E·XFL

NXP USA Inc. - MSC8144VT1000A Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3400 Core
Interface	Ethernet, I ² C, SPI, TDM, UART, UTOPIA
Clock Rate	1GHz
Non-Volatile Memory	External
On-Chip RAM	10.5MB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	0°C ~ 90°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8144vt1000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments and Reset States4
	1.1	FC-PBGA Ball Layout Diagrams4
	1.2	Signal List By Ball Location
2	Elect	rical Characteristics
	2.1	Maximum Ratings
	2.2	Recommended Operating Conditions27
	2.3	Default Output Driver Characteristics
	2.4	Thermal Characteristics
	2.5	DC Electrical Characteristics
	2.6	AC Timings
3	Hard	ware Design Considerations64
	3.1	Start-up Sequencing Recommendations64
	3.2	Power Supply Design Considerations
	3.3	Clock and Timing Signal Board Layout Considerations 67
	3.4	Connectivity Guidelines
4	Orde	ring Information
5	Pack	age Information
6	Produ	uct Documentation
7	Revis	ion History

List of Figures

Figure 1.	MSC8144 Block Diagram
Figure 2.	StarCore SC3400 DSP Core Subsystem Block Diagram 3
Figure 3.	MSC8144 FC-PBGA Package, Top View 4
Figure 4.	MSC8144 FC-PBGA Package, Bottom View 5
Figure 5.	SerDes Reference Clocks Input Stage 31
Figure 6.	Start-Up Sequence with V _{DD} Raised Before V _{DDIO} with
	CLKIN Started with V _{DDIO}
Figure 7.	Timing for a Reset Configuration Write
Figure 8.	Timing for t _{DDKHMH}
Figure 9.	DDR SDRAM Output Timing
Figure 10	.DDR AC Test Load 42
Figure 11	Differential V _{PP} of Transmitter or Receiver 42

Figure 12. I ransmitter Output Compliance Mask	46
Figure 13.Single Frequency Sinusoidal Jitter Limits	48
Figure 14. Receiver Input Compliance Mask	49
Figure 15.PCI AC Test Load	51
Figure 16.PCI Input AC Timing Measurement Conditions	51
Figure 17.PCI Output AC Timing Measurement Condition	51
Figure 18.TDM Inputs Signals	52
Figure 20.TDM Output Signals	53
Figure 21.UART Input Timing	53
Figure 22.UART Output Timing	53
Figure 23.Timer Timing	54
Figure 24.MII Management Interface Timing	55
Figure 25.MII Transmit AC Timing	55
Figure 26.AC Test Load	56
Figure 27.MII Receive AC Timing	56
Figure 28.RMII Transmit and Receive AC Timing	57
Figure 29.AC Test Load	57
Figure 30.SMII Mode Signal Timing.	58
Figure 31.RGMII AC Timing and Multiplexing	59
Figure 32.ATM/UTOPIA/POS AC Test Load	60
Figure 33.ATM/UTOPIAPOS AC Timing (External Clock)	60
Figure 34.SPI AC Test Load	61
Figure 35.SPI AC Timing in Slave Mode (External Clock)	61
Figure 36.SPI AC Timing in Master Mode (Internal Clock)	62
Figure 37.Asynchronous Signal Timing	62
Figure 38.Test Clock Input Timing	63
Figure 39.Boundary Scan (JTAG) Timing	63
Figure 40.Test Access Port Timing	64
Figure 41.TRST Timing	64
Figure 42.V _{DDM3} , V _{DDM3IO} and V _{25M3} Power-on Sequence	65
Figure 44.MSC8144 Mechanical Information, 783-ball FC-PBGA	
Package	77

ssignments and Reset States

1 Pin Assignments and Reset States

This section includes diagrams of the MSC8144 package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

Top View 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 26 27 28 А В С D Е F G н J Κ L Μ Ν Р R т U V W Υ AA AB AC AD AE AF AG AH

Figure 3. MSC8144 FC-PBGA Package, Top View

		Power-			I/	O Multipl	Multiplexing Mode ²				
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
E2	GE1_RX_CLK/UTP_RD6/ PCI_PAR		UTOPIA	Ethei	met 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E3	GE1_RD2/UTP_RD4/ PCI_FRAME		UTOPIA	Ether	rnet 1	PCI UTOF		UTOPIA Etherr		UTOPIA	V _{DDGE1}
E4	GE1_RD1/UTP_RD3/ PCI_CBE3		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E5	GE1_RD3/UTP_RD5/ PCI_IRDY		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E6	V _{DDGE1}										V _{DDGE1}
E7	GE1_TX_EN/UTP_TD6/ PCI_CBE0		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
E8	Reserved ¹										—
E9	Reserved ¹										_
E10	GND										GND
E11	_{مم}										V _{DD}
E12	GND										GND
E13	Voo										Vpp
E14	GND										GND
E15	V										Vaa
E16											
E17											V
E10											
E10											GND
E19 E20											
E20											GND
E21	V _{DD}										V _{DD}
E22	GND										GND
E23	V _{DDDDR}										V _{DDDDR}
E24	MDQ20										V _{DDDDR}
E25	GND										GND
E26	V _{DDDDR}										V _{DDDDR}
E27	GND										GND
E28	MDQS2										V _{DDDDR}
F1	Reserved ¹										_
F2	GE1_TX_CLK/UTP_RD0/ PCI_AD31		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F3	V _{DDGE1}										V _{DDGE1}
F4	GE1_TD3/UTP_TD5/ PCI_AD30		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F5	GE1_TD1/UTP_TD3/ PCI_AD28		UTOPIA	Ether	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F6	GND										GND
F7	GE1_TD0/UTP_TD2/ PCI_AD27		UTOPIA	Ethei	rnet 1	PCI	UTC	PIA	Ethernet 1	UTOPIA	V _{DDGE1}
F8	V _{DDGE1}										V _{DDGE1}
F9	GND										GND

		Power-			I/	O Multiple	exing Mo	de ²	.		
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
M8	V _{DDIO}										V _{DDIO}
M9	V _{DD}										V _{DD}
M10	GND										GND
M11	V _{DD}										V _{DD}
M12	GND										GND
M13	V _{DD}										V _{DD}
M14	GND										GND
M15	V _{DD}										V_{DD}
M16	GND										GND
M17	V _{DD}										V_{DD}
M18	GND										GND
M19	V _{DD}										V _{DD}
M20	GND										GND
M21	V _{DD}										V_{DD}
M22	V _{DDDDR}										V _{DDDDR}
M23	MCS1										V _{DDDDR}
M24	MA13										V _{DDDDR}
M25	MA2										V _{DDDDR}
M26	MA0										V _{DDDDR}
M27	GND										GND
M28	MCK1										V _{DDDDR}
N1	Reserved ¹										
N2	V _{DDIO}										V _{DDIO}
N3	TMS										V _{DDIO}
N4	UTP_RD10/PCI_AD14 ⁵		UTC	PIA	PCI			UTOPIA	l l		V _{DDIO}
N5	V _{DDIO}					Power					V _{DDIO}
N6	UTP_RADDR1/PCI_AD8		UTC	OPIA	PCI			UTOPIA	L .		V _{DDIO}
N7	UTP_TD9/PCI_AD31		UTC	PIA	PCI			UTOPIA	L .		V _{DDIO}
N8	TMR3/PCI_IRDY/GPIO19 ^{3,} ⁶ / UTP_TEOP			TIMEF	R/GPIO		PCI	TIME	R/GPIO	UTOPIA	V _{DDIO}
N9	GND										GND
N10	V _{DDM3}										V _{DDM3}
N11	V _{DD}										V _{DD}
N12	V _{DDM3}										V _{DDM3}
N13	V _{DD}										V _{DD}
N14	V _{DDM3}										V _{DDM3}
N15	V _{DD}										V _{DD}
N16	V _{DDM3}										V _{DDM3}
N17	V _{DD}										V _{DD}
N18	V _{DDM3}	Ī									V _{DDM3}
N19	V _{DD}										V _{DD}
N20	V _{DDM3}										V _{DDM3}
N21	GND										GND

		Power-			I/	O Multiple	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AB19	V _{DDM3}										V _{DDM3}
AB20	GND										GND
AB21	GND										GND
AB22	V _{DDDDR}										V _{DDDDR}
AB23	MECC7										V _{DDDDR}
AB24	MECC1										V _{DDDDR}
AB25	MECC4										V _{DDDDR}
AB26	MECC5										V _{DDDDR}
AB27	MECC2										V _{DDDDR}
AB28	ECC_MDQS										V _{DDDDR}
AC1	Reserved ¹										
AC2	UTP_RD9/RC13	RC13				UTOPIA					V _{DDIO}
AC3	UTP_RD8/RC12	RC12				UTOPIA					V _{DDIO}
AC4	TDM6TCLK/PCI_AD22			TDM		P	CI		TDM		V _{DDIO}
AC5	TDM6RSYN/PCI_AD21/ GPIO6/ IRQ12 ^{3, 6}		TD	M/GPIO/I	RQ	P	CI	TDM/GPIO/IR0		20 SQ	V _{DDIO}
AC6	V _{DDIO}										V _{DDIO}
AC7	TDM3TSYN/RC11	RC11	TDM						V _{DDIO}		
AC8	PCI_AD23/GPIO7/ IRQ13 / TDM6TDAT ^{3, 6} /UTP_RMOD		TD	M/GPIO/I	RQ	PCI TDM/GPIO/IRQ UTC		UTOPIA	V _{DDIO}		
AC9	TDM7TSYN/ PCI_AD4		TC	DM		PCI			reserved		V _{DDIO}
AC10	V _{DDM3IO}										V _{DDM3IO}
AC11	GND										GND
AC12	V _{DDM3}										V _{DDM3}
AC13	GND										GND
AC14	V _{DDM3}										V _{DDM3}
AC15	GND										GND
AC16	V _{DDM3}										V _{DDM3}
AC17	GND										GND
AC18	V _{DDM3}										V _{DDM3}
AC19	GND										GND
AC20	V _{DDM3IO}										V _{DDM3IO}
AC21	Reserved ¹										—
AC22	MECC6										V _{DDDDR}
AC23	MECC3										V _{DDDDR}
AC24	ECC_MDM										V _{DDDDR}
AC25	V _{DDDDR}										V _{DDDDR}
AC26	MECC0										V _{DDDDR}
AC27	V _{DDDDR}										V _{DDDDR}
AC28	ECC_MDQS										V _{DDDDR}
AD1	Reserved ¹										_
AD2	GPIO1 ^{3, 6}					G	PIO				V _{DDIO}
AD3	TMR0/GPIO13					TIME	R/GPIO				V _{DDIO}

		Power-			I/	O Multipl	exing Mo	de ²			
Ball Number	Signal Name	On Reset Value	0 (000)	1 (001)	2 (010)	3 (011)	4 (100)	5 (101)	6 (110)	7 (111)	Ref. Supply
AH17	Reserved ¹										_
AH18	Reserved ¹										_
AH19	Reserved ¹										-
AH20	Reserved ¹										
AH21	Reserved ¹										_
AH22	Reserved ¹										
AH23	Reserved ¹										_
AH24	Reserved ¹										_
AH25	Reserved ¹										
AH26	Reserved ¹										_
AH27	Reserved ¹										_
AH28	Reserved ¹										-
Notes:	 Reserved signals shoul For signals with same for the choice between GF 	d be disco unctionality 210 functio	nnected fo / in all mo n and othe	or compati des the ap er function	bility with propriate is by GPI	future revi cells are e O register	sions of the mpty.	ne device. For configu	ration detai	ils, see Ch	apter 23,

GPIO in the *MSC8144 Reference Manual*.**4.** Open-drain signal.

5. Internal 20 K Ω pull-up resistor.

6. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. See Chapter 23, GPIO of the MSC8144 Reference Manual for configuration details.

rical Characteristics

2.5.2.2 Spread Spectrum Clock

SRIO_REF_CLK/ SRIO_REF_CLK is designed to work with a spread spectrum clock (0 to 0.5% spreading at 3033 kHz rate is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended modulation.

2.5.3 PCI DC Electrical Characteristics

Table 9. PCI DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDPCI}	3.135	3.465	V
Input high voltage	V _{IH}	$0.5 imes V_{DDPCI}$	3.465	V
Input low voltage	V _{IL}	-0.5	$0.3 \times V_{\text{DDPCI}}$	V
Input Pull-up voltage ¹	V _{IPU}	$0.7 imes V_{DDPCI}$		
Input leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{IN}	-30	30	μΑ
Tri-state (high impedance off state) leakage current, 0 <v<sub>IN <v<sub>DDPCI</v<sub></v<sub>	I _{OZ}	-30	30	μΑ
Signal low input current, $V_{IL} = 0.4 V^1$	١ _L	-30	30	μΑ
Signal high input current, $V_{IH} = 2.0 V^1$	Ι _Η	-30	30	μΑ
Output high voltage, $I_{OH} = -0.5$ mA, except open drain pins	V _{OH}	$0.9 imes V_{DDPCI}$	—	V
Output low voltage, I _{OL} = 1.5 mA	V _{OL}	—	$0.1 imes V_{DDPCI}$	V
Input Pin Capacitance ¹	C _{IN}		10	pF
Notes: 1. Not tested. Guaranteed by design.				

2.5.4 TDM DC Electrical Characteristics

Table 10. TDM DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
Supply voltage 3.3 V	V _{DDTDM}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current 0 <v<sub>IN <v<sub>DDTDM</v<sub></v<sub>	I _{IN}	-30	30	μA
Tri-state (high impedance off state) leakage current	I _{OZ}	-30	30	μA
Output high voltage, $I_{OH} = -1.6 \text{ mA}$	V _{OH}	2.4	—	V
Output low voltage, I _{OL} = 0.4mA	V _{OL}	—	0.4	V

rical Characteristics

2.5.6 ATM/UTOPIA/POS DC Electrical Characteristics

cs
(

Characteristic	Symbol	Min	Max	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μA
Signal low input current, $V_{IL} = 0.4 V^1$	١ _L	-30	30	μA
Signal high input current, $V_{IH} = 2.4 V^1$	Ι _Η	-30	30	μA
Output high voltage, $I_{OH} = -4 \text{ mA}$	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 4 mA	V _{OL}	—	0.5	V
Notes: 1. Not tested. Guaranteed by design.				

2.5.7 SPI DC Electrical Characteristics

Table 14 provides the SPI DC electrical characteristics.

Table 14. SPI DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input current	I _{IN}		30	μΑ
Output high voltage, I _{OH} = -4.0 mA	V _{OH}	2.4	_	V
Output low voltage, I _{OL} = 4.0 mA	V _{OL}	_	0.5	V

2.5.8 GPIO, UART, TIMER, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, JTAG Ports DC Electrical Characteristics

Table 15. GPIO, UART, Timer, EE, STOP_BS, I²C, IRQn, NMI_OUT, INT_OUT, CLKIN, and JTAG Port¹ DC Electrical Characteristics

Characteristic	Symbol	Min	Мах	Unit
Supply voltage 3.3 V	V _{DDIO}	3.135	3.465	V
Input high voltage	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	-0.3	0.8	V
Input leakage current, V _{IN} = supply voltage	I _{IN}	-30	30	μΑ
Tri-state (high impedance off state) leakage current, V_{IN} = supply voltage	I _{OZ}	-30	30	μA
Signal low input current, $V_{IL} = 0.4 V^2$	ΙL	-30	30	μA
Signal high input current, $V_{IH} = 2.0 V^2$	Ι _Η	-30	30	μA
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.4	3.465	V
Output low voltage, I _{OL} = 3.2 mA	V _{OL}	—	0.4	V
Notes: 1. This does not include TDI and TMS, which have internal pullup resistors. 2. Not tested. Guaranteed by design.				

Table 19. Timing for a

No.	Characteristics	Expression	Max	Min	Unit
2	 Delay from de-assertion of external PORESET to HRESET deassertion for external pins and hard coded RCW 33 MHz <= CLKIN < 66 MHz 66 MHz <= CLKIN <= 133 MHz 	15369/CLKIN 34825/CLKIN	615 528	233 262	μs μs
	Delay from de-assertion of external PORESET to HRESET deassertion for loading RCW the I ² C interface • 33 MHz <= CLKIN < 44 MHz • 44 MHz <= CLKIN < 66 MHz • 66 MHz <= CLKIN < 100 MHz • 100 MHz <= CLKIN < 133 MHz	92545/CLKIN 107435/CLKIN 124208/CLKIN 157880/CLKIN	3702 2441 1882 1579	2103 1627 1242 1187	μs μs μs μs
3	Delay from HRESET deassertion to SRESET deassertion • REFCLK = 33 MHz to 133 MHz	16/CLKIN	640	120	ns
Note:	Timings are not tested, but are guaranteed by design.				

Figure 7. Timing for a Reset Configuration Write

See also Reset Errata for PLL lock and reset duration.

NP-

Figure 8 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 8. Timing for t_{DDKHMH}

Figure 9. DDR SDRAM Output Timing

rical Characteristics

Figure 10 provides the AC test load for the DDR bus.

Figure 10. DDR AC Test Load

2.6.5 Serial RapidIO Timing and SGMII Timing

2.6.5.1 AC Requirements for SRIO_REF_CLK and SRIO_REF_CLK

Table 24 lists AC signal specifications.

Table 24. SDn_REF	_CLK and SD <i>n</i> _R	EF_CLK AC Signal	Specifications

Parameter Description	Symbol	Min	Typical	Max	Units	Comments
REFCLK cycle time	t _{REF}	_	10 (8, 6.4)	_	ns	8 ns applies only to serial RapidIO system with 125-MHz reference clock. 6.4 ns applies only to serial RapidIO systems with a 156.25 MHz reference clock. Note: SGMII uses the 8 ns (125 MHz) value only.

2.6.5.2 Signal Definitions

LP-Serial links use differential signaling. This section defines terms used in the description and specification of differential signals. Figure 11 shows how the signals are defined. The figure shows waveforms for either a transmitter output (TD and $\overline{\text{TD}}$) or a receiver input (RD and $\overline{\text{RD}}$). Each signal swings between voltage levels A and B, where A > B.

Figure 11. Differential V_{PP} of Transmitter or Receiver

Note: This explanation uses generic TD/TD/RD/RD signal names. These correspond to SRIO_TXD/SRIO_TXD/SRIO_RXD/SRIO_RXD respectively.

Using these waveforms, the definitions are as follows:

- 1. The transmitter output signals and the receiver input signals TD, $\overline{\text{TD}}$, RD and $\overline{\text{RD}}$ each have a peak-to-peak voltage (V_{PP}) swing of A B.
- 2. The differential output signal of the transmitter, V_{OD} , is defined as $V_{TD} V_{\overline{TD}}$.
- 3. The differential input signal of the receiver, V_{ID} , is defined as $V_{RD} V_{\overline{RD}}$.
- 4. The differential output signal of the transmitter and the differential input signal of the receiver each range from A B to -(A B).
- 5. The peak value of the differential transmitter output signal and the differential receiver input signal is A B.
- 6. The value of the differential transmitter output signal and the differential receiver input signal is $2 \times (A B) V_{PP}$.

To illustrate these definitions using real values, consider the case of a CML (Current Mode Logic) transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and $\overline{\text{TD}}$, has a swing that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of the signals TD and $\overline{\text{TD}}$ is 500 mV_{PP}. The differential output signal ranges between 500 mV and -500 mV. The peak differential voltage is 500 mV. The peak-to-peak differential voltage is 1000 mV_{PP}.

Note: AC electrical specifications are given for transmitter and receiver. Long run and short run interfaces at three baud rates (a total of six cases) are described. The parameters for the AC electrical specifications are guided by the XAUI electrical interface specified in Clause 47 of IEEE[™] Std 802.3ae-2002[™]. XAUI has similar application goals to serial RapidIO. The goal of this standard is that electrical designs for serial RapidIO can reuse electrical designs for XAUI, suitably modified for applications at the baud intervals and reaches described herein.

2.6.5.3 Equalization

With the use of high speed serial links, the interconnect media will cause degradation of the signal at the receiver. Effects such as Inter-Symbol Interference (ISI) or data dependent jitter are produced. This loss can be large enough to degrade the eye opening at the receiver beyond what is allowed in the specification. To negate a portion of these effects, equalization can be used. The most common equalization techniques that can be used are:

- A passive high pass filter network placed at the receiver. This is often referred to as passive equalization.
- The use of active circuits in the receiver. This is often referred to as adaptive equalization.

2.6.5.4 Transmitter Specifications

LP-Serial transmitter electrical and timing specifications are stated in the text and tables of this section. The differential return loss, S11, of the transmitter in each case shall be better than

- -10 dB for (baud frequency)/10 < freq(f) < 625 MHz, and
- $-10 \text{ dB} + 10\log(f/625 \text{ MHz}) \text{ dB}$ for $625 \text{ MHz} \le \text{freq}(f) \le \text{baud}$ frequency

The reference impedance for the differential return loss measurements is 100Ω resistive. Differential return loss includes contributions from internal circuitry, packaging, and any external components related to the driver. The output impedance requirement applies to all valid output levels. It is recommended that the 20–80% rise/fall time of the transmitter, as measured at the transmitter output, have a minimum value 60 ps in each case. It is also recommended that the timing skew at the output of an LP-Serial transmitter between the two signals comprising a differential pair not exceed 25 ps at 1.25 GB, 20 ps at 2.50 GB, and 15 ps at 3.125 GB.

Channa taniatia	Country of		Range		11	Nataa
Characteristic	Symbol	Min	Max	Unit	Notes	
Output Voltage	V _O	-0.40	2.30	V	Voltage relative to COMMON of either signal comprising a differential pair	
Differential Output Voltage	V _{DIFFPP}	500	1000	mV _{PP}		
Deterministic Jitter	J _D		0.17	UI _{PP}		
Total Jitter	J _T		0.35	UI _{PP}		

Table 25. Short Run Transmitter AC Timing Specifications—1.25 GBaud

Electrical Characteristics

Table 36. PCI AC Timing Specifications (continued)

Devemotion		Sumbal	33 MHz		66 MHz		11:4	
		Parameter	Symbol	Min	Max	Min	Мах	Unit
Notes:	 See the timing measurement conditions in the <i>PCI 2.2 Local Bus Specifications</i>. All PCI signals are measured from 0.5 × V_{DDIO} of the rising edge of PCI_CLK_IN to 0.4 × V_{DDIO} of the signal in question for 3.3-V PCI signaling levels 							
	 For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification. Input timings are measured at the pin. The reset assertion timing requirement for HRESET is in Table 19 and Figure 7 							

Figure 15 provides the AC test load for the PCI.

Figure 15. PCI AC Test Load

Figure 16 shows the PCI input AC timing conditions.

Figure 16. PCI Input AC Timing Measurement Conditions

Figure 17 shows the PCI output AC timing conditions.

Figure 17. PCI Output AC Timing Measurement Condition

Figure 28 shows the RMII transmit and receive AC timing diagram.

Figure 28. RMII Transmit and Receive AC Timing

Figure 29 provides the AC test load.

Figure 29. AC Test Load

2.6.10.5 SMII AC Timing Specification

Table 44. SMII Mode Signal Timing

Characteristics	Symbol	Min	Max	Unit
ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge setup time	t _{SMDVKH}	1.5	—	ns
ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	t _{SMDXKH}	1.0	—	ns
ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay	t _{SMXR}	1.5	5.0	ns
Notes:1. Typical REF_CLK clock period is 8ns2. Measured using a 5 pF load.3. Measured using a 15 pF load4. Program GCR4 as 0x00002008				

Figure 30 shows the SMII Mode signal timing.

2.6.14 JTAG Signals

Object of the second se		All frequencies		
Characteristics	Symbol	Min	Max	Unit
TCK cycle time	t _{тскх}	36.0		ns
TCK clock high phase measured at V_{M} = 1.6 V	t _{тскн}	15.0		ns
Boundary scan input data setup time	t _{BSVKH}	0.0		ns
Boundary scan input data hold time	t _{BSXKH}	15.0		ns
TCK fall to output data valid	t _{TCKHOV}	—	20.0	ns
TCK fall to output high impedance	t _{TCKHOZ}	—	24.0	ns
TMS, TDI data setup time	t _{TDIVKH}	0.0	—	ns
TMS, TDI data hold time	t _{TDIXKH}	5.0		ns
TCK fall to TDO data valid	t _{TDOHOV}	—	10.0	ns
TCK fall to TDO high impedance	t _{TDOHOZ}	—	12.0	ns
TRST assert time	t _{TRST}	100.0	_	ns
Note: All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

Table 50. JTAG Timing

Figure 38 shows the Test Clock Input Timing Diagram

Figure 38. Test Clock Input Timing

Figure 39 shows the boundary scan (JTAG) timing diagram.

Figure 39. Boundary Scan (JTAG) Timing

Figure 40 shows the test access port timing diagram

Figure 40. Test Access Port Timing

Figure 41 shows the TRST timing diagram.

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8144 device is designed into a system.

3.1 Start-up Sequencing Recommendations

3.1.1 Power-on Sequence

Use the following guidelines for power-on sequencing:

- There are no dependencies in power-on/power-off sequence between V_{DDM3} and V_{DD} supplies.
- There are no dependencies in power-on/power-off sequence between RapidIO supplies: V_{DDSXC}, V_{DDSXP}, V_{DDSIOPLL} and other MSC8144 supplies.
- V_{DDPLL} should be coupled with the V_{DD} power rail with extremely low impedance path.

External voltage applied to any input line must not exceed the related to this port I/O supply by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8144 device in the system during start-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4 V/ns.

The following supplies should rise before any other supplies in any sequence

- V_{DD} and V_{DDPLL} coupled together
- V_{DDM3}

After the above supplies rise to 90% of their nominal value the following I/O supplies may rise in any sequence (see Figure 42):

- V_{DDGE1}
- V_{DDGE2}
- V_{DDIO}
- V_{DDDDR} and MV_{REF} coupled one to another. MV_{REF} should be either at same time or after V_{DDDDR}.
- V_{DDM3IO}
- V_{25M3}

Figure 42. $V_{DDM3},\,V_{DDM3IO}$ and V_{25M3} Power-on Sequence

- Note: 1. This recommended power sequencing is different from the MSC8122/MSC8126.
 - 2. If no pins that require V_{DDGE1} as a reference supply are used (see Table 1), V_{DDGE1} can be tied to GND.
 - 3. If no pins that require V_{DDGE2} as a reference supply are used (see Table 1), V_{DDGE2} can be tied to GND.
 - 4. If the DDR interface is not used, V_{DDDDR} and MV_{REF} can be tied to GND.
 - 5. If the M3 memory is not used, V_{DDM3} , V_{DDM3IO} , and V_{25M3} can be tied to GND.
 - 6. If the RapidIO interface is not used, V_{DDSX}, V_{DDSXP}, and V_{DDRIOPLL} can be tied to GND.

3.1.2 Start-Up Timing

Section 2.6.1 describes the start-up timing.

ware Design Considerations

3.2 **Power Supply Design Considerations**

Each PLL supply must have an external RC filter for the V_{DDPLL} input. The filter is a 10 Ω resistor in series with two 2.2 μ F, low ESL (<0.5 nH) and low ESR capacitors. All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately (see Figure 43). For optimal noise filtering, place the circuit as close as possible to its V_{DDPLL} inputs. These traces should be short and direct.

Figure 43. PLL Supplies

Table 52. Connectivity of DDR Related Pins When Using 16-bit DDR Memory Only (continued)

Signal Name	Pin connection
MWE	in use
MV _{REF}	1/2*V _{DDDDR}
V _{DDDDR}	2.5 V or 1.8 V

3.4.1.3 ECC Unused Pin Connections

When the error code corrected mechanism is not used in any 32- or 16-bit DDR configuration, refer to Table 53 to determine the correct pin connections.

Table 53. Connectivity of Unused ECC Mechanism Pins

Signal Name	Pin connection
MECC[0-7]	pull-up to V _{DDDDR}
ECC_MDM	NC
ECC_MDQS	pull-down to GND
ECC_MDQS	pull-up to V _{DDDDR}

3.4.2 Serial RapidIO Interface Related Pins

3.4.2.1 Serial RapidIO interface Is Not Used

Table 54. Connectivity of Serial RapidIO Interface Related Pins When the RapidIO Interface Is Not Used

Signal Name	Pin Connection
SRIO_IMP_CAL_RX	GND
SRIO_IMP_CAL_TX	GND
SRIO_REF_CLK	GND
SRIO_REF_CLK	GND
SRIO_RXD[0-3]	GND
SRIO_RXD[0-3]	GND
SRIO_TXD[0-3]	NC
SRIO_TXD[0-3]	NC
VDDRIOPLL	GND
GND _{RIOPLL}	GND
GND _{SXP}	GND
GND _{SXC}	GND
V _{DDSXP}	GND
V _{DDSXC}	GND

ring Information

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Spheres	Mask #	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number
MSC8144	Flip Chip Plastic Ball Grid Array (FC-PBGA)	Lead-free	0M31H	1.0 V	0° to 90°C	800	MSC8144VT800A
					0° to 105°C	800	MSC8144SVT800A
					-40° to 105°C	800	MSC8144TVT800A
					0° to 90°C	1000	MSC8144VT1000A
					0° to 105°C	1000	MSC8144SVT1000A
					-40° to 105°C	1000	MSC8144TVT1000A
			1M31H	1.0 V	0° to 90°C	800	MSC8144VT800B
					0° to 105°C	800	MSC8144SVT800B
					-40° to 105°C	800	MSC8144TVT800B
					0° to 90°C	1000	MSC8144VT1000B
					0° to 105°C	1000	MSC8144SVT1000B
					–40° to 105°C	1000	MSC8144TVT1000B
Note: See Table 3 for Core Voltage tolerance limits.							