
NXP USA Inc. - KMC8144VT1000A Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3400 Core
Interface	EBI/EMI, Ethernet, I ² C, PCI, Serial RapidIO, SPI, TDM, UART, UTOPIA
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8144vt1000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bottom View

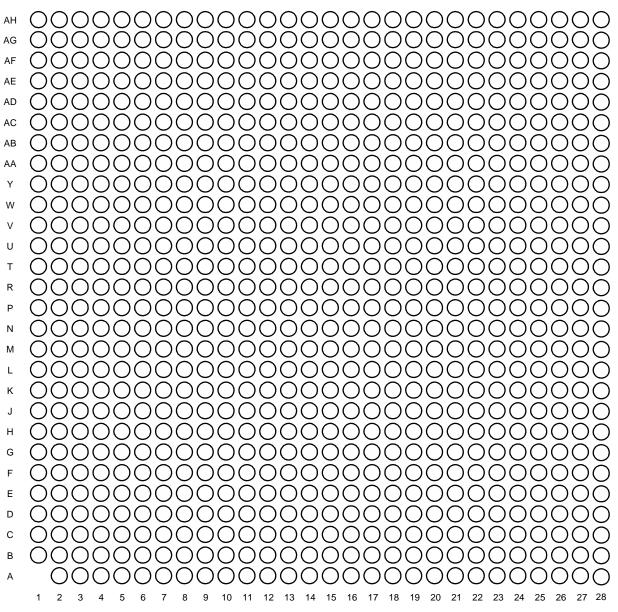


Figure 4. MSC8144 FC-PBGA Package, Bottom View

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
G23	MBA1										V _{DDDDR}
G24	MA3										V _{DDDDR}
G25	MA8										V _{DDDDR}
G26	V _{DDDDR}										V _{DDDDR}
G27	GND										GND
G28	MCK0										V _{DDDDR}
H1	Reserved ¹										_
H2	CLKIN										V _{DDIO}
H3	HRESET										V _{DDIO}
H4	PCI_CLK_IN										V _{DDIO}
H5	NMI										V _{DDIO}
H6	URXD/GPIO14/IRQ8/ RC_LDF ^{3, 6}	RC_LDF			UA	ART/GPIO	/IRQ				V _{DDIO}
H7	GE1_RX <u>_ER/P</u> CI_AD6/ GPIO25/IRQ15 ^{3, 6}		GPIO/ IRQ	Ethernet 1		PCI		GPIO/ IRQ	Ether	net 1	V _{DDIO}
H8	GE1_CRS/PCI_AD5		PCI	Ethernet 1		PCI		Ethernet 1		V _{DDIO}	
H9	GND										GND
H10	V _{DD}										V _{DD}
H11	GND										GND
H12	V _{DD}										V _{DD}
H13	GND										GND
H14	V _{DD}										V _{DD}
H15	V _{DD}										V _{DD}
H16	V _{DD}										V _{DD}
H17	GND										GND
H18	V _{DD}										V _{DD}
H19	GND										GND
H20	V _{DD}										V _{DD}
H21	V _{DD}										V _{DD}
H22	V _{DDDDR}										V _{DDDDR}
H23	MBA0										V _{DDDDR}
H24	MA15										V _{DDDDR}
H25	V _{DDDDR}										V _{DDDDR}
H26	MA9										V _{DDDDR}
H27	MA7										V _{DDDDR}
H28	МСК0										V _{DDDDR}
J1	Reserved ¹			1			Ī				_
J2	GND										GND
J3	V _{DDIO}			1							V _{DDIO}
J4	STOP_BS			1							V _{DDIO}
J5	NMI_OUT ⁴			1							V _{DDIO}
J6	INT_OUT ⁴										V _{DDIO}
J7	SDA/GPIO27 ^{3, 4, 6}			•		I2C/GPIC					V _{DDIO}

Table 1. Signal List by Ball Number (continued)

Dell		Power-			I/	O Multipl	exing Mo	de ²			Def
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AE19	GND										GND
AE20	V _{DDM3IO}										V _{DDM3IO}
AE21	Reserved ¹										_
AE22	GND										GND
AE23	GND										GND
AE24	GND										GND
AE25	V _{DDDDR}										V _{DDDDR}
AE26	GND										GND
AE27	V _{DDDDR}										V _{DDDDR}
AE28	GND										GND
AF1	Reserved ¹										_
AF2	V _{DDIO}										V _{DDIO}
AF3	GND										GND
AF4	TDM0RDAT/ RCFG_CLKIN_RNG	RCFG_ CLKIN_ RNG		TDM						V _{DDIO}	
AF5	TDM0TSYN/RCW_SRC2	RCW_ SRC2		TDM						V _{DDIO}	
AF6	TDM1RDAT/RC0	RC0				Т	DM				V _{DDIO}
AF7	V _{DDIO}										V _{DDIO}
AF8	GND										GND
AF9	TDM2RDAT/RC4	RC4		TDM						V _{DDIO}	
AF10	TDM2TCLK					Т	DM				V _{DDIO}
AF11	GPIO22/IRQ4 ^{3, 6} /SPIMOSI					GPIO/	IRQ/SPI				V _{DDIO}
AF12	GND										GND
AF13	GND										GND
AF14	V _{DDM3IO}										V _{DDM3IO}
AF15	GND										GND
AF16	GND										GND
AF17	Reserved ¹										_
AF18	V _{DDM3IO}										V _{DDM3IO}
AF19	GND										GND
AF20	Reserved ¹										_
AF21	Reserved ¹										_
AF22	M3_RESET										V _{DDM3IO}
AF23	GND										GND
AF24	V _{DDDDR}										V _{DDDDR}
AF25	GND	1								1	GND
AF26	V _{DDDDR}	1								1	V _{DDDDR}
AF27	GND										GND
AF28	V _{DDDDR}										V _{DDDDR}
AG1	Reserved ¹										_
AG2	GPIO16/IRQ0 ^{3, 6}					GPI	0/IRQ				V _{DDIO}
AG3	TDM0TCLK	1	İ				DM				V _{DDIO}

Table 1. Signal List by Ball Number (continued)

		Power-		List by		-	exing Mo	-			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AG4	TDM0RSYN/RCW_SRC0	RCW_ SRC0		TDM							V _{DDIO}
AG5	TDMORCLK					т	DM				V _{DDIO}
AG6	TDM0TDAT/RCW_SRC1	RCW_ SRC1				Т	DM				V _{DDIO}
AG7	TDM2TSYN/RC7	RC7		TDM							V _{DDIO}
AG8	TDM2RCLK					Т	DM				V _{DDIO}
AG9	TDM2RSYN/RC5	RC5				Т	DM				V _{DDIO}
AG10	GPIO24/IRQ6 ^{3, 6} /SPISEL					GPIO/	IRQ/SPI				V _{DDIO}
AG11	GPIO23/IRQ53, 6/SPIMISO					GPIO/	IRQ/SPI				V _{DDIO}
AG12	Reserved ¹										—
AG13	GND										GND
AG14	GND										GND
AG15	GND										GND
AG16	GND										GND
AG17	Reserved ¹										_
AG18	Reserved ¹										
AG19	GND										GND
AG20	GND										GND
AG21	V _{DDM3IO}										V _{DDM3IO}
AG22	GND										GND
AG23	GND										GND
AG24	GND										GND
AG25	V _{DDDDR}										V _{DDDDR}
AG26	GND										GND
AG27	V _{DDDDR}										V _{DDDDR}
AG28	GND										GND
AH1	Reserved ¹										_
AH2	Reserved ¹										
AH3	Reserved ¹										
AH4	Reserved ¹										_
AH5	Reserved ¹										
AH6	Reserved ¹										
AH7	Reserved ¹										<u> </u>
AH8	Reserved ¹										
AH9	Reserved ¹										_
	Reserved ¹										
AH10	Reserved ¹	-									
AH11		-									
AH12	Reserved ¹										
AH13	Reserved ¹										
AH14	Reserved ¹										
AH15	Reserved ¹										—
AH16	Reserved ¹										—

Table 1. Signal List by Ball Number (continued)

rical Characteristics

2.3 Default Output Driver Characteristics

Table 4 provides information on the characteristics of the output driver strengths.

Table 4. Output Drive Impedance

Driver Type	Output Impedance (Ω)
DDR signal	18
DDR2 signal	18 35 (half strength mode)

2.4 Thermal Characteristics

Table 5 describes thermal characteristics of the MSC8144 for the FC-PBGA packages.

Table 5.	Thermal	Characteristics	for	the	MSC8144
	I IIGI IIIGI	onunuotoristios			11000144

Characteristic	Symbol	FC- 29 ×	Unit	
Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	
Junction-to-ambient ^{1, 2}	R _{θJA}	20	15	°C/W
Junction-to-ambient, four-layer board ^{1, 3}	R _{θJA}	15	12	°C/W
Junction-to-board (bottom) ⁴	R _{θJB}	7		°C/W
Junction-to-case ⁵	R _{θJC}	0.8		°C/W
Notes: 1. Junction temperature is a function of die temperature, ambient temperature, air fle resistance.	size, on-chip power diss			```

2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.

3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the active surface of the die and the case top surface determined by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature.

rical Characteristics

DDR (2.5V) SDRAM DC Electrical Characteristics 2.5.1.2

Table 7 provides the recommended operating conditions for the DDR SDRAM component(s) of the MSC8144 when $V_{DDDDR}(typ) = 2.5 V.$

Parameter/Condition	Symbol	Min	Мах	Unit	
I/O supply voltage ¹	V _{DDDDR}	2.3	2.7	V	
I/O reference voltage ²	MV _{REF}	$0.49 \times V_{DDDDR}$	$0.51 \times V_{DDDDR}$	V	
I/O termination voltage ³	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	
Input high voltage	V _{IH}	MV _{REF} + 0.15	V _{DDDDR} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.15	V	
Output leakage current ⁴	I _{OZ}	-50	50	μA	
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-16.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	—	mA	

Table 7. DDR SDRAM DC Electrical Characteristics for V_{DDDDR} (typ) = 2.5 V

Peak-to-peak noise on MV_{RFF} may not exceed ±2% of the DC value.

V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be 3. equal to MV_{REF} . This rail should track variations in the DC level of V_{DDDDR} .

Output leakage is measured with all outputs are disabled, $0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{DDDDR}}$. 4.

Table 8 lists the current draw characteristics for MV_{REF}.

Table 8. Current Draw Characteristics for MV_{REF}

	Parameter / Condition		Min	Max	Unit		
Current	draw for MV _{REF}	I _{MVREF}	—	500	μΑ		
Note:	Note: The voltage regulator for MV_{REF} must be able to supply up to 500 μ A current.						

Figure 8 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

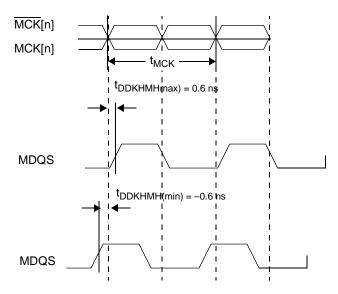


Figure 8. Timing for t_{DDKHMH}



Figure 9. DDR SDRAM Output Timing

rical Characteristics

Table 25. Short Run Transmitter AC Timing Specifications—1.25 GBaud (continued)

Characteristic	Symbol	Ra	nge	11:0:4	Netco	
Characteristic	Symbol	Min Max		Unit	Notes	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link	
Unit Interval	UI	800	800	ps	±100 ppm	

Table 26. Short Run Transmitter AC Timing Specifications—2.5 GBaud

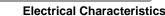

Characteristic	Symbol	Rai	nge	Unit	Notes
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV _{PP}	
Deterministic Jitter	J _D		0.17	UI _{PP}	
Total Jitter	J _T		0.35	UI _{PP}	
Multiple Output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	400	400	ps	±100 ppm

Table 27. Short Run Transmitter AC Timing Specifications—3.125 GBaud

Chanastanistia	Complete	Rai	nge	11	Netes
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	500	1000	mV _{PP}	
Deterministic Jitter	J _D		0.17	UI _{PP}	
Total Jitter	J _T		0.35	UI _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	320	320	ps	±100 ppm

Table 28. Long Run Transmitter AC Timing Specifications—1.25 GBaud

Okonostariatia	Complexed	Rai	nge	11	Natas
Characteristic	Symbol	Min	Max	Unit	Notes
Output Voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair
Differential Output Voltage	V _{DIFFPP}	800	1600	mV _{PP}	
Deterministic Jitter	J _D		0.17	UI _{PP}	
Total Jitter	J _T		0.35	UI _{PP}	
Multiple output skew	S _{MO}		1000	ps	Skew at the transmitter output between lanes of a multilane link
Unit Interval	UI	800	800	ps	±100 ppm

NP

2.6.5.5 Receiver Specifications

LP-Serial receiver electrical and timing specifications are stated in the text and tables of this section. Receiver input impedance shall result in a differential return loss better that 10 dB and a common mode return loss better than 6 dB from 100 MHz to 0.8 × baud frequency. This includes contributions from internal circuitry, the package, and any external components related to the receiver. AC coupling components are included in this requirement. The reference impedance for return loss measurements is 100 Ω resistive for differential return loss and 25 Ω resistive for common mode.

		Ra	nge		
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J _{DR}	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	800	800	ps	±100 ppm

Table 32. Receiver AC Timing Specifications—1.25 GBaud

Table 33. Receiver AC Timing Specifications—2.5 GBaud

Ol anna faciatia	Characteristic Symbol Range		11-24	Natar	
Characteristic	Symbol	Min	Max	Unit	Notes
Differential Input Voltage	V _{IN}	200	1600	mV _{PP}	Measured at receiver
Deterministic Jitter Tolerance	J _D	0.37		UI _{PP}	Measured at receiver
Combined Deterministic and Random Jitter Tolerance	J_DR	0.55		UI _{PP}	Measured at receiver
Total Jitter Tolerance	JT	0.65		UI _{PP}	Measured at receiver. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 13. The sinusoidal jitter component is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
Multiple Input Skew	S _{MI}		24	ns	Skew at the receiver input between lanes of a multilane link
Bit Error Rate	BER		10 ⁻¹²		
Unit Interval	UI	400	400	ps	±100 ppm

Electrical Characteristics

Table 36. PCI AC Timing Specifications (continued)

		Devementer	Symphol	33	MHz	66	WHz	Unit
	Parameter		Symbol	Min	Max	Min	Max	Unit
Notes:	1.	See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.						
	2.	All PCI signals are measured from $0.5 \times V_{DDIO}$ of the rising edge of PCI_CLK_IN to $0.4 \times V_{DDIO}$ of the signal in question for						
		3.3-V PCI signaling levels.						
	3.	For purposes of active/float timing	urposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered					
		through the component pin is less than or equal to the leakage current specification.						
	4. Input timings are measured at the pin.							
	5.	The reset assertion timing requirer	ment for HRES	ET is in Table 1	9 and Figure 7			

Figure 15 provides the AC test load for the PCI.

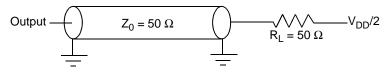


Figure 15. PCI AC Test Load

Figure 16 shows the PCI input AC timing conditions.

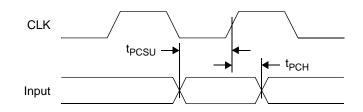


Figure 16. PCI Input AC Timing Measurement Conditions

Figure 17 shows the PCI output AC timing conditions.

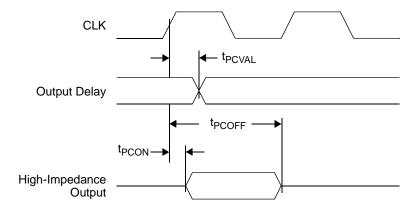


Figure 17. PCI Output AC Timing Measurement Condition

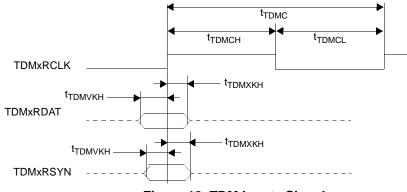

TDM Timing 2.6.7

Table 37. TDM Timing

Characteristic	Symbol	Expression	Min	Max	Units
TDMxRCLK/TDMxTCLK	t _{TDMC}	TC1	16	—	ns
TDMxRCLK/TDMxTCLK high pulse width	t _{TDMCH}	$(0.5\pm0.1)\times TC^4$	7	—	ns
TDMxRCLK/TDMxTCLK low pulse width	t _{TDMCL}	$(0.5\pm0.1)\times TC^4$	7	—	ns
TDM receive all input setup time related to TDMxRCLK TDMxTSYN input setup time related to TDMxTCLK in TSO=0 mode	^t томукн		3.6	_	ns
TDM receive all input hold time related to TDMxRCLK TDMxTSYN input hold time related to TDMxTCLK in TSO=0 mode	^t томхкн		1.9	-	ns
TDMxTCLK high to TDMxTDAT output active ²	t _{TDMDHOX}		2.5	_	ns
TDMxTCLK high to TDMxTDAT output valid ²	t _{TDMDHOV}		_	9.8	ns
All output hold time (except TDMxTSYN) ³	t _{TDMHOX}		2.5	_	ns
TDMxTCLK high to TDMxTDAT output high impedance ²	t _{TDMDHOZ}		_	9.8	ns
TDMxTCLK high to TDMxTSYN output valid ²	t _{TDMSHOV}			9.25	ns
TDMxTSYN output hold time ³	t _{TDMSHOX}		2.0	1 –	ns

- Values are based on 20 pF capacitive load. 2.
- Values are based on 10 pF capacitive load. 3.
- 4. The expression is for common calculations only.

Figure 18 shows the TDM input AC timing.

For some TDM modes, receive data and receive sync are input on other pins. This timing is also valid for them. See Note: the MSC8144 Reference Manual.

Figure 19 shows TDMxTSYN AC timing in TSO=0 mode.

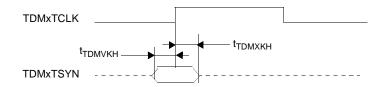


Figure 20 shows the TDM Output AC timing

Figure 26 provides the AC test load.

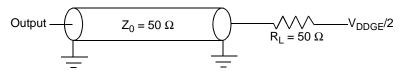


Figure 26. AC Test Load

Figure 27 shows the MII receive AC timing diagram.

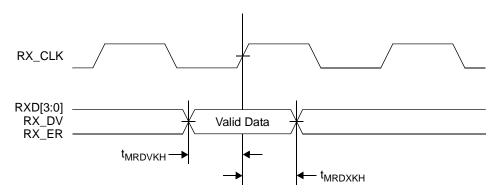


Figure 27. MII Receive AC Timing

2.6.10.4 RMII Transmit and Receive AC Timing Specifications

Table 43 provides the RMII transmit and receive AC timing specifications.

Parameter/Condition	Symbol ¹	Min	Max	Unit
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	65	%
REF_CLK to RMII data TXD[1–0], TX_EN delay	t _{RMTKHDX}	2	10	ns
RXD[1–0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	—	ns
RXD[1–0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	_	ns
Typical REF_CLK clock period (t _{RMX}) is 20 ns				
Notes:1.Typical REF_CLK clock period (t _{RMX}) is 20 ns2.Program GCR4 as 0x00001405				

Figure 28 shows the RMII transmit and receive AC timing diagram.

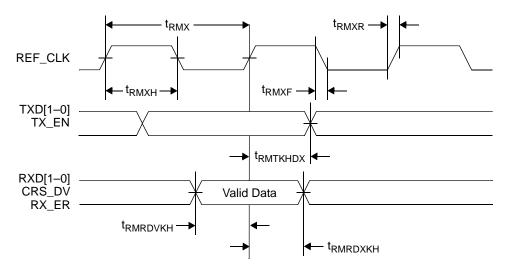


Figure 28. RMII Transmit and Receive AC Timing

Figure 29 provides the AC test load.

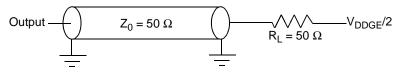


Figure 29. AC Test Load

2.6.10.5 SMII AC Timing Specification

Table 44. SMII Mode Signal Timing

Characteristics	Symbol	Min	Max	Unit
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge setup time	t _{SMDVKH}	1.5	—	ns
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	t _{SMDXKH}	1.0	—	ns
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay	t _{SMXR}	1.5	5.0	ns
Notes:1.Typical REF_CLK clock period is 8ns2.Measured using a 5 pF load.3.Measured using a 15 pF load4.Program GCR4 as 0x00002008				

Figure 30 shows the SMII Mode signal timing.

Figure 31 shows the RGMII AC timing and multiplexing diagrams.

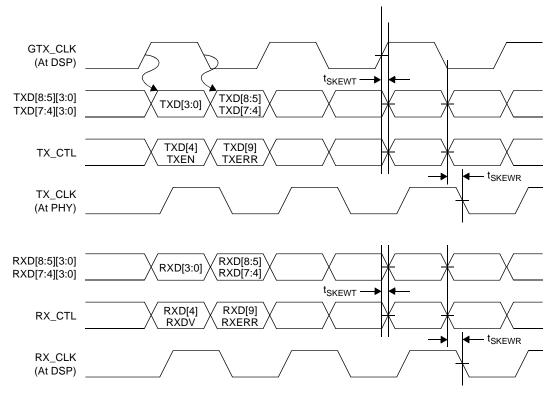


Figure 31. RGMII AC Timing and Multiplexing

2.6.11 ATM/UTOPIA/POS Timing

Table 47 provides the ATM/UTOPIA/POS input and output AC timing specifications.

Characteristic	Symbol	Min	Max	Unit		
Outputs—External clock delay	t _{UEKHOV}	1	9	ns		
Outputs—External clock High Impedance ¹	t _{UEKHOX}	1	9	ns		

tUEIVKH

t_{UEIXKH}

Table 47. ATM/UTOPIA/POS AC Timing (External Clock) Specifications

Notes: 1. Not tested. Guaranteed by design.

Inputs-External clock input setup time

Inputs-External clock input hold time

Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are
measured at the pin. Although the specifications generally reference the rising edge of the clock, these AC timing diagrams
also apply when the falling edge is the active edge.

4

1

Figure 32 provides the AC test load for the ATM/UTOPIA/POS.



Figure 32. ATM/UTOPIA/POS AC Test Load

Figure 33 shows the ATM/UTOPIA/UTOPIA timing with external clock.

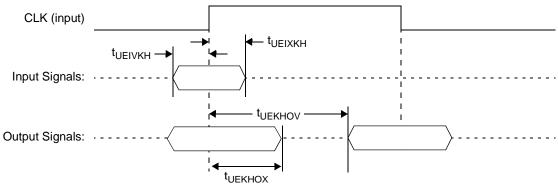


Figure 33. ATM/UTOPIAPOS AC Timing (External Clock)

ns

ns

2.6.12 SPI Timing

Table 48 lists the SPI input and output AC timing specifications.

Table 48. SPI AC Timing Specifications ¹

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5		ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}		8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2		ns
SPI inputs—Master mode (internal clock input) setup time	t _{NIIVKH}	4		ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0		ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2		ns

Notes: 1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.

2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).}

Figure 34 provides the AC test load for the SPI.

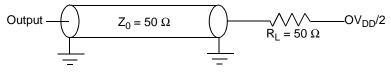
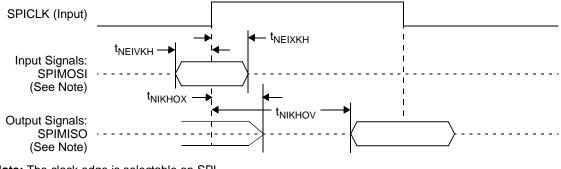



Figure 34. SPI AC Test Load

Figure 35 and Figure 36 represent the AC timings from Table 48. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 35 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 35. SPI AC Timing in Slave Mode (External Clock)

Figure 36 shows the SPI timings in master mode (internal clock).

Figure 40 shows the test access port timing diagram

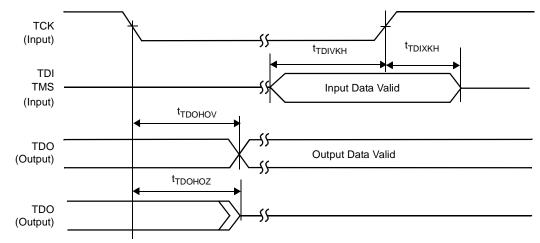
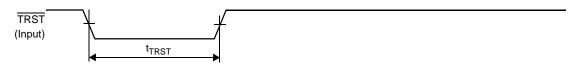



Figure 40. Test Access Port Timing

Figure 41 shows the TRST timing diagram.

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8144 device is designed into a system.

3.1 Start-up Sequencing Recommendations

3.1.1 Power-on Sequence

Use the following guidelines for power-on sequencing:

- There are no dependencies in power-on/power-off sequence between V_{DDM3} and V_{DD} supplies.
- There are no dependencies in power-on/power-off sequence between RapidIO supplies: V_{DDSXC} , V_{DDSXP} , $V_{DDRIOPLL}$ and other MSC8144 supplies.
- V_{DDPLL} should be coupled with the V_{DD} power rail with extremely low impedance path.

External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8144 device in the system during start-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4 V/ns.

ware Design Considerations

Signal Name	Pin Connection
MDM[0-3]	NC
MBA[0-2]	NC
MCAS	NC
MCKE[0-1]	NC
MODT[0-1]	NC
MDIC[0-1]	NC
MRAS	NC
MWE	NC
MECC[0-7]	NC
ECC_MDM	NC
ECC_MDQS	NC
ECC_MDQS	NC
MV _{REF}	GND
V _{DDDDR}	GND

Table 51. Connectivity of DDR Related Pins When the DDR Interface Is Not Used (continued)

3.4.1.2 16-Bit DDR Memory Only

Table 52 lists unused pin connection when using 16-bit DDR memory. The 16 most significant data lines are not used.

Signal Name	Pin connection
MDQ[0-15]	in use
MDQ[16-31]	pull-up to V _{DDDDR}
MDQS[0-1]	in use
MDQS[2-3]	pull-down to GND
MDQS[0-1]	in use
MDQS[2-3]	pull-up to V _{DDDDR}
MA[0–15]	in use
MCK[0-2]	in use
MCK[0-2]	in use
MCS[0-1]	in use
MDM[0-1]	in use
MDM[2-3]	NC
MBA[0-2]	in use
MCAS	in use
MCKE[0-1]	in use
MODT[0-1]	in use
MDIC[0-1]	in use
MRAS	in use

Table 52 Connectivity	of DDR Related Pins When Using 16-bit DDR Mem	ory Only
	of DDR Related 1 m3 when OSing 10-bit DDR Men	

ware Design Considerations

Table 58. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required (continued)

Signal Name	Pin Connection
GE1_SGMII_TX	NC
GE1_TD[0-3]	NC
GE1_TX_CLK	GND
GE1_TX_EN	NC
GE1_TX_ER	NC

3.4.4.2 Ethernet Controller 2 (GE2) Related Pins

Note: Table 59 through Table 61 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

3.4.4.2.1 GE2 interface Is Not Used

Table 59 assumes that the GE2 pins are not used for any purpose (including any multiplexed function) and that V_{DDGE2} is tied to GND.

Table 59. Connectivity of GE2 Related Pins When the GE2 Interface Is Not Used

Signal Name	Pin Connection
GE2_RD[0-3]	NC
GE2_RX_CLK	NC
GE2_RX_DV	NC
GE2_RX_ER	NC
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_RX	GND _{SXC}
GE2_SGMII_TX	NC
GE2_SGMII_TX	NC
GE2_TCK	Nc
GE2_TD[0-3]	Nc
GE2_TX_EN	NC

3.4.4.2.2 Subset of GE2 Pins Required

When only a subset of the whole GE2 interface is used, such as for RMII, the unused GE2 pins should be connected as described in Table 60. The table assumes that the unused GE2 pins are not used for any purpose (including any multiplexed functions) and that V_{DDGE2} is tied to either 2.5 V or 3.3 V.

Table 60. Connectivity of GE1 Related Pins When only a subset of the GE1 Interface Is required

Signal Name	Pin Connection
GE2_RD[0-3]	GND
GE2_RX_CLK	GND
GE2_RX_DV	GND
GE2_RX_ER	GND
GE2_SGMII_RX	GND _{SXC}

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2007-2010 Freescale Semiconductor, Inc.

Document Number: MSC8144 Rev. 16 5/2010

