

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product StatusObsoleteCore Processor80C51Core Size8-BitSpeed60MHzConnectivityIPC, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O34Program Memory Size64KB (64K × 8)Program Memory TypeFLASHEEPROM Size2K × 8RAM Size2K × 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-VQFP (10x10)Purchase UBLbttps://www.a.sfl.com/product.detail/microchin.techonlonu/at89c51id2.rdrim		
Core Size8-BitSpeed60MHzConnectivityIPC, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O34Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Product Status	Obsolete
Speed60MHzConnectivityI²C, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O34Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Core Processor	80C51
ConnectivityIPC, SPI, UART/USARTPeripheralsPOR, PWM, WDTNumber of I/O34Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Core Size	8-Bit
PeripheralsPOR, PWM, WDTNumber of I/O34Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Speed	60MHz
Number of I/O34Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Connectivity	I²C, SPI, UART/USART
Program Memory Size64KB (64K x 8)Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Peripherals	POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Number of I/O	34
EEPROM Size2K x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Program Memory Size	64KB (64K x 8)
RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.7V ~ 5.5VData Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	EEPROM Size	2K x 8
Data Converters-Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	RAM Size	2K x 8
Oscillator TypeExternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case44-LQFPSupplier Device Package44-VQFP (10x10)	Data Converters	-
Mounting Type Surface Mount Package / Case 44-LQFP Supplier Device Package 44-VQFP (10x10)	Oscillator Type	External
Package / Case 44-LQFP Supplier Device Package 44-VQFP (10x10)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 44-VQFP (10x10)	Mounting Type	Surface Mount
	Package / Case	44-LQFP
Purchase URL https://www.exfl.com/product_detail/microchip_techpology/at89c51id2_rlrim	Supplier Device Package	44-VQFP (10x10)
https://www.e-An.com/product-detai/merocmp-teermology/dc05051d2-firm	Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51id2-rlrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8. PCA SFRs

Mnemo -nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low byte								
СН	F9h	PCA Timer/Counter High byte								
CCAPM0 CCAPM1 CCAPM2 CCAPM3 CCAPM4 CCAP0H	DAh DBh DCh DDh DEh FAh	PCA Timer/Counter Mode 0 PCA Timer/Counter Mode 1 PCA Timer/Counter Mode 2 PCA Timer/Counter Mode 3 PCA Timer/Counter Mode 4 PCA Compare Capture Module 0 H	- CCAP0H7	ECOM0 ECOM1 ECOM2 ECOM3 ECOM4 CCAP0H6	CAPP0 CAPP1 CAPP2 CAPP3 CAPP4 CCAP0H5	CAPN0 CAPN1 CAPN2 CAPN3 CAPN4 CCAP0H4	MAT0 MAT1 MAT2 MAT3 MAT4 CCAP0H3	TOG0 TOG1 TOG2 TOG3 TOG4 CCAP0H2	PWM0 PWM1 PWM2 PWM3 PWM4 CCAP0H1	ECCF0 ECCF1 ECCF2 ECCF3 ECCF4 CCAP0H0
CCAP1H CCAP2H CCAP3H	FBh FCh FDh	PCA Compare Capture Module 1 H PCA Compare Capture Module 2 H PCA Compare Capture Module 3 H	CCAP2H7	CCAP1H6 CCAP2H6 CCAP3H6	CCAP1H5 CCAP2H5 CCAP3H5	CCAP1H4 CCAP2H4 CCAP3H4	CCAP1H3 CCAP2H3 CCAP3H3	CCAP1H2 CCAP2H2 CCAP3H2	CCAP1H1 CCAP2H1 CCAP3H1	CCAP1H0 CCAP2H0 CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L CCAP1L CCAP2L CCAP3L	EAh EBh ECh EDh	PCA Compare Capture Module 0 L PCA Compare Capture Module 1 L PCA Compare Capture Module 2 L PCA Compare Capture Module 3 L	CCAP0L7 CCAP1L7 CCAP2L7 CCAP3L7	CCAP0L6 CCAP1L6 CCAP2L6 CCAP3L6	CCAP0L5 CCAP1L5 CCAP2L5 CCAP3L5	CCAP0L4 CCAP1L4 CCAP2L4 CCAP3L4	CCAP0L3 CCAP1L3 CCAP2L3 CCAP3L3	CCAP0L2 CCAP1L2 CCAP2L2 CCAP3L2	CCAP0L1 CCAP1L1 CCAP2L1 CCAP3L1	CCAP0L0 CCAP1L0 CCAP2L0 CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

Table 9. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								
BDRCON	9Bh	Baud Rate Control				BRR	TBCK	RBCK	SPD	SRC
BRL	9Ah	Baud Rate Reload								

Table 10. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF	-	-	-	-
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table 15. Pin Description (Continued)

	Pin N	umber	Tuno					
Mnemonic	PLCC44	VQFP44	Туре	Name and Function				
			I/O	MOSI: SPI Master Output Slave Input line				
				When SPI is in master mode, MOSI outputs data to the slave peripheral. When SPI is in slave mode, MOSI receives data from the master controller.				
XTALA1	21	15	Ι	Crystal A 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.				
XTALA2	20	14	0	Crystal A 2: Output from the inverting oscillator amplifier				
XTALB1	2	40	I	Crystal B 1: (Sub Clock) Input to the inverting oscillator amplifier and input to the internal clock generator circuits.				
XTALB2	1	39	0	Crystal B 2: (Sub Clock) Output from the inverting oscillator amplifier				
P2.0 - P2.7	24 - 31	18 - 25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.				
P3.0 - P3.7	11, 13 - 19	5, 7 - 13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.				
	11	5	I	RXD (P3.0): Serial input port				
	13	7	0	TXD (P3.1): Serial output port				
	14	8	I	INT0 (P3.2): External interrupt 0				
	15	9	I	INT1 (P3.3): External interrupt 1				
	16	10	I	T0 (P3.4): Timer 0 external input				
	17	11	I	T1 (P3.5): Timer 1 external input				
	18	12	0	WR (P3.6): External data memory write strobe				
	19	13	0	RD (P3.7): External data memory read strobe				
P4.0 - P4.7	-	-	I/O	Port 4: Port 4 is an 8-bit bidirectional I/O port with internal pull-ups. Port 5 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 4 pins that are externally pulled low will source current because of the internal pull-ups.				
P5.0 - P5.7	-	-	I/O	Port 5: Port 5 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 5 pins that are externally pulled low will source current because of the internal pull-ups.				
Pl2.0 - Pl2.1	34, 12	28, 6		Port 12: Port 12 is an open drain. It can be used as inputs (must be polarized to Vcc with external resistor to prevent any parasitic current consumption).				
	34	28	I/O	SCL (PI2.0): 2-wire Serial Clock				
				SCL output the serial clock to slave peripherals SCL input the serial clock from master				

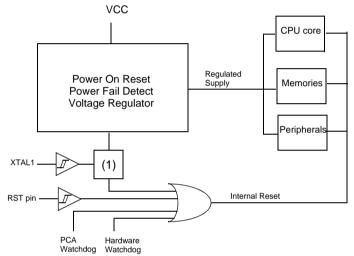
Table 19. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic	Description					
7	SMOD1	Serial port N Set to select		rate in mode 1	l, 2 or 3.		
6	SMOD0			in SCON regis DN register.	ster.		
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not se	et this bit.	
4	POF		cognize next		to its nominal	voltage. Can	also be set
3	GF1		oftware for ge	eneral purpose al purpose usa			
2	GF0	Cleared by s	General purpose Flag Cleared by software for general purpose usage. Set by software for general purpose usage.				
1	PD	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle mode b Cleared by h Set to enter	ardware whe	n interrupt or r	eset occurs.		

Reset Value = 00X1 0000b Not bit addressable

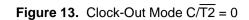
Power Monitor

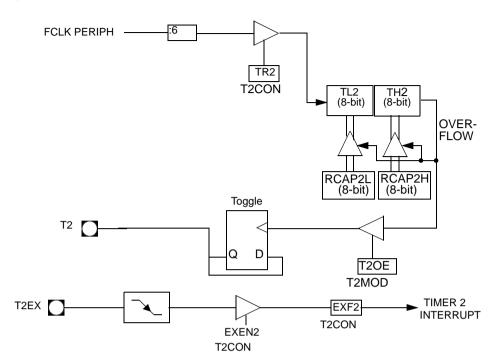

The POR/PFD function monitors the internal power-supply of the CPU core memories and the peripherals, and if needed, suspends their activity when the internal power supply falls below a safety threshold. This is achieved by applying an internal reset to them.

By generating the Reset the Power Monitor insures a correct start up when AT89C51ID2 is powered up.

Description In order to startup and maintain the microcontroller in correct operating mode, V_{CC} has to be stabilized in the V_{CC} operating range and the oscillator has to be stabilized with a nominal amplitude compatible with logic level VIH/VIL.

These parameters are controlled during the three phases: power-up, normal operation and power going down. See Figure 10.


 Note: 1. Once XTAL1 High and low levels reach above and below VIH/VIL. a 1024 clock period delay will extend the reset coming from the Power Fail Detect. If the power falls below the Power Fail Detect threshold level, the Reset will be applied immediately.


The Voltage regulator generates a regulated internal supply for the CPU core the memories and the peripherals. Spikes on the external Vcc are smoothed by the voltage regulator.

Timer 2	The Timer 2 in the AT89C51ID2 is the standard C52 Timer 2. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 are cascaded. It is controlled by T2CON (Table 25) and T2MOD (Table 26) registers. Timer 2 operation is similar to Timer 0 and Timer 1.C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to increment by the selected input.
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).
	Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Cap- ture and Baud Rate Generator Modes.
	Timer 2 includes the following enhancements:
	Auto-reload mode with up or down counter
	Programmable clock-output
Auto-Reload Mode	The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel C51 Microcontroller Hardware description). If DCEN bit is set, Timer 2 acts as an Up/down timer/counter as shown in Figure 12. In this mode the T2EX pin controls the direction of count.
	When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
	The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
x	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer / Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 30. PCA Module Modes (CCAPMn Registers)

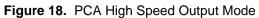
There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 31 & Table 32).

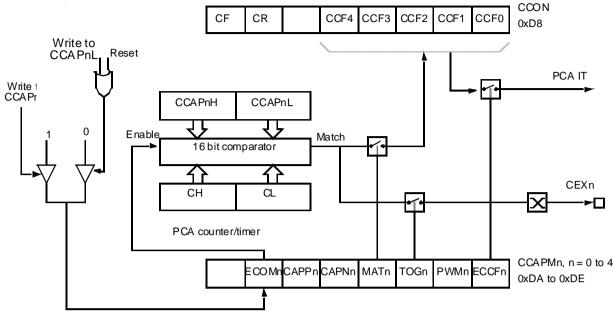
Table 31. CCAPnH Registers (n = 0-4)

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)


CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)


CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0	-	PCA Module CCAPnH Val		Capture Con	trol		

Reset Value = 0000 0000b Not bit addressable

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

Pulse Width Modulator Mode All of the PCA modules can be used as PWM outputs. Figure 19 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

	Figure 22. UART Timings in	n Modes 2 and 3	
	Start bit	Data byte	Ninth ^I Stop bit bit
	RI SMOD0=0		
	RI SMOD0=1		
	FESMOD0=1		
Automatic Address Recognition	nication feature is enabled (Implemented in hardware, a communication feature by incoming command frame. receiver sets RI bit in SCON is not interrupted by comma If desired, the user may ena this configuration, the stop b the received command fram by a valid stop bit.	SM2 bit in SCON register is automatic address recogniti allowing the serial port to Only when the serial port of I register to generate an inte and frames addressed to oth able the automatic address bit takes the place of the nint ne address matches the dev	ion enhances the multiprocessor o examine the address of each recognizes its own address, the errupt. This ensures that the CPU
			address recognition features cannot register in mode 0 has no effect).
Given Address	register is a mask byte tha device's given address. The slaves at a time. The followi	at contains don't-care bits don't-care bits provide the ng example illustrates how	a in SADDR register; the SADEN (defined by zeros) to form the flexibility to address one or more a given address is formed. ADEN mask byte must be 1111
	The following is an example Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Given1111 0X0Xb	of how to use given addres	sses to address different slaves:
	Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Given1111 0XX1b		
	Slave C:SADDR1111 0010b <u>SADEN1111 1101b</u> Given1111 00X1b		

Interrupt Sources and Vector Addresses

Table 56. Ir	nterrupt Sources and Vector Addresses
--------------	---------------------------------------

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	IE0	0003h
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	TWI	тwііт	0043h
9	9	SPI	SPIIT	004Bh

Description

The CPU interfaces to the 2-wire logic via the following four 8-bit special function registers: the Synchronous Serial Control register (SSCON; Table 71), the Synchronous Serial Data register (SSDAT; Table 72), the Synchronous Serial Control and Status register (SSCS; Table 73) and the Synchronous Serial Address register (SSADR Table 76).

SSCON is used to enable the TWI interface, to program the bit rate (see Table 64), to enable slave modes, to acknowledge or not a received data, to send a START or a STOP condition on the 2-wire bus, and to acknowledge a serial interrupt. A hardware reset disables the TWI module.

SSCS contains a status code which reflects the status of the 2-wire logic and the 2-wire bus. The three least significant bits are always zero. The five most significant bits contains the status code. There are 26 possible status codes. When SSCS contains F8h, no relevant state information is available and no serial interrupt is requested. A valid status code is available in SSCS one machine cycle after SI is set by hardware and is still present one machine cycle after SI has been reset by software. to Table 70. give the status for the master modes and miscellaneous states.

SSDAT contains a byte of serial data to be transmitted or a byte which has just been received. It is addressable while it is not in process of shifting a byte. This occurs when 2-wire logic is in a defined state and the serial interrupt flag is set. Data in SSDAT remains stable as long as SI is set. While data is being shifted out, data on the bus is simultaneously shifted in; SSDAT always contains the last byte present on the bus.

SSADR may be loaded with the 7-bit slave address (7 most significant bits) to which the TWI module will respond when programmed as a slave transmitter or receiver. The LSB is used to enable general call address (00h) recognition.

Figure 31 shows how a data transfer is accomplished on the 2-wire bus.

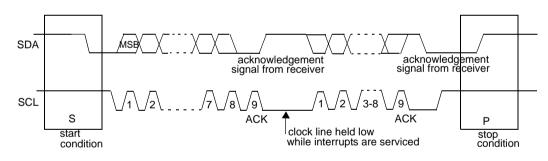


Figure 31. Complete Data Transfer on 2-wire Bus

The four operating modes are:

- Master Transmitter
- Master Receiver
- Slave transmitter
- Slave receiver

Data transfer in each mode of operation is shown in Table to Table 70 and Figure 32. to Figure 35.. These figures contain the following abbreviations:

- S : START condition
- R : Read bit (high level at SDA)

B

Table 68. Status	s in Slave	Receiver Mode
------------------	------------	----------------------

		Application S	Software	e Respo	nse		
Status		To/from SSDAT		To SS	CON		
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	ѕто	SI	АА	Next Action Taken By 2-wire Software
60h	Own SLA+W has been received: ACK has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
0011	returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
COL	Arbitration lost in SLA+R/W as master; own SLA+W has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
68h	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
701	General call address has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
70h	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
701	Arbitration lost in SLA+R/W as master; general call address	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
78h	has been received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
0.01	Previously addressed with own SLA+W; data has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
80h	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
		Read data byte or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA
		Read data byte or	0	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if
	Previously addressed with	Read data byte of	Ŭ	0	Ū		GC=logic 1 Switched to the not addressed slave mode; no
88h	own SLA+W; data has been received; NOT ACK has been returned	Read data byte or	1	0	0	0	recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
0.01	Previously addressed with general call; data has been	Read data byte or	х	0	0	0	Data byte will be received and NOT ACK will be returned
90h	received; ACK has been returned	Read data byte	х	0	0	1	Data byte will be received and ACK will be returned

Bit Number	Bit Mnemonic	Description
1	SD1	Address bit 1 or Data bit 1.
0	SD0	Address bit 0 (R/W) or Data bit 0.

Table 73. SSCS (094h) read - Synchronous Serial Control and Status Register

7	6	5	4	3	2	1	0
SC4	SC3	SC2	SC1	SC0	0	0	0

Bit Number	Bit Mnemonic	Description
0	0	Always zero
1	0	Always zero
2	0	Always zero
3	SC0	Status Code bit 0 See to Table 70.
4	SC1	Status Code bit 1 See to Table 70.
5	SC2	Status Code bit 2 See to Table 70.
6	SC3	Status Code bit 3 See to Table 70.
7	SC4	Status Code bit 4 See to Table 70.

Table 74. SSCS Register: Read Mode - Reset Value = F8h

Table 75. SSADR (096h) - Synchronus Serial Address Register (read/write)

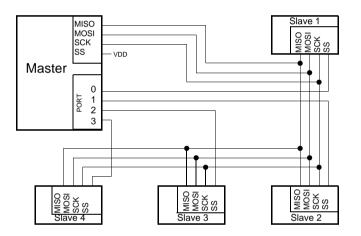
7	6	5	4	3	2	1	0
A7	A6	A5	A4	A3	A2	A1	A0

Table 76. SSADR Register - Reset value = FEh

Bit Number	Bit Mnemonic	Description
7	A7	Slave Address bit 7
6	A6	Slave Address bit 6
5	A5	Slave Address bit 5
4	A4	Slave Address bit 4
3	A3	Slave Address bit 3
2	A2	Slave Address bit 2
1	A1	Slave Address bit 1

Serial Port Interface (SPI)

The Serial Peripheral Interface Module (SPI) allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.


Features

Features of the SPI Module include the following:

- Full-duplex, three-wire synchronous transfers
- Master or Slave operation
- Eight programmable Master clock rates
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability
- Write collision flag protection

Signal DescriptionFigure 36 shows a typical SPI bus configuration using one Master controller and many
Slave peripherals. The bus is made of three wires connecting all the devices.

Figure 36. SPI Master/Slaves Interconnection

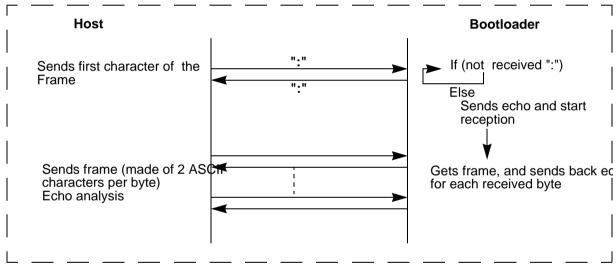
The Master device selects the individual Slave devices by using four pins of a parallel port to control the four \overline{SS} pins of the Slave devices.

Master Output Slave Input
(MOSI)This 1-bit signal is directly connected between the Master Device and a Slave Device.
The MOSI line is used to transfer data in series from the Master to the Slave. Therefore,
it is an output signal from the Master, and an input signal to a Slave. A Byte (8-bit word)
is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

Master Input Slave Output
(MISO)This 1-bit signal is directly connected between the Slave Device and a Master Device.
The MISO line is used to transfer data in series from the Slave to the Master. Therefore,
it is an output signal from the Slave, and an input signal to the Master. A Byte (8-bit
word) is transmitted most significant bit (MSB) first, least significant bit (LSB) last.

SPI Serial Clock (SCK) This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the Master for eight clock cycles which allows to exchange one Byte on the serial lines.

Slave Select (SS) Each Slave peripheral is selected by one Slave Select pin (SS). This signal must stay low for any message for a Slave. It is obvious that only one Master (SS high level) can


Table 95. Autobaud Performances (Continued)

Frequency (MHz) Baudrate (kHz)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728
4800	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
9600	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
19200	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
38400	-	-	ОК	ОК	ОК	ОК	ОК	ОК	ОК
57600	-	-	ОК	-	ОК	ОК	ОК	ОК	ОК
115200	-	-	ОК	-	ОК	-	-	-	-

Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Figure 52. Command Flow

Table 96. ISP Commands Summary (Continued)

Command	Command Name	data[0]	data[1]	Command Effect
Jonana		aa.a[0]		
			00h	Manufacturer Id
		00h	01h	Device Id #1
		0011	02h	Device Id #2
			03h	Device Id #3
			00h	Read SSB
05h	Read Function	07h	01h	Read BSB
0011	Read Function		02h	Read SBV
			06h	Read Extra Byte
		0Bh 00h R		Read Hardware Byte
	0Eh	00h	Read Device Boot ID1	
		0En	01h	Read Device Boot ID2
		0Fh	00h	Read Bootloader Version
				Program Nb EEProm Data Byte.
07h	Program EEPROM data			Bootloader will accept up to 128 (80h) data bytes.

J

К

Nd

Ne

0.51

0.33

PKG STD

11

11

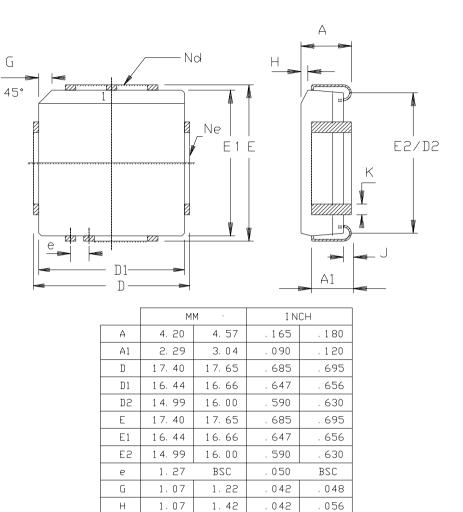
_

00

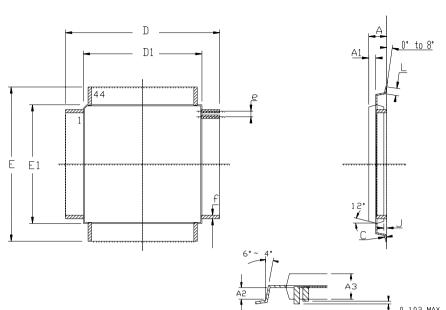
0.53

020

013


11

_


021

Packaging Information

PLCC44

VQFP44

0.102 MAX. LEAD COPLANARITY

	М		IN	
	Min	Max	Min	Max
А	-	1.60	-	. 063
A1	Ο.	64 REF	. 0	25 REF
A2	0.64 REF		. 0	25 REF
A3	1.35	1.45	. 053	. 057
D	11.90	12.10	. 468	. 476
D1	9, 90	10.10	. 390	. 398
E	11.90	12.10	. 468	. 476
E1	9, 90	10.10	. 390	. 398
L	0.05	-	. 002	-
L	0.45	0.75	. 018	. 030
е	0.8	0 BSC	. 03	15 BSC
f	0.3	5 BSC	. 01	4 BSC

Table of Contents

Features	1
Description	1
Block Diagram	3
SFR Mapping	4
Pin Configurations	10
Oscillators	14
Overview	14
Registers	14
Functional Block Diagram	
Operating Modes	17
Design Considerations	
Timer 0: Clock Inputs	
Enhanced Features	21
X2 Feature	21
Dual Data Pointer Register DPTR	25
	20
Expanded RAM (XRAM) Registers	
Registers	30
Registers	30 31
Registers	30 31 31
Registers	30 31 31 31
Registers	30 31 31 31
Registers Reset Introduction Reset Input Reset Output	30 31 31 31 32
Registers Reset Introduction Reset Input Reset Output Power Monitor	30 31 31 31 32 33
Registers Reset Introduction Reset Input Reset Output	30 31 31 31 32 33
Registers Reset Introduction Reset Input Reset Output Power Monitor Description	30 31 31 32 33 33
Registers Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2	30 31 31 32 33 33 35
Registers Reset	30 31 31 32 33 33 35
Registers Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output	30 31 31 32 32 33 33 35 36
Registers Reset	30 31 31 32 32 33 33 35 36
Registers Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output	30 31 31 32 33 33 35 36 38
Registers. Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output Registers	30 31 31 32 32 33 33 35 36 38 38 40
Registers. Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output Registers. Programmable Counter Array PCA PCA Capture Mode	30 31 31 32 33 33 35 36 38 38 40 48
Registers. Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output Registers. Programmable Counter Array PCA PCA Capture Mode 16-bit Software Timer/ Compare Mode	30 31 31 32 33 33 35 35 36 38 38 40 48 48
Registers. Reset Introduction Reset Input Reset Output Power Monitor Description Timer 2 Auto-Reload Mode Programmable Clock-Output Registers. Programmable Counter Array PCA PCA Capture Mode	30 31 31 32 32 33 33 35 35 36 38 40 48 48 49

i

PCA Watchdog Timer	51
Serial I/O Port	52
Framing Error Detection	52
Automatic Address Recognition	53
Registers	55
Baud Rate Selection for UART for Mode 1 and 3	55
UART Registers	58
Interrupt System	63
Registers	64
Interrupt Sources and Vector Addresses	71
Power Management	72
Introduction	72
Idle Mode	72
Power-Down Mode	72
Registers	75
Keyboard Interface	76
Registers	77
2-wire Interface (TWI)	80
Description	82
Notes	85
Registers	95
Serial Port Interface (SPI)	98
Features	98
Signal Description	98
Functional Description	. 100
Hardware Watchdog Timer	107
Using the WDT	. 107
WDT During Power Down and Idle	. 108
ONCE(TM) Mode (ON Chip Emulation)	109
Power-off Flag	110
EEPROM Data Memory	111
Write Data	
Read Data	
Registers	
Reduced EMI Mode	115

