0	—	ns
Boundary scan input data hold time	t _{BSXKH}	15.0	—	ns
TCK fall to output data valid	t _{TCKHOV}	_	20.0	ns
TCK fall to output high impedance	t _{TCKHOZ}	_	24.0	ns
TMS, TDI data setup time	t _{TDIVKH}	0.0	—	ns
TMS, TDI data hold time	t _{TDIXKH}	5.0	—	ns
TCK fall to TDO data valid	t _{TDOHOV}	_	10.0	ns
TCK fall to TDO high impedance	t _{TDOHOZ}	_	12.0	ns
TRST assert time		100.0	—	ns
Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

Table 50. JTAG Timing

Figure 38 shows the Test Clock Input Timing Diagram

Figure 38. Test Clock Input Timing

Figure 39 shows the boundary scan (JTAG) timing diagram.

Figure 39. Boundary Scan (JTAG) Timing

ware Design Considerations

3.2 **Power Supply Design Considerations**

Each PLL supply must have an external RC filter for the V_{DDPLL} input. The filter is a 10 Ω resistor in series with two 2.2 μ F, low ESL (<0.5 nH) and low ESR capacitors. All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately (see Figure 43). For optimal noise filtering, place the circuit as close as possible to its V_{DDPLL} inputs. These traces should be short and direct.

Figure 43. PLL Supplies

Table 60. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	NC
GE2_TD[0-3]	NC
GE2_TX_EN	NC

3.4.4.3 GE1 and GE2 Management Pins

GE_MDC and GE_MDIO pins should be connected as required by the specified protocol. If neither GE1 nor GE2 is used (that is, V_{DDGE2} is connected to GND), Table 61 lists the recommended management pin connections.

Table 61. Connectivity of GE Management Pins When GE1 and GE2 Are Not Used

Signal Name	Pin Connection
GE_MDC	NC
GE_MDIO	NC

3.4.5 UTOPIA/POS Related Pins

Table 62 lists the board connections of the UTOPIA/POS pins when the entire UTOPIA/POS interface is not used or subset of UTOPIA/POS interface is used. For multiplexing options that select a subset of the UTOPIA/POS interface, use the connections described in Table 62 for those signals that are not selected. Table 62 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 62. Connectivity of UTOPIA/POS Related Pins When UTOPIA/POS Interface Is Not Used

Signal Name	Pin Connection
UTP_IR	GND
UTP_RADDR[0-4]	V _{DDIO}
UTP_RCLAV_PDRPA	NC
UTP_RCLK	GND
UTP_RD[0-15]	GND
UTP_REN	V _{DDIO}
UTP_RPRTY	GND
UTP_RSOC	GND
UTP_TADDR[0-4]	V _{DDIO}
UTP_TCLAV	NC
UTP_TCLK	GND
UTP_TD[0–15]	NC
UTP_TEN	V _{DDIO}
UTP_TPRTY	NC
UTP_TSOC	NC
V _{DDIO}	3.3 V

3.4.8 Miscellaneous Pins

Table 65 lists the board connections for the pins if they are not required by the system design. Table 65 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Signal Name	Pin Connection		
CLKOUT	NC		
EEO	GND		
EE1	NC		
GPIO[0-31]	GND		
SCL	See the GPIO connectivity guidelines in this table.		
SDA	See the GPIO connectivity guidelines in this table.		
INT_OUT	NC		
IRQ[0–15]	See the GPIO connectivity guidelines in this table.		
NMI	V _{DDIO}		
NMI_OUT	NC		
RC[0–16]	GND		
RC_LDF	NC		
STOP_BS	GND		
ТСК	GND		
ТОІ	GND		
TDO	NC		
TMR[0-4]	See the GPIO connectivity guidelines in this table.		
TMS	GND		
TRST	GND		
URXD	See the GPIO connectivity guidelines in this table.		
UTXD	See the GPIO connectivity guidelines in this table.		
V _{DDIO}	3.3 V		
Note: When using I/O multiplexing mode 5 or 6, tie the TDM7TSYN/PCI_AD4 signal (ball number AC9) to GND.			

Table 65. Connectivity	y of Individual	Pins When The	y Are Not Required
------------------------	-----------------	---------------	--------------------

Note: For details on configuration, see the *MSC8144 Reference Manual*. For additional information, refer to the *MSC8144 Design Checklist* (AN3202).

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2007-2010 Freescale Semiconductor, Inc.

Document Number: MSC8144 Rev. 16 5/2010

