NXP USA Inc. - <u>KMC8144TVT800A Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3400 Core
Interface	EBI/EMI, Ethernet, I ² C, PCI, Serial RapidIO, SPI, TDM, UART, UTOPIA
Clock Rate	800MHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8144tvt800a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments and Reset States4
	1.1	FC-PBGA Ball Layout Diagrams4
	1.2	Signal List By Ball Location
2	Elect	rical Characteristics
	2.1	Maximum Ratings
	2.2	Recommended Operating Conditions27
	2.3	Default Output Driver Characteristics
	2.4	Thermal Characteristics
	2.5	DC Electrical Characteristics
	2.6	AC Timings
3	Hard	ware Design Considerations64
	3.1	Start-up Sequencing Recommendations64
	3.2	Power Supply Design Considerations
	3.3	Clock and Timing Signal Board Layout Considerations 67
	3.4	Connectivity Guidelines
4	Orde	ring Information
5	Pack	age Information
6	Produ	uct Documentation
7	Revis	ion History

List of Figures

Figure 1.	MSC8144 Block Diagram
Figure 2.	StarCore SC3400 DSP Core Subsystem Block Diagram 3
Figure 3.	MSC8144 FC-PBGA Package, Top View 4
Figure 4.	MSC8144 FC-PBGA Package, Bottom View 5
Figure 5.	SerDes Reference Clocks Input Stage 31
Figure 6.	Start-Up Sequence with V _{DD} Raised Before V _{DDIO} with
	CLKIN Started with V _{DDIO}
Figure 7.	Timing for a Reset Configuration Write
Figure 8.	Timing for t _{DDKHMH}
Figure 9.	DDR SDRAM Output Timing
Figure 10	.DDR AC Test Load 42
Figure 11	Differential V _{PP} of Transmitter or Receiver

Figure 12. I ransmitter Output Compliance Mask	46
Figure 13.Single Frequency Sinusoidal Jitter Limits	48
Figure 14. Receiver Input Compliance Mask	49
Figure 15.PCI AC Test Load	51
Figure 16.PCI Input AC Timing Measurement Conditions	51
Figure 17.PCI Output AC Timing Measurement Condition	51
Figure 18.TDM Inputs Signals	52
Figure 20.TDM Output Signals	53
Figure 21.UART Input Timing	53
Figure 22.UART Output Timing	53
Figure 23.Timer Timing	54
Figure 24.MII Management Interface Timing	55
Figure 25.MII Transmit AC Timing	55
Figure 26.AC Test Load	56
Figure 27.MII Receive AC Timing	56
Figure 28.RMII Transmit and Receive AC Timing	57
Figure 29.AC Test Load	57
Figure 30.SMII Mode Signal Timing.	58
Figure 31.RGMII AC Timing and Multiplexing	59
Figure 32.ATM/UTOPIA/POS AC Test Load	60
Figure 33.ATM/UTOPIAPOS AC Timing (External Clock)	60
Figure 34.SPI AC Test Load	61
Figure 35.SPI AC Timing in Slave Mode (External Clock)	61
Figure 36.SPI AC Timing in Master Mode (Internal Clock)	62
Figure 37.Asynchronous Signal Timing	62
Figure 38.Test Clock Input Timing	63
Figure 39.Boundary Scan (JTAG) Timing	63
Figure 40.Test Access Port Timing	64
Figure 41.TRST Timing	64
Figure 42.V _{DDM3} , V _{DDM3IO} and V _{25M3} Power-on Sequence	65
Figure 44.MSC8144 Mechanical Information, 783-ball FC-PBGA	
Package	77

		Power- I/O Multiplexing Mode ²						_			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
C21	V _{DDSXP}										V _{DDSXP}
C22	SRIO_TXD3/GE2_SGMII_T		SGI	VII suppo	rt on SER	DES is en	abled by F	Reset Con	figuration W	/ord	V _{DDSXP}
C23	V _{DDSXP}										V _{DDSXP}
C24	MDQ26										V _{DDDDR}
C25	MDQ25										V _{DDDDR}
C26	MDM3										V _{DDDDR}
C27	GND										GND
C28	MDQ24										V _{DDDDR}
D1	Reserved ¹										_
D2	GE2_RD1/PCI_AD28			Ether	rnet 2		PCI		Ethernet 2		V _{DDGE2}
D3	GND										GND
D4	TDM7TDAT/GE2_TD3/ PCI_AD3/UTP_TMD		TC	M		PCI		Ethe	ernet 2	UTOPIA	V _{DDGE2}
D5	TDM7RDAT/GE2_RD3/ PCI_AD1/UTP_STA		TC	M	PCI		Ethernet 2		UTOPIA	V _{DDGE2}	
D6	GE1_RD0/UTP_RD2/ PCI_CBE2		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
D7	TDM7TCLK/GE2_TCK/ PCI_IDS/UTP_RER		TC	M		PCI		Ethe	ernet 2	UTOPIA	V _{DDGE2}
D8	Reserved ¹										_
D9	Reserved ¹										_
D10	Reserved ¹										_
D11	Reserved ¹										_
D12	GND _{SXP}										GND _{SXP}
D13	SRIO_TXD0										V _{DDSXP}
D14	GND _{SXP}										GND _{SXP}
D15	SRIO_TXD1										V _{DDSXP}
D16	V _{DDSXC}										V _{DDSXC}
D17	Reserved ¹										_
D18	Reserved ¹										_
D19	GND _{SXP}										GND _{SXP}
D20	SRIO_TXD2/GE1_SGMII_T X		SGI	VII suppo	rt on SER	DES is en	abled by F	Reset Con	figuration W	/ord	V _{DDSXP}
D21	GND _{SXP}										GND _{SXP}
D22	SRIO_TXD3/GE2_SGMII_T X		SGI	VII suppo	rt on SER	DES is en	abled by F	Reset Con	figuration W	/ord	V _{DDSXP}
D23	GND _{SXP}										GND _{SXP}
D24	MDQ23										V _{DDDDR}
D25	V _{DDDDR}										V _{DDDDR}
D26	MDQ22										V _{DDDDR}
D27	MDQ21										V _{DDDDR}
D28	MDQS2										V _{DDDDR}
E1	Reserved ¹										_

		Power-	- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
E2	GE1_RX_CLK/UTP_RD6/ PCI_PAR		UTOPIA	Ethei	met 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E3	GE1_RD2/UTP_RD4/ PCI_FRAME		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E4	GE1_RD1/UTP_RD3/ PCI_CBE3		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E5	GE1_RD3/UTP_RD5/ PCI_IRDY		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E6	V _{DDGE1}										V _{DDGE1}
E7	GE1_TX_EN/UTP_TD6/ PCI_CBE0		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E8	Reserved ¹										—
E9	Reserved ¹										_
E10	GND										GND
E11	م V										V _{DD}
E12	GND										GND
E13	Voo										Vpp
E14	GND										GND
E15	V										Vaa
E16											
E17											V
E10											
E10											GND
E19 E20											
E20											GND
E21	V _{DD}										V _{DD}
E22	GND										GND
E23	V _{DDDDR}										V _{DDDDR}
E24	MDQ20										V _{DDDDR}
E25	GND										GND
E26	V _{DDDDR}										V _{DDDDR}
E27	GND										GND
E28	MDQS2										V _{DDDDR}
F1	Reserved ¹										_
F2	GE1_TX_CLK/UTP_RD0/ PCI_AD31		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F3	V _{DDGE1}										V _{DDGE1}
F4	GE1_TD3/UTP_TD5/ PCI_AD30		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F5	GE1_TD1/UTP_TD3/ PCI_AD28		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F6	GND										GND
F7	GE1_TD0/UTP_TD2/ PCI_AD27		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F8	V _{DDGE1}										V _{DDGE1}
F9	GND										GND

	Power- I/O Multiplexing Mode ²										
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
J8	V _{DDIO}										V _{DDIO}
J9	V _{DD}										V _{DD}
J10	GND										GND
J11	V _{DD}										V _{DD}
J12	GND										GND
J13	V _{DD}										V _{DD}
J14	GND										GND
J15	GND										GND
J16	GND										GND
J17	V _{DD}										V _{DD}
J18	GND										GND
J19	V _{DD}										V _{DD}
J20	GND										GND
J21	GND										GND
J22	GND										GND
J23	GND										GND
J24	V _{DDDDR}										V _{DDDDR}
J25	GND										GND
J26	V _{DDDDR}										V _{DDDDR}
J27	GND										GND
J28	V _{DDDDR}										V _{DDDDR}
K1	Reserved ¹										
K2	Reserved ¹										_
K3	Reserved ¹										—
K4	Reserved ¹										_
K5	V _{DDPLL2A}										V _{DDPLL2A}
K6	GND										GND
K7	V _{DDPLL0A}										V _{DDPLL0A}
K8	V _{DDPLL1A}										V _{DDPLL1A}
K9	V _{DD}										V _{DD}
K10	GND										GND
K11	V _{DD}										V _{DD}
K12	GND										GND
K13	V _{DD}										V _{DD}
K14	V _{DD}										V _{DD}
K15	V _{DD}										V _{DD}
K16	V _{DD}										V _{DD}
K17	V _{DD}										V _{DD}
K18	GND										GND
K19	V _{DD}										V _{DD}
K20	GND										GND
K21	V _{DD}										V _{DD}
K22	V _{DDDDR}										V _{DDDDR}

	Power- I/O Multiplexing Mode ²										
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AB19	V _{DDM3}										V _{DDM3}
AB20	GND										GND
AB21	GND										GND
AB22	V _{DDDDR}										V _{DDDDR}
AB23	MECC7										V _{DDDDR}
AB24	MECC1										V _{DDDDR}
AB25	MECC4										V _{DDDDR}
AB26	MECC5										V _{DDDDR}
AB27	MECC2										V _{DDDDR}
AB28	ECC_MDQS										V _{DDDDR}
AC1	Reserved ¹										
AC2	UTP_RD9/RC13	RC13				UTOPIA					V _{DDIO}
AC3	UTP_RD8/RC12	RC12				UTOPIA					V _{DDIO}
AC4	TDM6TCLK/PCI_AD22			TDM		P	CI		TDM		V _{DDIO}
AC5	TDM6RSYN/PCI_AD21/ GPIO6/ IRQ12 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TDM/GPIO/IRC		20 SQ	V _{DDIO}
AC6	V _{DDIO}										V _{DDIO}
AC7	TDM3TSYN/RC11	RC11			•	Т	DM				V _{DDIO}
AC8	PCI_AD23/GPIO7/ IRQ13 / TDM6TDAT ^{3, 6} /UTP_RMOD		TD	TDM/GPIO/IRQ PCI TDM/GPIO/IRQ UT		UTOPIA	V _{DDIO}				
AC9	TDM7TSYN/ PCI_AD4		TC	DM		PCI			reserved		V _{DDIO}
AC10	V _{DDM3IO}										V _{DDM3IO}
AC11	GND										GND
AC12	V _{DDM3}										V _{DDM3}
AC13	GND										GND
AC14	V _{DDM3}										V _{DDM3}
AC15	GND										GND
AC16	V _{DDM3}										V _{DDM3}
AC17	GND										GND
AC18	V _{DDM3}										V _{DDM3}
AC19	GND										GND
AC20	V _{DDM3IO}										V _{DDM3IO}
AC21	Reserved ¹										—
AC22	MECC6										V _{DDDDR}
AC23	MECC3										V _{DDDDR}
AC24	ECC_MDM										V _{DDDDR}
AC25	V _{DDDDR}										V _{DDDDR}
AC26	MECC0										V _{DDDDR}
AC27	V _{DDDDR}										V _{DDDDR}
AC28	ECC_MDQS										V _{DDDDR}
AD1	Reserved ¹										_
AD2	GPIO1 ^{3, 6}					G	PIO				V _{DDIO}
AD3	TMR0/GPIO13					TIME	R/GPIO				V _{DDIO}

Rating	Symbol	Value	Unit
M3 memory I/O and M3 memory charge pump voltage	V _{DDM3IO} -0.3 to 2.75 V _{25M3}		V
Input M3 memory I/O voltage	V _{INM3IO}	-0.3 to V _{DDM3IO} + 0.3	V
Rapid I/O C voltage	V _{DDSXC}	-0.3 to 1.21	V
Rapid I/O P voltage	V _{DDSXP}	-0.3 to 1.26	V
Rapid I/O PLL voltage	V _{DDRIOPLL}	-0.3 to 1.21	V
Operating temperature	TJ	-40 to 105	°C
Storage temperature range	T _{STG}	-55 to +150	°C
 Notes: 1. Functional operating conditions are given in Table 3. 2. Absolute maximum ratings are stress ratings only, and 	functional operation	at the maximum is not guarante	eed. Stress beyond

Table 2. Absolute Maximum Ratings

the listed limits may affect device reliability or cause permanent damage.

3. PLL supply voltage is specified at input of the filter and not at pin of the MSC8144 (see Figure 43)

Recommended Operating Conditions 2.2

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Min	Nominal	Мах	Unit
Core supply voltage • 800 MHz (VT, SVT, TVT) and 1000 MHz (VT)	V _{DD}	0.97	1.0	1.05	V
• 1000 MHz (SVT, TVT)		0.97	1.0	1.03	V
PLL supply voltage • 800 MHz (VT, SVT, TVT) and 1000 MHz (VT)	V _{DDPLL0} V _{DDPLL1} V _{DDPLL2}	0.97	1.0	1.05	V
 1000 MHz (SVT, TVT) 		0.97	1.0	1.03	V
M3 memory Internal voltage	V _{DDM3}	1.213	1.25	1.313	V
DDR memory supply voltage DDR mode DDR2 mode 	V _{DDDDR}	2.375 1.71	2.5 1.8	2.625 1.89	V V
DDR reference voltage	MV _{REF}	$0.49 \times V_{DDDDR}$ (nom)	$0.5 \times V_{DDDDR}$ (nom)	$0.51 \times V_{DDDDR}$ (nom)	V
Ethernet 1 I/O voltage • 2.5 V mode • 3.3 V mode	V _{DDGE1}	2.375 3.135	2.5 3.3	2.625 3.465	V V
Ethernet 2 I/O voltage • 2.5 V mode • 3.3 V mode	V _{DDGE2}	2.375 3.135	2.5 3.3	2.625 3.465	V V
I/O voltage excluding Ethernet, DDR, M3, and RapidIO lines	V _{DDIO}	3.135	3.3	3.465	V
M3 memory I/O and M3 charge pump voltage	V _{DDM3IO} V _{25M3}	2.375	2.5	2.625	V
Rapid I/O C voltage	V _{DDSXC}	0.97	1.0	1.05	V
Rapid I/O P voltage Short run (haul) mode Long run (haul) mode 	V _{DDSXP}	0.97 1.14	1.0 1.2	1.05 1.26	V V
Rapid I/O PLL voltage	V _{DDRIOPLL}	0.97	1.0	1.05	V
Operating temperature range: • Standard (VT) • Intermediate (SVT) • Extended (TVT)	T _J T _J T _A	0 0 40		90 105 	ပံ ပံ ပံ
Note: PLL supply voltage is sp	' J ecified at input of t	he filter and not at pin of the	he MSC8144 (see Figure	43).	C

Table 3. Recommended Operating Conditions

2.5 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8144.

2.5.1 DDR SDRAM DC Electrical Characteristics

This section describes the DC electrical specifications for the DDR SDRAM interface of the MSC8144.

Note: DDR SDRAM uses $V_{DDDDR}(typ) = 2.5 V$ and DDR2 SDRAM uses $V_{DDDDR}(typ) = 1.8 V$.

2.5.1.1 DDR2 (1.8 V) SDRAM DC Electrical Characteristics

Table 6 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MSC8144 when $V_{DDDDR}(typ) = 1.8 \text{ V}.$

Table 6.	DDR2	SDRAM	DC Electrica	I Characteristics	s for	VDDDB	(typ) =	= 1.8	V
							V J F J		

Parameter/Condition	Symbol	Min	Мах	Unit
I/O supply voltage ¹	V _{DDDDR}	1.7	1.9	V
I/O reference voltage ²	MV _{REF}	$0.49 \times V_{DDDDR}$	$0.51 \times V_{DDDDR}$	V
I/O termination voltage ³	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V
Input high voltage	V _{IH}	MV _{REF} + 0.125	V _{DDDDR} + 0.3	V
Input low voltage	V _{IL}	-0.3	MV _{REF} - 0.125	V
Output leakage current ⁴	I _{OZ}	-50	50	μΑ
Output high current (V _{OUT} = 1.420 V)	I _{OH}	-13.4	—	mA
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA
Notes: 1. V _{DDDDR} is expected to be within 5	0 mV of the DRAM V _{DD}	at all times.		

2. MV_{REF} is expected to be equal to $0.5 \times V_{DDDDR}$, and to track V_{DDDDR} DC variations as measured at the receiver.

Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of V_{DDDDR}.

4. Output leakage is measured with all outputs are disabled, $0 V \le V_{OUT} \le V_{DDDDR}$.

2.6 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs.

2.6.1 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.6.2** describes the clocking characteristics. **Section 2.6.3** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8144 device:

- PORESET and TRST must be asserted externally for the duration of the power-up sequence using the V_{DDIO} (3.3 V) supply. See Table 19 for timing. TRST deassertion does not have to be synchronized with PORESET deassertion. During functional operation when JTAG is not used, TRST can be asserted and remain asserted after the power ramp.
- **Note:** For applications that use M3 memory, $\overline{M3}_{RESET}$ should replicate the PORESET sequence timing, but using the V_{DDM3IO} (2.5 V) supply. See Section 3.1.1, *Power-on Sequence* for additional design information.
 - CLKIN should start toggling at least 32 cycles before the PORESET deassertion to guarantee correct device operation (see Figure 6). 32 cycles should be accounted only after V_{DDIO} reaches its nominal value.
 - CLKIN and PCI_CLK_IN should either be stable low during the power-up of V_{DDIO} supply and start their swings after power-up or should swing within V_{DDIO} range during V_{DDIO} power-up., so their amplitude grows as V_{DDIO} grows during power-up.

Figure 6 shows a sequence in which V_{DDIO} is raised after V_{DD} and CLKIN begins to toggle with the raise of V_{DDIO} supply.

Figure 6. Start-Up Sequence with V_{DD} Raised Before V_{DDIO} with CLKIN Started with V_{DDIO}

2.6.2 Clock and Timing Signals

The following sections include a description of clock signal characteristics. Table 16 shows the maximum frequency values for CLKIN and PCI_CLK_IN. The user must ensure that maximum frequency values are not exceeded.

Characteristic	Symbol	Min	Max	Unit
CLKIN frequency	F _{CLKIN}	33	133	MHz
PCI_CLK_IN frequency	F _{PCI_CLK_IN}	33	133	MHz
CLKIN duty cycle	D _{CLKIN}	40	60	%
PCI_CLK_IN duty cycle	D _{PCI_CLK_IN}	40	60	%

Table 16. Clock Frequencies

2.6.4 DDR SDRAM AC Timing Specifications

This section describes the AC electrical characteristics for the DDR SDRAM interface.

2.6.4.1 DDR SDRAM Input Timings

Table 20 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 2.5 V.

Table 20. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

Parameter	Symbol	Min	Мах	Unit		
AC input low voltage	V _{IL}	_	MV _{REF} – 0.31	V		
AC input high voltage	V _{IH}	MV _{REF} + 0.31	—	V		
Note: At recommended operating conditions with V_{ODDR} of 2.5 ± 5%.						

Table 21 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 1.8 V.

Table 21. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

Parameter	Symbol	Min	Мах	Unit	
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.25	—	V	
Note: At recommended operating conditions with V_{DDDDR} of 1.8 ± 5%.					

Table 22 provides the input AC timing specifications for the DDR SDRAM interface.

Table 22. DDR SDRAM Input AC Timing Specifications

Parameter	Symbol	Min	Max	Unit	
Controller Skew for MDQS—MDQ/MECC/MDM ¹	t _{CISKEW}				
• 400 MHz		-365	365	ps	
• 333 MHz		-390	390	ps	
• 266 MHz		-428	428	ps	
• 200 MHz		-490	490	ps	
Notes: 1. t _{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is					
captured with MDQS[n]. Subtract this value from the total timing budget.					
2 At recommended operating conditions with $V_{}$ (1.8 V or 2.5 V) + 5%					

2. At recommended operating conditions with V_{DDDDR} (1.8 V or 2.5 V) \pm 5%

rical Characteristics

2.6.4.2 DDR SDRAM Output AC Timing Specifications

Table 23 provides the output AC timing specifications for the DDR SDRAM interface.

Parameter	Symbol ¹	Min	Мах	Unit		
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) ²	t _{MCK}	5	10	ns		
ADDR/CMD output setup with respect to MCK ³	t _{DDKHAS}					
• 400 MHz		1.95	_	ns		
• 333 MHz		2.40	_	ns		
• 266 MHz		3.15	_	ns		
• 200 MHz		4.20	—	ns		
ADDR/CMD output hold with respect to MCK ³	t _{DDKHAX}					
• 400 MHz		1.85	—	ns		
• 333 MHz		2.40	—	ns		
• 266 MHz		3.15	—	ns		
• 200 MHz		4.20	—	ns		
MCSn output setup with respect to MCK ³	t _{DDKHCS}					
• 400 MHz		1.95	—	ns		
• 333 MHz		2.40	—	ns		
• 266 MHz		3.15	—	ns		
• 200 MHz		4.20	—	ns		
MCSn output hold with respect to MCK ³	t _{DDKHCX}					
• 400 MHz		1.95	—	ns		
• 333 MHz		2.40	—	ns		
• 266 MHz		3.15	—	ns		
• 200 MHz		4.20	—	ns		
MCK to MDQS Skew ⁴	t _{DDKHMH}	-0.6	0.6	ns		
MDQ/MECC/MDM output setup with respect to MDQS ⁵	t _{DDKHDS,}					
• 400 MHz	t _{DDKLDS}	700	—	ps		
• 333 MHz		900	—	ps		
• 266 MHz		1100	—	ps		
• 200 MHz		1200	—	ps		
MDQ/MECC/MDM output hold with respect to MDQS ⁵	t _{DDKHDX}					
• 400 MHz	t _{DDKLDX}	700	—	ps		
• 333 MHz		900	—	ps		
• 266 MHz		1100	—	ps		
• 200 MHz		1200	—	ps		
MDQS preamble start ⁶	t _{DDKHMP}	$-0.5\times t_{\text{MCK}}-0.6$	$-0.5 imes t_{MCK}$ +0.6	ns		
MDQS epilogue end ⁶	t _{DDKHME}	-0.6	0.6	ns		
Notes: 1. The symbols used for timing specifications follow the p	battern of t _{(first two}	letters of functional block)(signal)(state) (reference)(sta	ate) for		
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for ou	tputs. Output hold time	e can be read as DDR	timing		
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,						
t _{DDKHAS} symbolizes DDR timing (DD) for the time t _{MCK} memory clock reference (K) goes from the high (H) state until outputs						
(A) are setup (S) or output valid time. Also, t _{DDKLDX} symbolizes DDR timing (DD) for the time t _{MCK} memory clock reference						
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.						
2. All MCK/MCK referenced measurements are made fro	m the crossing o	f the two signals ±0.1	V.			
 ADDR/CMD includes all DDR SDRAM output signals e 	except MCK/MCI	K, MCS, and MDQ/ME	CC/MDM/MDQS. For	the		
ADDR/CMD setup and hold specifications, it is assume	ed that the Clock	Control register is set	to adjust the memory	clocks by		
1/2 applied cycle.						

Table 23. DDR SDRAM Output AC Timing Specifications

4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the *MSC8144 Reference Manual* for a description and understanding of the timing modifications enabled by use of these bits.

Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

7. At recommended operating conditions with V_DDDDR (1.8 V or 2.5 V) \pm 5%.

Using these waveforms, the definitions are as follows:

- 1. The transmitter output signals and the receiver input signals TD, $\overline{\text{TD}}$, RD and $\overline{\text{RD}}$ each have a peak-to-peak voltage (V_{PP}) swing of A B.
- 2. The differential output signal of the transmitter, V_{OD} , is defined as $V_{TD} V_{\overline{TD}}$.
- 3. The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$.
- 4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A B to -(A B).
- 5. The peak value of the differential transmitter output signal and the differential receiver input signal is A B.
- 6. The value of the differential transmitter output signal and the differential receiver input signal is $2 \times (A B) V_{PP}$.

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and $\overline{\text{TD}}$, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of the signals TD and $\overline{\text{TD}}$ is 500 mV_{PP}. The differential output signal ranges between 500 mV and -500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mV_{PP}.

Note: AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described. The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE[™] Std 802.3ae-2002[™]. XAUI has similar application goals to serial RapidIO. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

2.6.5.3 Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

2.6.5.4 Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section. The differential return loss, S11, of the transmitter in each case shall be better than

- -10 dB for (baud frequency)/10 < freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{freq}(f) \le \text{baud}$ frequency

The reference impedance for the differential return loss measurements is 100Ω resistive. Differential return loss includes contributions from internal circuitry, packaging, and any external components related to the driver. The output impedance requirement applies to all valid output levels. It is recommended that the 20–80% rise/fall time of the transmitter, as measured at the transmitter output, have a minimum value 60 ps in each case. It is also recommended that the timing skew at the output of an LP-Serial transmitter between the two signals comprising a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

Channa taniatia	Complete	Ra	nge		Nataa
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV _{PP}	
Deterministic Jitter	J _D		0.17	UI _{PP}	
Total Jitter	J _T		0.35	UI _{PP}	

Table 25. Short Run Transmitter AC Timing Specifications—1.25 GBaud

rical Characteristics

		Ra	nge		
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		22	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	320	320	ps	±100 ppm

Figure 13. Single Frequency Sinusoidal Jitter Limits

rical Characteristics

2.6.5.8 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT) defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100 Ω resistive ±5% differential to 2.5 GHz.

2.6.5.9 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of **IEEE** Std. 802.3ae.

2.6.5.10 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive ±5% differential to 2.5 GHz.

2.6.5.11 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in **Section 2.6.5.9** and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 14 and Table 35. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

2.6.6 PCI Timing

This section describes the general AC timing parameters of the PCI bus. Table 36 provides the PCI AC timing specifications.

D anama dan	0 milion	33 MHz		66 MHz		Unit	
	Symbol	Min	Max	Min	Max	Unit	
Output delay	t _{PCVAL}	2.0	11.0	1.0	6.0	ns	
High-Z to Valid Output delay	t _{PCON}	2.0	_	1.0	—	ns	
Valid to High-Z Output delay	t _{PCOFF}	_	28	_	14	ns	
Input setup	t _{PCSU}	7.0	—	3.0	—	ns	
Input hold	t _{PCH}	0	_	0	_	ns	

Table 36. PCI AC Timing Specifications

2.6.9 Timer Timing

Characteristics	Symbol	Min	Unit
TIMERx frequency	T _{TMREFCLK}	10.0	ns
TIMERx Input high phase	T _{TMCH}	4.0	ns
TIMERx Output low phase	T _{TMCL}	4.0	ns

Table 39. Timer Timing

Figure 23 shows the timer input AC timing

Figure 23. Timer Timing

2.6.10 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are programmable delay units (PDU) that should be programmed differently for each Interface to meet timing. There is a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the *MSC8144 Reference Manual*.

2.6.10.1 Management Interface Timing

Table 40.	Ethernet	Controller	Management	Interface	Timing
					<u> </u>

		Characteristics	Symbol	Min	Max	Unit
ETHMDC to ETHMDIO delay ²		t _{MDKHDX}	10	70	ns	
ETHMDIO to ETHMDC rising edge setup time		t _{MDDVKH}	7	—	ns	
ETHMDC rising edge to ETHMDIO hold time			t _{MDDXKH}	0	—	ns
 Notes: 1. Program the ETHMDC frequency (f_{MDC}) to a maximum value of 2.5 MHz (400 ns period for t_{MDC}). The value depends on the source clock and configuration of MIIMCFG[MCS] and UPSMR[MDCP]. For example, for a source clock of 400 MHz, to achieve f_{MDC} = 2.5 MHz, program MIIMCFG[MCS] = 0x4 and UPSMR[MDCP] = 0. See the <i>MSC8144 Reference Manual</i> for configuration details. 						

2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of 333 MHz, the delay is 58 ns.

NP

2.6.11 ATM/UTOPIA/POS Timing

Table 47 provides the ATM/UTOPIA/POS input and output AC timing specifications.

Table 47.	ATM/UTOPIA/F	POS AC Timin	g (External C	Clock) Specifications
-----------	--------------	--------------	---------------	-----------------------

Characteristic	Symbol	Min	Мах	Unit
Outputs—External clock delay	t _{UEKHOV}	1	9	ns
Outputs—External clock High Impedance ¹	t _{UEKHOX}	1	9	ns
Inputs—External clock input setup time	t _{UEIVKH}	4		ns
Inputs—External clock input hold time	t _{UEIXKH}	1		ns

Notes: 1. Not tested. Guaranteed by design.

2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. Although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 32 provides the AC test load for the ATM/UTOPIA/POS.

Figure 32. ATM/UTOPIA/POS AC Test Load

Figure 33 shows the ATM/UTOPIA/UTOPIA timing with external clock.

Figure 33. ATM/UTOPIAPOS AC Timing (External Clock)

2.6.14 JTAG Signals

Observatoriation	Cumb al	All frequencies		Unit
Cnaracteristics		Min	Max	
TCK cycle time	t _{тскх}	36.0		ns
TCK clock high phase measured at V_{M} = 1.6 V	t _{тскн}	15.0		ns
Boundary scan input data setup time	t _{BSVKH}	0.0		ns
Boundary scan input data hold time	t _{BSXKH}	15.0		ns
TCK fall to output data valid	t _{TCKHOV}	—	20.0	ns
TCK fall to output high impedance	t _{TCKHOZ}	—	24.0	ns
TMS, TDI data setup time	t _{TDIVKH}	0.0	—	ns
TMS, TDI data hold time	t _{TDIXKH}	5.0		ns
TCK fall to TDO data valid	t _{TDOHOV}	—	10.0	ns
TCK fall to TDO high impedance	t _{TDOHOZ}	—	12.0	ns
TRST assert time	t _{TRST}	100.0	_	ns
Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

Table 50. JTAG Timing

Figure 38 shows the Test Clock Input Timing Diagram

Figure 38. Test Clock Input Timing

Figure 39 shows the boundary scan (JTAG) timing diagram.

Figure 39. Boundary Scan (JTAG) Timing

The following supplies should rise before any other supplies in any sequence

- V_{DD} and V_{DDPLL} coupled together
- V_{DDM3}

After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 42):

- V_{DDGE1}
- V_{DDGE2}
- V_{DDIO}
- V_{DDDDR} and MV_{REF} coupled one to another. MV_{REF} should be either at same time or after V_{DDDDR}.
- V_{DDM3IO}
- V_{25M3}

Figure 42. $V_{DDM3},\,V_{DDM3IO}$ and V_{25M3} Power-on Sequence

- Note: 1. This recommended power sequencing is different from the MSC8122/MSC8126.
 - 2. If no pins that require V_{DDGE1} as a reference supply are used (see Table 1), V_{DDGE1} can be tied to GND.
 - 3. If no pins that require V_{DDGE2} as a reference supply are used (see Table 1), V_{DDGE2} can be tied to GND.
 - 4. If the DDR interface is not used, V_{DDDDR} and MV_{REF} can be tied to GND.
 - 5. If the M3 memory is not used, V_{DDM3} , V_{DDM3IO} , and V_{25M3} can be tied to GND.
 - 6. If the RapidIO interface is not used, V_{DDSX}, V_{DDSXP}, and V_{DDRIOPLL} can be tied to GND.

3.1.2 Start-Up Timing

Section 2.6.1 describes the start-up timing.

ware Design Considerations

Table 58. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE1_SGMII_TX	NC
GE1_TD[0-3]	NC
GE1_TX_CLK	GND
GE1_TX_EN	NC
GE1_TX_ER	NC

3.4.4.2 Ethernet Controller 2 (GE2) Related Pins

Note: Table 59 through Table 61 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

3.4.4.2.1 GE2 interface Is Not Used

Table 59 assumes that the GE2 pins are not used for any purpose (including any multiplexed function) and that V_{DDGE2} is tied to GND.

Table 59. Connectivity of GE2 Related Pins When the GE2 Interface Is Not Used

Signal Name	Pin Connection
GE2_RD[0-3]	NC
GE2_RX_CLK	NC
GE2_RX_DV	NC
GE2_RX_ER	NC
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	Nc
GE2_TD[0-3]	Nc
GE2_TX_EN	NC

3.4.4.2.2 Subset of GE2 Pins Required

When only a subset of the whole GE2 interface is used, such as for RMII, the unused GE2 pins should be connected as described in Table 60. The table assumes that the unused GE2 pins are not used for any purpose (including any multiplexed functions) and that V_{DDGE2} is tied to either 2.5 V or 3.3 V.

Table 60. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required

Signal Name	Pin Connection
GE2_RD[0-3]	GND
GE2_RX_CLK	GND
GE2_RX_DV	GND
GE2_RX_ER	GND
GE2_SGMII_RX	GND _{SXC}

3.4.8 Miscellaneous Pins

Table 65 lists the board connections for the pins if they are not required by the system design. Table 65 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Signal Name	Pin Connection		
CLKOUT	NC		
EEO	GND		
EE1	NC		
GPIO[0-31]	GND		
SCL	See the GPIO connectivity guidelines in this table.		
SDA	See the GPIO connectivity guidelines in this table.		
INT_OUT	NC		
IRQ[0–15]	See the GPIO connectivity guidelines in this table.		
NMI	V _{DDIO}		
NMI_OUT	NC		
RC[0–16]	GND		
RC_LDF	NC		
STOP_BS	GND		
ТСК	GND		
ТОІ	GND		
TDO	NC		
TMR[0-4]	See the GPIO connectivity guidelines in this table.		
TMS	GND		
TRST	GND		
URXD	See the GPIO connectivity guidelines in this table.		
UTXD	See the GPIO connectivity guidelines in this table.		
V _{DDIO}	3.3 V		
Note: When using I/O multiplexing mode 5 or 6, tie the TDM7TSYN/PCI_AD4 signal (ball number AC9) to GND.			

Table 65. Connectivity	y of Individual	Pins When The	y Are Not Required
------------------------	-----------------	---------------	--------------------

Note: For details on configuration, see the *MSC8144 Reference Manual*. For additional information, refer to the *MSC8144 Design Checklist* (AN3202).

5

Package Information

6 **Product Documentation**

- *MSC8144 Technical Data Sheet* (MSC8144). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8144 device.
- *MSC8144 Reference Manual* (MSC8144RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8144 device.
- *SC3400 DSP Core Reference Manual*. Covers the SC3400 core architecture, control registers, clock registers, program control, and instruction set.
- *MSC8144 SC3400 DSP Core Subsystem Reference Manual*. Covers core subsystem architecture, functionality, and registers.