
NXP USA Inc. - MSC8144TVT1000B Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Details	
Product Status	Obsolete
Туре	SC3400 Core
Interface	Ethernet, I ² C, SPI, TDM, UART, UTOPIA
Clock Rate	1GHz
Non-Volatile Memory	External
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8144tvt1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Power-		-			exing Mo				
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
C21	V _{DDSXP}										V _{DDSXP}
C22	SRIO_TXD3/GE2_SGMII_T		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Cor	nfiguration V	Vord	V _{DDSXP}
C23	V _{DDSXP}										V _{DDSXP}
C24	MDQ26										V _{DDDDR}
C25	MDQ25										V _{DDDDR}
C26	MDM3										V _{DDDDR}
C27	GND										GND
C28	MDQ24										V _{DDDDR}
D1	Reserved ¹										_
D2	GE2_RD1/PCI_AD28			Ethe	rnet 2		PCI		Ethernet 2		V _{DDGE2}
D3	GND										GND
D4	TDM7TDAT/GE2_TD3/ PCI_AD3/UTP_TMD		TC	рм		PCI		Eth	ernet 2	UTOPIA	V _{DDGE2}
D5	TDM7RDAT/GE2_RD3/ PCI_AD1/UTP_STA		TC	рм		PCI		Eth	ernet 2	UTOPIA	V _{DDGE2}
D6	GE1_RD0/UTP_RD2/ PCI_CBE2		UTOPIA	Ethe	rnet 1	PCI	UTC	OPIA	Ethernet 1	UTOPIA	V _{DDGE1}
D7	TDM7TCLK/GE2_TCK/ PCI_IDS/UTP_RER		TC	M		PCI	•	Eth	ernet 2	UTOPIA	V _{DDGE2}
D8	Reserved ¹										_
D9	Reserved ¹										_
D10	Reserved ¹										_
D11	Reserved ¹										_
D12	GND _{SXP}										GND _{SXP}
D13	SRIO_TXD0										V _{DDSXP}
D14	GND _{SXP}										GND _{SXP}
D15	SRIO_TXD1										V _{DDSXP}
D16	V _{DDSXC}										V _{DDSXC}
D17	Reserved ¹										
D18	Reserved ¹										
D19	GND _{SXP}										GND _{SXP}
D20	SRIO_TXD2/GE1_SGMII_T X		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Cor	nfiguration V	/ord	V _{DDSXP}
D21	GND _{SXP}										GND _{SXP}
D22	SRIO_TXD3/GE2_SGMII_T X		SG	MII suppo	rt on SER	DES is en	abled by I	Reset Cor	nfiguration V	/ord	V _{DDSXP}
D23	GND _{SXP}										GND _{SXP}
D24	MDQ23										V _{DDDDR}
D25	V _{DDDDR}										V _{DDDDR}
D26	MDQ22								1		V _{DDDDR}
D27	MDQ21										V _{DDDDR}
D28	MDQS2										V _{DDDDR}
E1	Reserved ¹										

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
E2	GE1_RX_CLK/UTP_RD6/ PCI_PAR		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E3	GE1_RD2/UTP_RD4/ PCI_FRAME		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E4	GE1_RD1/UTP_RD3/ PCI_CBE3		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E5	GE1_RD3/UTP_RD5/ PCI_IRDY		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E6	V _{DDGE1}										V _{DDGE1}
E7	GE1_TX_EN/UTP_TD6/ PCI_CBE0		UTOPIA	Ethe	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E8	Reserved ¹										—
E9	Reserved ¹										_
E10	GND										GND
E11	V _{DD}										V _{DD}
E12	GND										GND
E13	V _{DD}										V _{DD}
E14	GND										GND
E15	V _{DD}										V _{DD}
E16	GND										GND
E17	V _{DD}										V _{DD}
E18	GND										GND
E19	V _{DD}										V _{DD}
E20	GND										GND
E21	V _{DD}										V _{DD}
E22	GND										GND
E23	V _{DDDDR}										V _{DDDDR}
E24	MDQ20										V _{DDDDR}
E25	GND										GND
											V _{DDDDR}
E27	V _{DDDDR} GND										GND
E28	MDQS2										
F1	Reserved ¹										V _{DDDDR}
F2	GE1_TX_CLK/UTP_RD0/ PCI_AD31		UTOPIA	Ethe	rnet 1	PCI	UTC) PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F3	V _{DDGE1}			ļ							V _{DDGE1}
F4	GE1_TD3/UTP_TD5/ PCI_AD30		UTOPIA	Ethe	rnet 1	PCI	UTC	DPIA	Ethernet 1	UTOPIA	V _{DDGE1}
F5	GE1_TD1/UTP_TD3/ PCI_AD28		UTOPIA	Ethe	rnet 1	PCI	UTC	DPIA	Ethernet 1	UTOPIA	V _{DDGE1}
F6	GND										GND
F7	GE1_TD0/UTP_TD2/ PCI_AD27		UTOPIA	Ethe	rnet 1	PCI	UTC) PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F8	V _{DDGE1}										V _{DDGE1}
F9	GND										GND

		Power- I/O Multiplexing Mode ²									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
G23	MBA1										V _{DDDDR}
G24	MA3										V _{DDDDR}
G25	MA8										V _{DDDDR}
G26	V _{DDDDR}										V _{DDDDR}
G27	GND										GND
G28	MCK0										V _{DDDDR}
H1	Reserved ¹										_
H2	CLKIN										V _{DDIO}
H3	HRESET										V _{DDIO}
H4	PCI_CLK_IN										V _{DDIO}
H5	NMI										V _{DDIO}
H6	URXD/GPIO14/IRQ8/ RC_LDF ^{3, 6}	RC_LDF			UA	ART/GPIO	/IRQ				V _{DDIO}
H7	GE1_RX <u>_ER/P</u> CI_AD6/ GPIO25/IRQ15 ^{3, 6}		GPIO/ IRQ	Ethernet 1		PCI		GPIO/ IRQ	Ether	net 1	V _{DDIO}
H8	GE1_CRS/PCI_AD5		PCI	Ethernet 1		Р	CI		Ether	net 1	V _{DDIO}
H9	GND										GND
H10	V _{DD}										V _{DD}
H11	GND										GND
H12	V _{DD}										V _{DD}
H13	GND										GND
H14	V _{DD}										V _{DD}
H15	V _{DD}										V _{DD}
H16	V _{DD}										V _{DD}
H17	GND										GND
H18	V _{DD}										V _{DD}
H19	GND										GND
H20	V _{DD}										V _{DD}
H21	V _{DD}										V _{DD}
H22	V _{DDDDR}										V _{DDDDR}
H23	MBA0										V _{DDDDR}
H24	MA15										V _{DDDDR}
H25	V _{DDDDR}										V _{DDDDR}
H26	MA9										V _{DDDDR}
H27	MA7										V _{DDDDR}
H28	МСК0										V _{DDDDR}
J1	Reserved ¹			1			Ī				_
J2	GND										GND
J3	V _{DDIO}			1							V _{DDIO}
J4	STOP_BS			1							V _{DDIO}
J5	NMI_OUT ⁴			1							V _{DDIO}
J6	INT_OUT ⁴										V _{DDIO}
J7	SDA/GPIO27 ^{3, 4, 6}			•		I2C/GPIC					V _{DDIO}

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
W23	MDQ10										V _{DDDDR}
W24	GND										GND
W25	MDQ11										V _{DDDDR}
W26	MDM0										V _{DDDDR}
W27	GND										GND
W28	MDQS0										V _{DDDDR}
Y1	Reserved ¹										-
Y2	UTP_TD14/PCI_FRAME		UTC	PIA	PCI			UTOPIA	L		V _{DDIO}
Y3	TDM5TSYN/PCI_AD18/ GPIO12 ^{3, 6}		-	TDM/GPIC	C	P	CI		TDM/GPIC)	V _{DDIO}
Y4	TDM5TCLK/PCI_AD16			TDM		Р	CI		TDM		V _{DDIO}
Y5	TDM4RCLK/PCI_AD7			TDM		Р	CI		TDM		V _{DDIO}
Y6	TDM4TSYN/PCI_AD12			TDM		Р	CI		TDM		V _{DDIO}
Y7	UTP_TPRTY/RC14	RC14				UT	OPIA				V _{DDIO}
Y8	UTP_TEN/PCI_PAR		UTC	PIA	PCI			UTOPIA			V _{DDIO}
Y9	Reserved ¹										V _{DDIO}
Y10	GND										GND
Y11	V _{DDM3}										V _{DDM3}
Y12	GND										GND
Y13	V _{DDM3}										V _{DDM3}
Y14	GND										GND
Y15	V _{DDM3}										V _{DDM3}
Y16	GND										GND
Y17	V _{DDM3}										V _{DDM3}
Y18	GND										GND
Y19	V _{DDM3}										V _{DDM3}
Y20	GND										GND
Y21	GND										GND
Y22	V _{DDDDR}										V _{DDDDR}
Y23	MDQ13										V _{DDDDR}
Y24	V _{DDDDR}										V _{DDDDR}
Y25	GND										GND
Y26	MDQ9										V _{DDDDR}
Y27	V _{DDDDR}										V _{DDDDR}
Y28	MDQ8										V _{DDDDR}
AA1	Reserved ¹										_
AA2	UTP_TD13/PCI_CBE3		UTC	PIA	PCI			UTOPIA		•	V _{DDIO}
AA3	TDM5RSYN/PCI_AD15/ GPIO10 ^{3, 6}		-	TDM/GPIC	D	Р	CI		TDM/GPIC)	V _{DDIO}
AA4	TDM5TDAT, AT/PCI_AD17/ GPIO11 ⁶		-	TDM/GPIC	C	Р	CI	TDM/GPIO		V _{DDIO}	
AA5	TDM5RCLK/PCI_AD13/ GPIO28 ^{3, 6}		-	TDM/GPIC	C	Р	CI		TDM/GPIC)	V _{DDIO}
AA6	GND					İ		İ			GND

Table 1. Signal List by Ball Number (continued)

		Power-									
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AA7	TDM4TCLK/PCI_AD10			TDM		P	CI		TDM		V _{DDIO}
AA8	TDM4TDAT/PCI_AD11			TDM		P	CI		TDM		V _{DDIO}
AA9	V _{DDIO}										V _{DDIO}
AA10	V _{DDM3}										V _{DDM3}
AA11	GND										GND
AA12	V _{DDM3}										V _{DDM3}
AA13	GND										GND
AA14	V _{DDM3}										V _{DDM3}
AA15	GND										GND
AA16	V _{DDM3}										V _{DDM3}
AA17	GND										GND
AA18	V _{DDM3}										V _{DDM3}
AA19	GND										GND
AA20	V _{DDM3}										V _{DDM3}
AA21	GND										GND
AA22	GND										GND
AA23	MDQ15										V _{DDDDR}
AA24	MDQ14										V _{DDDDR}
AA25	MDM1										V _{DDDDR}
AA26	MDQ12										V _{DDDDR}
AA27	MDQS1										V _{DDDDR}
AA28	MDQS1										V _{DDDDR}
AB1	Reserved ¹										-
AB2	UTP_TSOC/RC15	RC15				UT	OPIA				V _{DDIO}
AB3	V _{DDIO}										V _{DDIO}
AB4	TDM6RDAT/PCI_AD20/ GPI05/IRQ11 ^{3, 6}		TD	M/GPIO/ I	RQ	P	CI	TC)M/GPIO/ II	RQ	V _{DDIO}
AB5	TDM5RDAT/PCI_AD14/ GPIO9 ^{3, 6}		-	TDM/GPI0)	P	CI		TDM/GPIC)	V _{DDIO}
AB6	TDM6TSYN/PCI_AD24/ GPIO8/ IRQ14 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	Т	DM/GPIO/IF	RQ	V _{DDIO}
AB7	TDM6R <u>CLK/PCI_</u> AD19/ GPIO4/IRQ10 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	Т	DM/GPIO/IF	RQ	V _{DDIO}
AB8	TDM4RSYN/PCI_AD9			TDM		P	CI		TDM		V _{DDIO}
AB9	TDM4RDAT/PCI_AD8			TDM		P	CI		TDM		V _{DDIO}
AB10	GND										GND
AB11	V _{DDM3}										V _{DDM3}
AB12	GND										GND
AB13	V _{DDM3}										V _{DDM3}
AB14	GND										GND
AB15	V _{DDM3}										V _{DDM3}
AB16	GND		1								GND
AB17	V _{DDM3}		1								V _{DDM3}
AB18	GND									1	GND

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AH17	Reserved ¹										_
AH18	Reserved ¹										_
AH19	Reserved ¹										—
AH20	Reserved ¹										_
AH21	Reserved ¹										_
AH22	Reserved ¹										—
AH23	Reserved ¹										_
AH24	Reserved ¹										_
AH25	Reserved ¹										_
AH26	Reserved ¹										_
AH27	Reserved ¹										_
AH28	Reserved ¹										_
Notes:										apter 23,	

GPIO in the *MSC8144 Reference Manual*.**4.** Open-drain signal.

5. Internal 20 K Ω pull-up resistor.

6. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. See Chapter 23, GPIO of the MSC8144 Reference Manual for configuration details.

2.5.2 Serial RapidIO DC Electrical Characteristics

DC receiver logic levels are not defined since the receiver is AC-coupled.

2.5.2.1 DC Requirements for SerDes Reference Clocks

The SerDes reference clocks SRIO_REF_CLK and $\overline{\text{SRIO}_{\text{REF}}\text{CLK}}$ are AC-coupled differential inputs. Each differential clock input has an internal 50 Ω termination to GND_{SXC} . The reference clock must be able to drive this termination. The recommended minimum operating voltage is -0.4 V; the recommended maximum operating voltage is 1.32 V; and the maximum absolute voltage is 1.72 V.

The maximum average current allowed in each input is 8 mA. This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 Ω = 8 mA) while the minimum common mode input level is GND_{SXC}. For example, a clock with a 50/50 duty cycle can be driven by a current source output that ranges from 0 mA to 16 mA (0–0.8 V). The input is AC-coupled internally, so, therefore, the exact common mode input voltage is not critical.

Note: This internal AC-couple network does not function correctly with reference clock frequencies below 90 MHz.

If the device driving the $\overline{\text{SRIO}_\text{REF}_\text{CLK}}$ inputs cannot drive 50 Ω to GND_{SXC} , or if it exceeds the maximum input current limitations, then it must use external AC-coupling. The minimum differential peak-to-peak amplitude of the input clock is 0.4 V (0.2 V peak-to-peak per phase). The maximum differential peak-to-peak amplitude of the input clock is 1.6 V peak-to-peak (see Figure 5. The termination to GND_{SXC} allows compatibility with HCSL type reference clocks specified for PCI-Express applications. Many other low voltage differential type outputs can be used but will probably need to be AC-coupled due to the limited common mode input range. LVPECL outputs can produce too large an amplitude and may need to be source terminated with a divider network to reduce the amplitude. The amplitude of the clock must be at least a 400 mV differential peak-peak for single-ended clock. If driven differentially, each signal wire needs to drive 100 mV around common mode voltage. The differential reference clock (SRIO_REF_CLK/SRIO_REF_CLK) input is HCSL-compatible DC coupled or LVDS-compatible with AC-coupling.

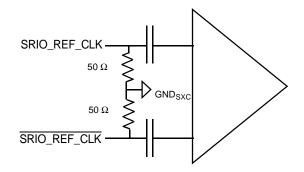


Figure 5. SerDes Reference Clocks Input Stage

rical Characteristics

2.5.2.2 Spread Spectrum Clock

SRIO_REF_CLK/ SRIO_REF_CLK is designed to work with a spread spectrum clock (0 to 0.5% spreading at 3033 kHz rate is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended modulation.

2.5.3 PCI DC Electrical Characteristics

Table 9. PCI DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDPCI}	3.135	3.465	V
Input high voltage	V _{IH}	$0.5 imes V_{DDPCI}$	3.465	V
Input low voltage	V _{IL}	-0.5	$0.3 imes V_{DDPCI}$	V
Input Pull-up voltage ¹	V _{IPU}	$0.7 \times V_{DDPCI}$		
Input leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{IN}	-30	30	μA
Tri-state (high impedance off state) leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{OZ}	-30	30	μA
Signal low input current, V _{IL} = 0.4 V ¹	ΙL	-30	30	μA
Signal high input current, V _{IH} = 2.0 V ¹	Ι _Η	-30	30	μA
Output high voltage, I _{OH} = -0.5 mA, except open drain pins	V _{OH}	$0.9 \times V_{DDPCI}$	—	V
Output low voltage, I _{OL} = 1.5 mA	V _{OL}	—	$0.1 \times V_{DDPCI}$	V
Input Pin Capacitance ¹	C _{IN}		10	pF
Notes: 1. Not tested. Guaranteed by design.			•	•

2.5.4 TDM DC Electrical Characteristics

Table 10. TDM DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDTDM}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current 0 <v<sub>IN <v<sub>DDTDM</v<sub></v<sub>	I _{IN}	-30	30	μΑ
Tri-state (high impedance off state) leakage current	I _{OZ}	-30	30	μΑ
Output high voltage, I _{OH} = -1.6 mA	V _{OH}	2.4	—	V
Output low voltage, I _{OL} = 0.4mA	V _{OL}	—	0.4	V

rical Characteristics

2.5.6 ATM/UTOPIA/POS DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μΑ
Signal low input current, V _{IL} = 0.4 V ¹	ΙL	-30	30	μA
Signal high input current, $V_{IH} = 2.4 V^1$	Ι _Η	-30	30	μΑ
Output high voltage, I _{OH} = -4 mA	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 4 mA	V _{OL}	_	0.5	V
Notes: 1. Not tested. Guaranteed by design.	÷	•	*	

2.5.7 SPI DC Electrical Characteristics

Table 14 provides the SPI DC electrical characteristics.

Table 14. SPI DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}		30	μΑ
Output high voltage, I _{OH} = -4.0 mA	V _{OH}	2.4	_	V
Output low voltage, I _{OL} = 4.0 mA	V _{OL}	_	0.5	V

2.5.8 GPIO, UART, TIMER, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, JTAG Ports DC Electrical Characteristics

Table 15. GPIO, UART, Timer, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, and JTAG Port¹ DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit		
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V		
Input high voltage	V _{IH}	2.0	3.465	V		
Input low voltage	V _{IL}	-0.3	0.8	V		
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μΑ		
Tri-state (high impedance off state) leakage current, V_{IN} = supply voltage	I _{OZ}	-30	30	μΑ		
Signal low input current, $V_{IL} = 0.4 V^2$	١	-30	30	μΑ		
Signal high input current, V _{IH} = 2.0 V ²	Ι _Η	-30	30	μΑ		
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.4	3.465	V		
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	_	0.4	V		
 Notes: 1. This does not include TDI and TMS, which have internal pullup resistors. 2. Not tested. Guaranteed by design. 						

2.6.4 DDR SDRAM AC Timing Specifications

This section describes the AC electrical characteristics for the DDR SDRAM interface.

2.6.4.1 DDR SDRAM Input Timings

Table 20 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 2.5 V.

Table 20. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

Parameter	Symbol	Min	Мах	Unit		
AC input low voltage	V _{IL}	_	MV _{REF} – 0.31	V		
AC input high voltage	V _{IH}	MV _{REF} + 0.31	—	V		
Note: At recommended operating conditions with V_{DDDDR} of 2.5 ± 5%.						

Table 21 provides the input AC timing specifications for the DDR SDRAM when V_{DDDDR} (typ) = 1.8 V.

Table 21. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

Parameter		Min	Мах	Unit	
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.25	—	V	
Note: At recommended operating conditions with V_{DDDDR} of 1.8 ± 5%.					

Table 22 provides the input AC timing specifications for the DDR SDRAM interface.

Table 22. DDR SDRAM Input AC Timing Specifications

	Parameter	Symbol	Min	Max	Unit
Controller Sk	ew for MDQS—MDQ/MECC/MDM ¹	t _{CISKEW}			
• 400 MHz			-365	365	ps
• 333 MHz			-390	390	ps
• 266 MHz			-428	428	ps
• 200 MHz			-490	490	ps
Notes: 1. t _{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. Subtract this value from the total timing budget.					
2. At recommended operating conditions with $V_{\text{OPD},\text{OPD}}$ (1.8 V or 2.5 V) ± 5%					

2. At recommended operating conditions with V_{DDDDR} (1.8 V or 2.5 V) \pm 5%

Figure 8 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

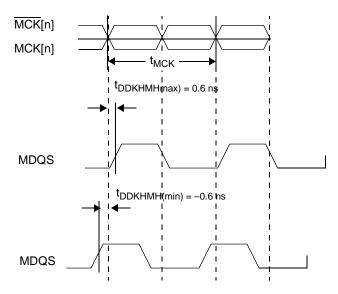


Figure 8. Timing for t_{DDKHMH}



Figure 9. DDR SDRAM Output Timing

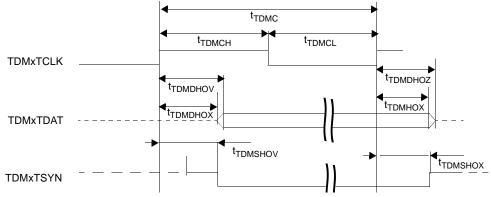


Figure 20. TDM Output Signals

Note: For some TDM modes, transmit data is output on other pins. This timing is also valid for those pins. See the *MSC8144 Reference Manual*

2.6.8 UART Timing

Table 38. UART Timing

Characteristics	Symbol	Expression	Min	Max	Unit
URXD and UTXD inputs high/low duration	T _{UREFCLK}	$16 \times T_{REFCLK}$	160	—	ns
Note: $T_{UREFCLK} = T_{REFCLK}$ is guaranteed by design.					

Figure 21 shows the UART input AC timing

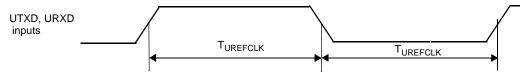


Figure 21. UART Input Timing

Figure 22 shows the UART output AC timing

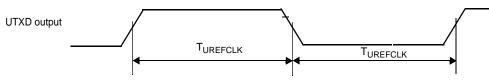


Figure 22. UART Output Timing

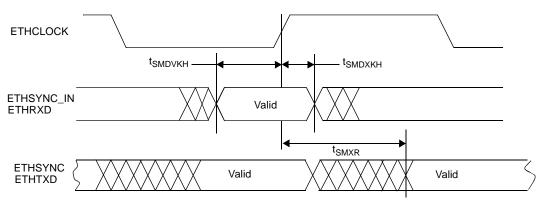


Figure 30. SMII Mode Signal Timing

2.6.10.6 RGMII AC Timing Specifications

Table 45 presents the RGMII AC timing specifications for applications requiring an on-board delayed clock.

Table 45. RGMII with On-Board Delay AC Timing S	Specifications
---	----------------

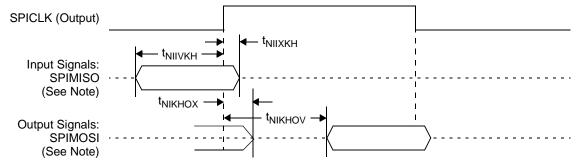

	Parameter/Condition			Min	Тур	Max	Unit
Data to clock output skew (at transmitter)		t _{SKEWT}	-0.5	_	0.5	ns	
Data to clock input skew (at receiver) ²			t _{SKEWR}	0.9	_	2.6	ns
 Notes: 1. At recommended operating conditions with LV_{DD} of 2.5 V +/- 5%. 2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is added to the associated clock signal. 3. GCR4 should be programmed as 0x00001004. 				5 ns is			

Table 46 presents the RGMII AC timing specification for applications required non-delayed clock on board.

Table 46. RGMII with No On-Board Delay AC Timing Specifications

	Parameter/Condition			Min	Тур	Max	Unit
Data to o	Data to clock output skew (at transmitter)			-2.6	_	-0.9	ns
Data to o	Data to clock input skew (at receiver) ²			-0.5	_	0.5	ns
Data to clock input skew (at receiver) - t <tht< th=""> t <tht< th=""> t <tht>t t</tht></tht<></tht<>							

Note: The clock edge is selectable on SPI.

Figure 36. SPI AC Timing in Master Mode (Internal Clock)

2.6.13 Asynchronous Signal Timing

Table 49. Signal Timing

Characteristics	Symbol	/mbol Type			
Input	t _{IN}	Asynchronous	One CLKIN cycle ¹		
Output	t _{OUT}	Asynchronous	Application dependent		
Note: 1. Relevant for EE0, IRQ[15–0], and NMI only.					

The following interfaces use the specified asynchronous signals:

- *GPIO*. Signals GPIO[31–0], when used as GPIO signals, that is, when the alternate multiplexed special functions are not selected.
- **Note:** When used as a GPI, the input should be driven until it is acknowledged by the device; the GPIO input status is read from a register.
 - *EE port.* Signals EE0, EE1, EE2_0, EE2_1, EE2_2, and EE2_3.
 - Boot function. Signal STOP_BS.
 - I^2C interface. Signals I2C_SCL and I2C_SDA.
 - Interrupt inputs. Signals IRQ[15–0] and NMI.
 - Interrupt outputs. Signals INT_OUT and NMI_OUT (pulse width is 10 ns).

Figure 37 shows the behavior of the asynchronous signals.

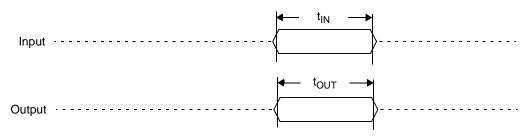


Figure 37. Asynchronous Signal Timing

Figure 40 shows the test access port timing diagram

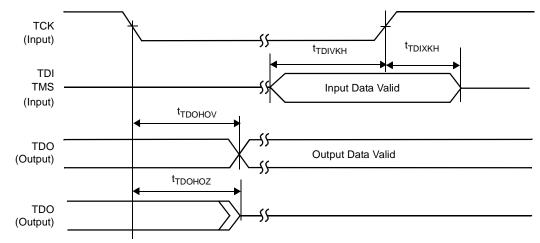
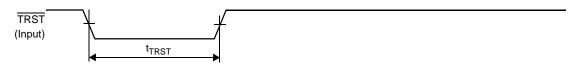



Figure 40. Test Access Port Timing

Figure 41 shows the $\overline{\text{TRST}}$ timing diagram.

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8144 device is designed into a system.

3.1 Start-up Sequencing Recommendations

3.1.1 Power-on Sequence

Use the following guidelines for power-on sequencing:

- There are no dependencies in power-on/power-off sequence between V_{DDM3} and V_{DD} supplies.
- There are no dependencies in power-on/power-off sequence between RapidIO supplies: V_{DDSXC} , V_{DDSXP} , $V_{DDRIOPLL}$ and other MSC8144 supplies.
- V_{DDPLL} should be coupled with the V_{DD} power rail with extremely low impedance path.

External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8144 device in the system during start-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4 V/ns.

The following supplies should rise before any other supplies in any sequence

- V_{DD} and V_{DDPLL} coupled together
- V_{DDM3}

After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 42):

- V_{DDGE1}
- V_{DDGE2}
- V_{DDIO}
- V_{DDDDR} and MV_{REF} coupled one to another. MV_{REF} should be either at same time or after V_{DDDDR}.
- V_{DDM3IO}
- V_{25M3}

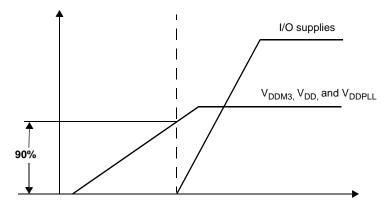


Figure 42. $V_{DDM3},\,V_{DDM3IO}$ and V_{25M3} Power-on Sequence

- Note: 1. This recommended power sequencing is different from the MSC8122/MSC8126.
 - 2. If no pins that require V_{DDGE1} as a reference supply are used (see Table 1), V_{DDGE1} can be tied to GND.
 - 3. If no pins that require V_{DDGE2} as a reference supply are used (see Table 1), V_{DDGE2} can be tied to GND.
 - 4. If the DDR interface is not used, V_{DDDDR} and MV_{REF} can be tied to GND.
 - 5. If the M3 memory is not used, V_{DDM3} , V_{DDM3IO} , and V_{25M3} can be tied to GND.
 - 6. If the RapidIO interface is not used, V_{DDSX} , V_{DDSXP} , and $V_{DDRIOPLL}$ can be tied to GND.

3.1.2 Start-Up Timing

Section 2.6.1 describes the start-up timing.

ware Design Considerations

3.2 **Power Supply Design Considerations**

Each PLL supply must have an external RC filter for the V_{DDPLL} input. The filter is a 10 Ω resistor in series with two 2.2 μ F, low ESL (<0.5 nH) and low ESR capacitors. All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately (see Figure 43). For optimal noise filtering, place the circuit as close as possible to its V_{DDPLL} inputs. These traces should be short and direct.

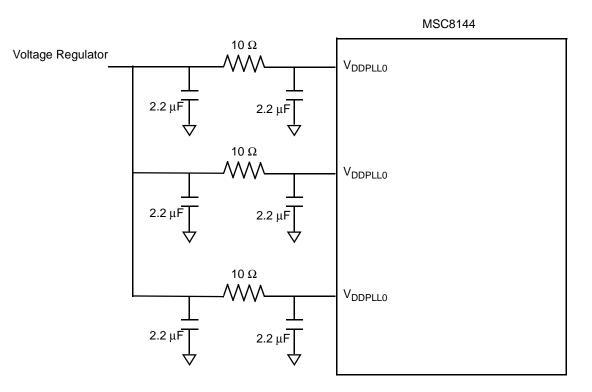


Figure 43. PLL Supplies

3.3 Clock and Timing Signal Board Layout Considerations

When laying out the system board, use the following guidelines:

- Keep clock and timing signal paths as short as possible and route with 50 Ω impedance.
- Use a serial termination resistor placed close to the clock buffer to minimize signal reflection. Use the following equation to compute the resistor value:

Rterm = Rim - Rbuf

where Rim = trace characteristic impedance

Rbuf = clock buffer internal impedance.

Note: See MSC8144 CLKIN and PCI_CLK_IN Board Layout (AN3440) for an example layout.

3.4 Connectivity Guidelines

Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal connections in this discussion.

First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following subsections for board design and connections. The following conventions are used in describing the connectivity requirements:

- 1. GND indicates using a $10 \text{ k}\Omega$ pull-down resistor (recommended) or a direct connection to the ground plane. Direct connections to the ground plane may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.
- 2. V_{DD} indicates using a 10 k Ω pull-up resistor (recommended) or a direct connection to the appropriate power supply. Direct connections to the supply may yield DC current up to 50mA through the I/O supply that adds to overall power consumption.
- 3. Mandatory use of a pull-up or pull-down resistor it is clearly indicated as "pull-up/pull-down".
- 4. NC indicates "not connected" and means do not connect anything to the pin.
- 5. The phrase "in use" indicates a typical pin connection for the required function.
- **Note:** Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of subset interface connection.

3.4.1 DDR Memory Related Pins

This section discusses the various scenarios that can be used with DDR1 and DDR2 memory.

Note: For information about unused differential/non-differential pins in DDR1/DDR2 modes (that is, unused negative lines of strobes in DDR1), please refer to Table 51.

3.4.1.1 DDR Interface Is Not Used

Signal Name	Pin Connection
MDQ[0-31]	NC
MDQS[0-3]	NC
MDQS[0-3]	NC
MA[0–15]	NC
MCK[0-2]	NC
MCK[0-2]	NC
MCS[0-1]	NC

Table 51. Connectivity of DDR Related Pins When the DDR Interface Is Not Used

3.4.8 Miscellaneous Pins

Table 65 lists the board connections for the pins if they are not required by the system design. Table 65 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Signal Name	Pin Connection			
CLKOUT	NC			
EEO	GND			
EE1	NC			
GPIO[0-31]	GND			
SCL	See the GPIO connectivity guidelines in this table.			
SDA	See the GPIO connectivity guidelines in this table.			
INT_OUT	NC			
IRQ[0–15]	See the GPIO connectivity guidelines in this table.			
NMI	V _{DDIO}			
NMI_OUT	NC			
RC[0–16]	GND			
RC_LDF	NC			
STOP_BS	GND			
ТСК	GND			
TDI	GND			
TDO	NC			
TMR[0-4]	See the GPIO connectivity guidelines in this table.			
TMS	GND			
TRST	GND			
URXD	See the GPIO connectivity guidelines in this table.			
UTXD	See the GPIO connectivity guidelines in this table.			
V _{DDIO}	3.3 V			
Note: When using I/O multiplexing mode 5 or 6, tie the TDM7TSYN/PCI_AD4 signal (ball number AC9) to GND.				

Note: For details on configuration, see the *MSC8144 Reference Manual*. For additional information, refer to the *MSC8144 Design Checklist* (AN3202).

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale, the Freescale logo, CodeWarrior, and StarCore are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2007-2010 Freescale Semiconductor, Inc.

Document Number: MSC8144 Rev. 16 5/2010

