E·XFL

NXP USA Inc. - KMC8144VT800A Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3400 Core
Interface	EBI/EMI, Ethernet, I ² C, PCI, Serial RapidIO, SPI, TDM, UART, UTOPIA
Clock Rate	800MHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8144vt800a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Signal List By Ball Location

Table 1 presents the signal list sorted by ball number. The functionality of multi-functional (multiplexed) pins is separated for each mode. When designing a board, make sure that the reference supply for each signal is appropriately considered. The specified reference supply must be tied to the voltage level specified in this document if any of the related signal functions are used (active).

		Power-	r- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
A2	GND										GND
A3	GE2_RX_ER/PCI_AD31			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A4	V _{DDGE2}										V _{DDGE2}
A5	GE2_RX_DV/PCI_AD30			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A6	GE2_TD0/PCI_CBE0			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
A7	SRIO_IMP_CAL_RX										V _{DDSXC}
A8	Reserved ¹										—
A9	Reserved ¹										_
A10	Reserved ¹										—
A11	Reserved ¹										—
A12	SRIO_RXD0										V _{DDSXC}
A13	V _{DDSXC}										V _{DDSXC}
A14	SRIO_RXD1										V _{DDSXC}
A15	V _{DDSXC}										V _{DDSXC}
A16	SRIO_REF_CLK										V _{DDSXC}
A17	V _{DDRIOPLL}										GND _{RIOPLL}
A18	GND _{SXC}										GND _{SXC}
A19	SRIO_RXD2/ GE1_SGMII_RX		SG	SGMII support on SERDES is enabled by Reset Configuration Word						/ord	V _{DDSXC}
A20	V _{DDSXC}										V _{DDSXC}
A21	SRIO_RXD3/ GE2_SGMII_RX		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Con	ifiguration W	/ord	V _{DDSXC}
A22	V _{DDSXC}										V _{DDSXC}
A23	SRIO_IMP_CAL_TX										V _{DDSXP}
A24	MDQ28										V _{DDDDR}
A25	MDQ29										V _{DDDDR}
A26	MDQ30										V _{DDDDR}
A27	MDQ31										V _{DDDDR}
A28	MDQS3										V _{DDDDR}
B1	Reserved ¹										_
B2	GE2_TD1/PCI_CBE1			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
B3	GE2_TX_EN/PCI_CBE2			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
B4	GE_MDIO					Eth	nernet				V _{DDGE2}
B5	GND										GND
B6	GE_MDC					Eth	nernet				V _{DDGE2}
B7	GND _{SXC}										GND _{SXC}
B8	Reserved ¹										
B9	Reserved ¹										_

Table 1. Signal List by Ball Number

		Power-	- I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
E2	GE1_RX_CLK/UTP_RD6/ PCI_PAR		UTOPIA	OPIA Ethernet 1		PCI	UTOPIA		Ethernet 1	UTOPIA	V _{DDGE1}
E3	GE1_RD2/UTP_RD4/ PCI_FRAME		UTOPIA	TOPIA Ethernet 1		PCI	UTOPIA		Ethernet 1	UTOPIA	V _{DDGE1}
E4	GE1_RD1/UTP_RD3/ PCI_CBE3		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E5	GE1_RD3/UTP_RD5/ PCI_IRDY		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E6	V _{DDGE1}										V _{DDGE1}
E7	GE1_TX_EN/UTP_TD6/ PCI_CBE0		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E8	Reserved ¹										—
E9	Reserved ¹										_
E10	GND										GND
E11	_{مم}										V _{DD}
E12	GND										GND
E13	Voo										Vpp
E14	GND										GND
E15	V										Vaa
E16											
E17											V
E10											
E10											GND
E19 E20											
E20											GND
E21	V _{DD}										V _{DD}
E22	GND										GND
E23	V _{DDDDR}										V _{DDDDR}
E24	MDQ20										V _{DDDDR}
E25	GND										GND
E26	V _{DDDDR}										V _{DDDDR}
E27	GND										GND
E28	MDQS2										V _{DDDDR}
F1	Reserved ¹										_
F2	GE1_TX_CLK/UTP_RD0/ PCI_AD31		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F3	V _{DDGE1}										V _{DDGE1}
F4	GE1_TD3/UTP_TD5/ PCI_AD30		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F5	GE1_TD1/UTP_TD3/ PCI_AD28		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F6	GND										GND
F7	GE1_TD0/UTP_TD2/ PCI_AD27		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F8	V _{DDGE1}										V _{DDGE1}
F9	GND										GND

		Power-	I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
G23	MBA1										V _{DDDDR}
G24	MA3										V _{DDDDR}
G25	MA8										V _{DDDDR}
G26	V _{DDDDR}										V _{DDDDR}
G27	GND										GND
G28	MCK0										V _{DDDDR}
H1	Reserved ¹										_
H2	CLKIN										V _{DDIO}
H3	HRESET										V _{DDIO}
H4	PCI_CLK_IN										V _{DDIO}
H5	NMI										V _{DDIO}
H6	URXD/GPIO14/IRQ8/ RC_LDF ^{3, 6}	RC_LDF			UA	RT/GPIO	/IRQ				V _{DDIO}
H7	GE1_RX <u>_ER/PCI_</u> AD6/ GPIO25/IRQ15 ^{3, 6}		GPIO/ IRQ	Ethernet 1		PCI		GPIO/ IRQ	Etherr	net 1	V _{DDIO}
H8	GE1_CRS/PCI_AD5		PCI	Ethernet 1		P	CI		Etherr	net 1	V _{DDIO}
H9	GND										GND
H10	V _{DD}										V _{DD}
H11	GND										GND
H12	V _{DD}										V _{DD}
H13	GND										GND
H14	V _{DD}										V _{DD}
H15	V _{DD}										V _{DD}
H16	V _{DD}										V _{DD}
H17	GND										GND
H18	V _{DD}										V _{DD}
H19	GND										GND
H20	V _{DD}										V _{DD}
H21	V _{DD}										V _{DD}
H22	V _{DDDDR}										V _{DDDDR}
H23	MBA0										V _{DDDDR}
H24	MA15										V _{DDDDR}
H25	V _{DDDDR}										V _{DDDDR}
H26	MA9										V _{DDDDR}
H27	MA7										V _{DDDDR}
H28	MCK0										V _{DDDDR}
J1	Reserved ¹										_
J2	GND										GND
J3	V _{DDIO}										V _{DDIO}
J4	STOP_BS										V _{DDIO}
J5	NMI_OUT ⁴										V _{DDIO}
J6	INT_OUT ⁴										V _{DDIO}
J7	SDA/GPIO27 ^{3, 4, 6}					I2C/GPIC)				V _{DDIO}

		Power-	I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
V8	V _{DDIO}										V _{DDIO}
V9	Reserved ¹										V _{DDIO}
V10	GND										GND
V11	V _{DDM3}										V _{DDM3}
V12	GND										GND
V13	V _{DDM3}										V _{DDM3}
V14	GND										GND
V15	V _{DDM3}										V _{DDM3}
V16	GND										GND
V17	V _{DDM3}										V _{DDM3}
V18	GND										GND
V19	V _{DDM3}										V _{DDM3}
V20	GND										GND
V21	GND										GND
V22	V _{DDDDR}										V _{DDDDR}
V23	MDQ2										V _{DDDDR}
V24	V _{DDDDR}										V _{DDDDR}
V25	MDQ6										V _{DDDDR}
V26	GND										GND
V27	V _{DDDDR}										V _{DDDDR}
V28	MDQS0										V _{DDDDR}
W1	Reserved ¹										—
W2	UTP_TD12/PCI_CBE2		UTC	OPIA	PCI			UTOPIA			V _{DDIO}
W3	UTP_TD11/PCI_CBE1		UTC	PIA	PCI		n	UTOPIA			V _{DDIO}
W4	V _{DDIO}										V _{DDIO}
W5	GND										GND
W6	UTP_TD15/PCI_IRDY		UTC	PIA	PCI		I	UTOPIA			V _{DDIO}
W7	UTP_TD0/PCI_SERR		UTC	OPIA	P	CI		UTO	OPIA		V _{DDIO}
W8	UTP_RSOC/PCI_AD22		UTC)PIA	PCI		1	UTOPIA		1	V _{DDIO}
W9	Reserved ¹										V _{DDIO}
W10	V _{DDM3}										V _{DDM3}
W11	GND										GND
W12	V _{25M3}										V _{25M3}
W13	GND										GND
W14	V _{DDM3}										V _{DDM3}
W15	V _{25M3}										V _{25M3}
W16	V _{DDM3}										V _{DDM3}
W17	GND										GND
W18	V _{25M3}										V _{25M3}
W19	GND										GND
W20	V _{DDM3}										V _{DDM3}
W21	GND										GND
W22	GND										GND

		Power-	I/O Multiplexing Mode ²								
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AA7	TDM4TCLK/PCI_AD10			TDM		PCI		TDM			V _{DDIO}
AA8	TDM4TDAT/PCI_AD11		TDM		PCI		TDM		V _{DDIO}		
AA9	V _{DDIO}										V _{DDIO}
AA10	V _{DDM3}										V _{DDM3}
AA11	GND										GND
AA12	V _{DDM3}										V _{DDM3}
AA13	GND										GND
AA14	V _{DDM3}										V _{DDM3}
AA15	GND										GND
AA16	V _{DDM3}										V _{DDM3}
AA17	GND										GND
AA18	V _{DDM3}										V _{DDM3}
AA19	GND										GND
AA20	V _{DDM3}										V _{DDM3}
AA21	GND										GND
AA22	GND										GND
AA23	MDQ15										V _{DDDDR}
AA24	MDQ14										V _{DDDDR}
AA25	MDM1										V _{DDDDR}
AA26	MDQ12										V _{DDDDR}
AA27	MDQS1										V _{DDDDR}
AA28	MDQS1										V _{DDDDR}
AB1	Reserved ¹										-
AB2	UTP_TSOC/RC15	RC15				UT	ΟΡΙΑ				V _{DDIO}
AB3	V _{DDIO}										V _{DDIO}
AB4	TDM6RDAT/PCI_AD20/ GPIO5/IRQ11 ^{3, 6}		TD	M/GPIO/ I	RQ	P	CI	TDM/GPIO/ IRQ			V _{DDIO}
AB5	TDM5RDAT/PCI_AD14/ GPIO9 ^{3, 6}		٦	rdm/gpic)	P	CI		TDM/GPIO		V _{DDIO}
AB6	TDM6TSYN/PCI_AD24/ GPIO8/ IRQ14 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TE	DM/GPIO/IF	RQ.	V _{DDIO}
AB7	TDM6RCLK/PCI_AD19/ GPIO4/IRQ10 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TE	DM/GPIO/IF	RQ.	V _{DDIO}
AB8	TDM4RSYN/PCI_AD9			TDM		P	CI		TDM		V _{DDIO}
AB9	TDM4RDAT/PCI_AD8			TDM		P	CI		TDM		V _{DDIO}
AB10	GND										GND
AB11	V _{DDM3}										V _{DDM3}
AB12	GND										GND
AB13	V _{DDM3}										V _{DDM3}
AB14	GND										GND
AB15	V _{DDM3}										V _{DDM3}
AB16	GND										GND
AB17	V _{DDM3}										V _{DDM3}
AB18	GND										GND

2.3 Default Output Driver Characteristics

Table 4 provides information on the characteristics of the output driver strengths.

Table 4. Output Drive Impedance

Driver Type	Output Impedance (Ω)
DDR signal	18
DDR2 signal	18 35 (half strength mode)

2.4 Thermal Characteristics

Table 5 describes thermal characteristics of the MSC8144 for the FC-PBGA packages.

Table 5	Thermal	Characteristics	for	the	MSC81	44
Table J.	i ne mai	Unaracteristics	101	uie	MOCOI	

Characteristic	Symbol	FC-I 29 × 2	Unit							
Gharacteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	•						
Junction-to-ambient ^{1, 2}	R _{θJA}	20	15	°C/W						
Junction-to-ambient, four-layer board ^{1, 3}	R _{θJA}	15	12	°C/W						
Junction-to-board (bottom) ⁴	R _{θJB}	7		°C/W						
Junction-to-case ⁵	R _{θJC}	0.8		°C/W						
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance										

2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.

3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.

4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.

5. Thermal resistance between the active surface of the die and the case top surface determined by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature.

2.5.2 Serial RapidIO DC Electrical Characteristics

DC receiver logic levels are not defined since the receiver is AC-coupled.

2.5.2.1 DC Requirements for SerDes Reference Clocks

The SerDes reference clocks SRIO_REF_CLK and $\overline{\text{SRIO}_{\text{REF}}\text{CLK}}$ are AC-coupled differential inputs. Each differential clock input has an internal 50 Ω termination to GND_{SXC} . The reference clock must be able to drive this termination. The recommended minimum operating voltage is -0.4 V; the recommended maximum operating voltage is 1.32 V; and the maximum absolute voltage is 1.72 V.

The maximum average current allowed in each input is 8 mA. This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 Ω = 8 mA) while the minimum common mode input level is GND_{SXC}. For example, a clock with a 50/50 duty cycle can be driven by a current source output that ranges from 0 mA to 16 mA (0–0.8 V). The input is AC-coupled internally, so, therefore, the exact common mode input voltage is not critical.

Note: This internal AC-couple network does not function correctly with reference clock frequencies below 90 MHz.

If the device driving the $\overline{\text{SRIO}_\text{REF}_\text{CLK}}$ inputs cannot drive 50 Ω to GND_{SXC} , or if it exceeds the maximum input current limitations, then it must use external AC-coupling. The minimum differential peak-to-peak amplitude of the input clock is 0.4 V (0.2 V peak-to-peak per phase). The maximum differential peak-to-peak amplitude of the input clock is 1.6 V peak-to-peak (see Figure 5. The termination to GND_{SXC} allows compatibility with HCSL type reference clocks specified for PCI-Express applications. Many other low voltage differential type outputs can be used but will probably need to be AC-coupled due to the limited common mode input range. LVPECL outputs can produce too large an amplitude and may need to be source terminated with a divider network to reduce the amplitude. The amplitude of the clock must be at least a 400 mV differential peak-peak for single-ended clock. If driven differentially, each signal wire needs to drive 100 mV around common mode voltage. The differential reference clock (SRIO_REF_CLK/SRIO_REF_CLK) input is HCSL-compatible DC coupled or LVDS-compatible with AC-coupling.

Figure 5. SerDes Reference Clocks Input Stage

2.6 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs.

2.6.1 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.6.2** describes the clocking characteristics. **Section 2.6.3** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8144 device:

- PORESET and TRST must be asserted externally for the duration of the power-up sequence using the V_{DDIO} (3.3 V) supply. See Table 19 for timing. TRST deassertion does not have to be synchronized with PORESET deassertion. During functional operation when JTAG is not used, TRST can be asserted and remain asserted after the power ramp.
- **Note:** For applications that use M3 memory, $\overline{M3}_{RESET}$ should replicate the PORESET sequence timing, but using the V_{DDM3IO} (2.5 V) supply. See Section 3.1.1, *Power-on Sequence* for additional design information.
 - CLKIN should start toggling at least 32 cycles before the PORESET deassertion to guarantee correct device operation (see Figure 6). 32 cycles should be accounted only after V_{DDIO} reaches its nominal value.
 - CLKIN and PCI_CLK_IN should either be stable low during the power-up of V_{DDIO} supply and start their swings after power-up or should swing within V_{DDIO} range during V_{DDIO} power-up., so their amplitude grows as V_{DDIO} grows during power-up.

Figure 6 shows a sequence in which V_{DDIO} is raised after V_{DD} and CLKIN begins to toggle with the raise of V_{DDIO} supply.

Figure 6. Start-Up Sequence with V_{DD} Raised Before V_{DDIO} with CLKIN Started with V_{DDIO}

2.6.2 Clock and Timing Signals

The following sections include a description of clock signal characteristics. Table 16 shows the maximum frequency values for CLKIN and PCI_CLK_IN. The user must ensure that maximum frequency values are not exceeded.

		-		
Characteristic	Symbol	Min	Max	Unit
CLKIN frequency	F _{CLKIN}	33	133	MHz
PCI_CLK_IN frequency	F _{PCI_CLK_IN}	33	133	MHz
CLKIN duty cycle	D _{CLKIN}	40	60	%
PCI_CLK_IN duty cycle		40	60	%

Table 16. Clock Frequencies

2.6.3 Reset Timing

The MSC8144 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- JTAG reset
- RapidIO reset
- Software hard reset
- Software soft reset

All MSC8144 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. Table 17 describes the reset sources.

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8144 and configures various attributes of the MSC8144. On PORESET, the entire MSC8144 device is reset. All PLLs states is reset, HRESET and SRESET are driven, the extended cores are reset, and system configuration is sampled. The reset source and word are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8144. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the extended cores are reset, and system configuration is sampled. Note that the RCW (reset Configuration Word) is not reloaded during HRESET assertion after out of power on reset sequence. The reset configuration word is described in the Reset chapter in the MSC8144 Reference Manual.
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8144 detects an external assertion of SRESET only if it occurs while the MSC8144 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the extended cores are reset, and system configuration is maintained.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.
Software watchdog reset	Internal	When the MSC8144 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
RapidIO reset	Internal	When the RapidIO logic asserts the RapidIO hard reset signal, it generates an internal hard reset sequence.
Software hard reset	Internal	A hard reset sequence can be initialized by writing to a memory mapped register (RCR)
Software soft reset	Internal	A soft reset sequence can be initialized by writing to a memory mapped register (RCR)

Table 17. Reset Sources

Table 18 summarizes the reset actions that occur as a result of the different reset sources. Table 18. Reset Actions for Each Reset Source

Poset Action/Poset Source	Power-On Reset (PORESET) Hard Reset (HRESE		Soft Reset (SRESET)		
Reset Action/Reset Source	External only	External or Internal (Software Watchdog, Software or RapidIO)	External or internal Software	JTAG Command: EXTEST, CLAMP, or HIGHZ	
Configuration pins sampled (Refer to Section 2.6.3.2 for details).	Yes	No	No	No	
PLL state reset	Yes	No	No	No	
Select reset configuration source	Yes	No	No	No	
System reset configuration write	Yes	No	No	No	

Table 19. Timing for a

No.	Characteristics	Expression	Мах	Min	Unit
2	 Delay from de-assertion of external PORESET to HRESET deassertion for external pins and hard coded RCW 33 MHz <= CLKIN < 66 MHz 66 MHz <= CLKIN <= 133 MHz 	15369/CLKIN 34825/CLKIN	615 528	233 262	μs μs
	Delay from de-assertion of external PORESET to HRESET deassertion for loading RCW the I ² C interface • 33 MHz <= CLKIN < 44 MHz • 44 MHz <= CLKIN < 66 MHz • 66 MHz <= CLKIN < 100 MHz • 100 MHz <= CLKIN < 133 MHz	92545/CLKIN 107435/CLKIN 124208/CLKIN 157880/CLKIN	3702 2441 1882 1579	2103 1627 1242 1187	μs μs μs μs
3	Delay from HRESET deassertion to SRESET deassertion • REFCLK = 33 MHz to 133 MHz	16/CLKIN	640	120	ns
Note:	Timings are not tested, but are guaranteed by design.				

Figure 7. Timing for a Reset Configuration Write

See also Reset Errata for PLL lock and reset duration.

2.6.4.2 DDR SDRAM Output AC Timing Specifications

Table 23 provides the output AC timing specifications for the DDR SDRAM interface.

Parameter	Symbol ¹	Min	Мах	Unit		
MCK[n] cycle time, (MCK[n]/MCK[n] crossing) ²	t _{MCK}	5	10	ns		
ADDR/CMD output setup with respect to MCK ³ • 400 MHz • 333 MHz • 266 MHz • 200 MHz	^t DDKHAS	1.95 2.40 3.15 4.20	 	ns ns ns ns		
ADDR/CMD output hold with respect to MCK ³ • 400 MHz • 333 MHz • 266 MHz • 200 MHz	^t ddkhax	1.85 2.40 3.15 4.20	- - - -	ns ns ns ns		
MCSn output setup with respect to MCK ³ • 400 MHz • 333 MHz • 266 MHz • 200 MHz	t _{DDKHCS}	1.95 2.40 3.15 4.20		ns ns ns ns		
MCSn output hold with respect to MCK ³ • 400 MHz • 333 MHz • 266 MHz • 200 MHz	^t ddkhcx	1.95 2.40 3.15 4.20	 	ns ns ns ns		
MCK to MDQS Skew ⁴ MDQ/MECC/MDM output setup with respect to MDQS ⁵ • 400 MHz • 333 MHz • 266 MHz	^t DDKHMH ^t DDKHDS, ^t DDKLDS	-0.6 700 900 1100	0.6	ns ps ps ps		
 200 MHz MDQ/MECC/MDM output hold with respect to MDQS⁵ 400 MHz 333 MHz 266 MHz 200 MHz 	^t ddkhdx, ^t ddkldx	1200 700 900 1100 1200	 	ps ps ps ps ps		
MDQS preamble start ⁶ MDQS epilogue end ⁶	t _{DDKHMP} t _{DDKHME}	$-0.5 \times t_{MCK} - 0.6$ -0.6	$-0.5 \times t_{\text{MCK}} +0.6$ 0.6	ns ns		
MDQS epilogue end® t_DDKHME -0.6 0.6 ns Notes: 1. The symbols used for timing specifications follow the pattern of t _{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t _{(first two letters of functional block)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_DDKHAS symbolizes DDR timing (DD) for the time t_MCK memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_DDKLDX symbolizes DDR timing (DD) for the time t_MCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time. 1. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V. 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.						

Table 23. DDR SDRAM Output AC Timing Specifications

4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MSC8144 Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.

Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

7. At recommended operating conditions with V_DDDDR (1.8 V or 2.5 V) \pm 5%.

Figure 10 provides the AC test load for the DDR bus.

Figure 10. DDR AC Test Load

2.6.5 Serial RapidIO Timing and SGMII Timing

2.6.5.1 AC Requirements for SRIO_REF_CLK and SRIO_REF_CLK

Table 24 lists AC signal specifications.

Table 24. SDn_REF	_CLK and SD <i>n</i> _R	EF_CLK AC Signal	Specifications

Parameter Description	Symbol	Min	Typical	Max	Units	Comments
REFCLK cycle time	t _{REF}	_	10 (8, 6.4)	_	ns	8 ns applies only to serial RapidIO system with 125-MHz reference clock. 6.4 ns applies only to serial RapidIO systems with a 156.25 MHz reference clock. Note: SGMII uses the 8 ns (125 MHz) value only.

2.6.5.2 Signal Definitions

LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential signals. Figure 11 shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and $\overline{\text{TD}}$) or a receiver input (RD and $\overline{\text{RD}}$). Each signal swings between voltage levels A and B, where A > B.

Figure 11. Differential V_{PP} of Transmitter or Receiver

Note: This explanation uses generic TD/TD/RD/RD signal names. These correspond to SRIO_TXD/SRIO_TXD/SRIO_RXD/SRIO_RXD respectively.

Figure 12. Transmitter Output Compliance Mask

Transmitter Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud short range	250	500	0.175	0.39
1.25 GBaud long range	400	800	0.175	0.39
2.5 GBaud short range	250	500	0.175	0.39
2.5 GBaud long range	400	800	0.175	0.39
3.125 GBaud short range	250	500	0.175	0.39
3.125 GBaud long range	400	800	0.175	0.39

Table 31. Transmitter Differential Output Eye Diagram Parameters

2.6.5.6 Receiver Eye Diagrams

For each baud rate at which an LP-Serial receiver is specified to operate, the receiver shall meet the corresponding bit error rate specification (Table 32, Table 33, and Table 34) when the eye pattern of the receiver test signal (exclusive of sinusoidal jitter) falls entirely within the unshaded portion of the receiver input compliance mask shown in Figure 14 with the parameters specified in Table 35. The eye pattern of the receiver test signal is measured at the input pins of the receiving device with the device replaced with a 100 $\Omega \pm 5\%$ differential resistive load.

Figure 14. Receiver Input Compliance Mask

Table 35. Receiver Inp	out Compliance Mask	Parameters Exclusive o	f Sinusoidal Jitter
------------------------	---------------------	------------------------	---------------------

Receiver Type	V _{DIFF} min (mV)	V _{DIFF} max (mV)	A (UI)	B (UI)
1.25 GBaud	100	800	0.275	0.400
2.5 GBaud	100	800	0.275	0.400
3.125 GBaud	100	800	0.275	0.400

2.6.5.7 Measurement and Test Requirements

Since the LP-Serial electrical specification are guided by the XAUI electrical interface specified in Clause 47 of **IEEE** Std. 802.3ae-2002TM, the measurement and test requirements defined here are similarly guided by Clause 47. In addition, the CJPAT test pattern defined in Annex 48A of **IEEE** Std. 802.3ae-2002 is specified as the test pattern for use in eye pattern and jitter measurements. Annex 48B of **IEEE** Std. 802.3ae-2002 is recommended as a reference for additional information on jitter test methods.

2.6.5.8 Eye Template Measurements

For the purpose of eye template measurements, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for template measurements is the continuous jitter test pattern (CJPAT) defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10^{-12} . The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts differential. The left and right edges of the template shall be aligned with the mean zero crossing points of the measured data eye. The load for this test shall be 100 Ω resistive ±5% differential to 2.5 GHz.

2.6.5.9 Jitter Test Measurements

For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (baud frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter Test Pattern (CJPAT) pattern defined in Annex 48A of **IEEE** Std. 802.3ae. All lanes of the LP-Serial link shall be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured with AC coupling and at 0 V differential. Jitter measurement for the transmitter (or for calibration of a jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that described in Annex 48B of **IEEE** Std. 802.3ae.

2.6.5.10 Transmit Jitter

Transmit jitter is measured at the driver output when terminated into a load of 100 Ω resistive ±5% differential to 2.5 GHz.

2.6.5.11 Jitter Tolerance

Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first producing the sum of deterministic and random jitter defined in **Section 2.6.5.9** and then adjusting the signal amplitude until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in Figure 14 and Table 35. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in Section 8.6 is then added to the signal and the test load is replaced by the receiver being tested.

2.6.6 PCI Timing

This section describes the general AC timing parameters of the PCI bus. Table 36 provides the PCI AC timing specifications.

Desemator	Cumhal	33 MHz		66		
Parameter	Symbol	Min	Max	Min	Max	Unit
Output delay	t _{PCVAL}	2.0	11.0	1.0	6.0	ns
High-Z to Valid Output delay	t _{PCON}	2.0	—	1.0	—	ns
Valid to High-Z Output delay	t _{PCOFF}	—	28	—	14	ns
Input setup	t _{PCSU}	7.0	—	3.0	—	ns
Input hold	t _{PCH}	0	_	0	_	ns

Table 36. PCI AC Timing Specifications

Electrical Characteristics

Table 36. PCI AC Timing Specifications (continued)

Barranatar		Symbol	33 MHz		66 MHz		11:14		
	Parameter		Symbol	Min	Max	Min	Max	Unit	
Notes:	1.	See the timing measurement cond	onditions in the PCI 2.2 Local Bus Specifications.						
	2.	All PCI signals are measured from	$0.5 \times V_{DDIO}$ of	the rising edge	of PCI_CLK_IN	V to $0.4 \times V_{DDIC}$	of the signal in	question for	
		3.3-V PCI signaling levels.							
	3.	For purposes of active/float timing	measurements	s, the Hi-Z or off	f state is defined	d to be when the	e total current d	elivered	
		through the component pin is less	n the component pin is less than or equal to the leakage current specification.						
	4.	Input timings are measured at the	pin.	-					
	5.	The reset assertion timing require	ment for HRES	ET is in Table 1	9 and Figure 7				

Figure 15 provides the AC test load for the PCI.

Figure 15. PCI AC Test Load

Figure 16 shows the PCI input AC timing conditions.

Figure 16. PCI Input AC Timing Measurement Conditions

Figure 17 shows the PCI output AC timing conditions.

Figure 17. PCI Output AC Timing Measurement Condition

2.6.9 Timer Timing

Characteristics	Symbol	Min	Unit
TIMERx frequency	T _{TMREFCLK}	10.0	ns
TIMERx Input high phase	T _{TMCH}	4.0	ns
TIMERx Output low phase	T _{TMCL}	4.0	ns

Table 39. Timer Timing

Figure 23 shows the timer input AC timing

Figure 23. Timer Timing

2.6.10 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are programmable delay units (PDU) that should be programmed differently for each Interface to meet timing. There is a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the *MSC8144 Reference Manual*.

2.6.10.1 Management Interface Timing

Table 40.	Ethernet	Controller	Management	Interface	Timing
					<u> </u>

		Characteristics	Symbol	Min	Max	Unit
ETHMD	C to E	ETHMDIO delay ²	t _{MDKHDX}	10	70	ns
ETHMDIO to ETHMDC rising edge setup time			t _{MDDVKH}	7	—	ns
ETHMDC rising edge to ETHMDIO hold time			t _{MDDXKH}	0	—	ns
Notes:	1.	Program the ETHMDC frequency (f_{MDC}) to a maximum value of 2.3 source clock and configuration of MIIMCFG[MCS] and UPSMR[MI achieve f_{MDC} = 2.5 MHz, program MIIMCFG[MCS] = 0x4 and UPS configuration details.	5 MHz (400 ns peric DCP]. For example, SMR[MDCP] = 0. Se	od for t _{MDC}). T for a source o e the <i>MSC81</i>	he value dep clock of 400 M 44 Reference	ends on the /IHz, to ? <i>Manual</i> for

2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of 333 MHz, the delay is 58 ns.

The following supplies should rise before any other supplies in any sequence

- V_{DD} and V_{DDPLL} coupled together
- V_{DDM3}

After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 42):

- V_{DDGE1}
- V_{DDGE2}
- V_{DDIO}
- V_{DDDDR} and MV_{REF} coupled one to another. MV_{REF} should be either at same time or after V_{DDDDR}.
- V_{DDM3IO}
- V_{25M3}

Figure 42. $V_{DDM3},\,V_{DDM3IO}$ and V_{25M3} Power-on Sequence

- Note: 1. This recommended power sequencing is different from the MSC8122/MSC8126.
 - 2. If no pins that require V_{DDGE1} as a reference supply are used (see Table 1), V_{DDGE1} can be tied to GND.
 - 3. If no pins that require V_{DDGE2} as a reference supply are used (see Table 1), V_{DDGE2} can be tied to GND.
 - 4. If the DDR interface is not used, V_{DDDDR} and MV_{REF} can be tied to GND.
 - 5. If the M3 memory is not used, V_{DDM3} , V_{DDM3IO} , and V_{25M3} can be tied to GND.
 - 6. If the RapidIO interface is not used, V_{DDSX} , V_{DDSXP} , and $V_{DDRIOPLL}$ can be tied to GND.

3.1.2 Start-Up Timing

Section 2.6.1 describes the start-up timing.

3.4.4 Ethernet Related Pins

3.4.4.1 Ethernet Controller 1 (GE1) Related Pins

Note: Table 57 and Table 58 assume that the alternate function of the specified pin is not used. If the alternate function is used, connect the pin as required to support that function.

3.4.4.1.1 GE1 Interface Is Not Used

Table 57 assumes that the GE1 signals are not used for any purpose (including any multiplexed functions) and that V_{DDGE1} is tied to GND.

Signal Name	Pin Connection
GE1_COL	NC
GE1_CRS	NC
GE1_RD[0-4]	NC
GE1_RX_ER	NC
GE1_RX_CLK	NC
GE1_RX_DV	NC
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_TX	NC
GE1_SGMII_TX	NC
GE1_TD[0-4]	NC
GE1_TX_CLK	NC
GE1_TX_EN	NC
GE1_TX_ER	NC

Table 57. Connectivity of GE1 Related Pins When the GE1 Interface Is Not Used

3.4.4.1.2 Subset of GE1 Pins Required

When only a subset of the whole GE1 interface is used, such as for RMII, the unused GE1 pins should be connected as described in Table 58. This table assumes that the unused GE1 pins are not used for any purpose (including any multiplexed function) and that V_{DDGE1} is tied to either 2.5 V or 3.3 V.

Table 58. Connectivit	y of GE1 Related	Pins When only	a subset of the GE1	Interface Is req	uired
	-				

Signal Name	Pin Connection
GE1_COL	GND
GE1_CRS	GND
GE1_RD[0–3]	GND
GE1_RX_ER	GND
GE1_RX_CLK	GND
GE1_RX_DV	GND
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_RX	GND _{SXC}
GE1_SGMII_TX	NC

Table 66. Document Revision History (continued)

Rev.	Date	Description	
7	Dec 2007	• Changed minimum voltage level for V _{DDM3} to 1.213 (1.25 – 3%) in Table 3.	
		• Added POS to titles in Section 2.6.6 .	
		• Added additional signals to titles in Section 2.6.8 . Added high and low voltage ranges to Table 19.	
		• Added A1 M and POS to headings in Section 2.7.11. Changed characteristics to generic input/output in Table 52, Figure 33, and Figure 34	
		 Replaced Sections 2.7.13 and 2.7.14 with new Section 2.7.13 Asynchronous Signal Timing Repumbered 	
		subsequent sections, tables, and figures.	
		• Added POS to all UTOPIA references in Section 3.4.5.	
8	Dec 2007	Changed GCR4 program value to 0x0004C130 in Note 7 in Table 51.	
9	Mar 2008	Changed description of Table 20 in Section 2.7.2.	
10	Apr 2008	• Added ³ to the PLL supply voltage row in Table 2 .	
		• Changed the first sentence in Section 3.4.8 to reflect that Table 70 indicates what to do with pins if they are	
		"not" required by the design. Changed the Pin Connection for GPIO[0–31] to GND.	
		Updated ordering information in Section 4. Multiple compations of minor pupotuation arrays	
44	Aug 2000	Multiple contections of minor punctuation errors.	
	Aug 2008	 Removed the comment about preliminary estimates before Table 4 and removed non-DDR rows in the table. Table 9 and Table 11 for DDR and DDR2 SDRAM capacitance removed and subsequent tables renumbered. 	
		 Changed units for Iou and Iou to mA in Table 9. 	
		Removed signal low and high input current from Table 12.	
		• Added a note to Table 15 to exclude TDM and TMS. Removed reference to overshoot and undershoot and	
		associated figure.	
		• Changed minimum clock frequency to 33 MHz and maximum clock frequency to 133 MHz in Table 16.	
		 Deleted old Table 17 Clock Parameters. Changed minimum input clock frequency to 33 MHz in Table 19 	
		 Changed the tropy maintain input clock frequency to 55 km/2 in Table 17. Changed the tropy maintain maintain value in Table 23 to 1.85 ns. 	
		• Removed t_{REFPI} and t_{REFCI} from Table 24 because the specifications are not required or tested.	
		 Removed t_{PCRSTCLK}, t_{PCRSTOFF}, t_{PCRST}, and t_{PCRHFA} from Table 36 because the specifications are not required or tested. 	
		• Removed t _{UAVKH} and t _{UAVXH} from Table 38 because the specifications are not required or tested.	
		• The parameters t _{MDCH} , t _{MDCR} , and t _{MDHF} were removed from Table 40 because the specifications are not required or tested.	
		• The parameters t_{MTXH}/t_{MTX} , t_{MTXR} , and t_{MTXF} were removed from Table 41 because the specifications are not	
		required or tested.	
		• The parameters t _{MRXH} /t _{MRX} , t _{MRXR} , and t _{MRXF} were removed from Table 42 because the specifications are not required or tested.	
		• The parameters t _{RMXH} /t _{RMX} , t _{RMXR} , and t _{RMXF} were removed from Table 43 because the specifications are not required or tested.	
		• Removed the parameters t_{RGT} , t_{RGTH}/t_{RGT} (1000Base-T), t_{RGTH}/t_{RGT} (10Base-T), t_{RGTR} , t_{RGTF} , t_{G12} , and	
		t_{G125H}/t_{G125} were removed from Table 45 and Table 46 because the specifications are not required or tested.	
		 Changed t_{UEKHOX} to guaranteed by design in Table 47. Undated Figure 35 and Figure 36 SPI timing diagrams 	
		 Removed TCK rise and fall time from Table 50. 	
		• Updated orderable part numbers in Section 4 .	
12	Aug 2008	Changed b8t to bit in the M3 memory description on the first page.	
	-	• Changed maximum input high voltage (VIH) for SPI to 3.465 in the first row of Table 14.	
		Changed packet processor to QUICC Engine Subsystem in the last row of Table 18.	
13	Feb 2009	• In Figure 31, for GTX_CLK, changed (at transmitter) to (at DSP) and for RX_CLK, changed (at PHY) to (at DSP).	
		Updated package drawing to the latest revision, Case No. 1842-04 in Figure 44.	
14	Jul 2009	• Updated MV _{REF} equations and temperature ranges in Table 3.	
		Updated orderable part numbers to Section 4.	
15	Nov 2009	Updated Core and PLL input voltage tolerance in Table 3.	
16	May 2010	• Corrected typo in Table 23. Changed MCLK minimum time to 5 ns.	