

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51id2-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8. PCA SFRs

Mnemo -nic	Add	Name	7	6	5	4	3	2	1	0
CCON	D8h	PCA Timer/Counter Control	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0
CMOD	D9h	PCA Timer/Counter Mode	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
CL	E9h	PCA Timer/Counter Low byte								
СН	F9h	PCA Timer/Counter High byte								
CCAPM0	DAh	PCA Timer/Counter Mode 0		ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0
CCAPM1	DBh	PCA Timer/Counter Mode 1		ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1
CCAPM2	DCh	PCA Timer/Counter Mode 2	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2
CCAPM3	DDh	PCA Timer/Counter Mode 3		ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3
CCAPM4	DEh	PCA Timer/Counter Mode 4		ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4
CCAP0H	FAh	PCA Compare Capture Module 0 H	CCAP0H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	CCAP0H0
CCAP1H	FBh	PCA Compare Capture Module 1 H	CCAP1H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA Compare Capture Module 2 H	CCAP2H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA Compare Capture Module 3 H	CCAP3H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA Compare Capture Module 4 H	CCAP4H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA Compare Capture Module 0 L	CCAP0L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA Compare Capture Module 1 L	CCAP1L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA Compare Capture Module 2 L	CCAP2L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA Compare Capture Module 3 L	CCAP3L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA Compare Capture Module 4 L	CCAP4L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0

Table 9. Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SCON	98h	Serial Control	FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF	99h	Serial Data Buffer								
SADEN	B9h	Slave Address Mask								
SADDR	A9h	Slave Address								
BDRCON	9Bh	Baud Rate Control				BRR	TBCK	RBCK	SPD	SRC
BRL	9Ah	Baud Rate Reload								

Table 10. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF	-	-	-	-
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table below shows all SFRs with their address and their reset value.

Table 14. SFR Mapping

	Bit addressable		Non Bit addressable										
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F					
F8h	PI2 XXXX XX11	CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAP2H XXXX XXXX	CCAP3H XXXX XXXX	CCAP4H XXXX XXXX		FFh				
F0h	B 0000 0000								F7h				
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAP2L XXXX XXXX	CCAP3L XXXX XXXX	CCAP4L XXXX XXXX		EFh				
E0h	ACC 0000 0000								E7h				
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh				
D0h	PSW 0000 0000	FCON (1) XXXX 0000	EECON xxxx xx00						D7h				
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh				
C0h	P4 1111 1111			SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX		P5 byte Addressable 1111 1111	C7h				
B8h	IPL0 X000 000	SADEN 0000 0000							BFh				
B0h	P3 1111 1111	IEN1 XXXX X000	IPL1 XXXX X000	IPH1 XXXX X111				IPH0 X000 0000	B7h				
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 XXXX XXX0	AFh				
A0h	P2 1111 1111		AUXR1 XXXX X0X0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h				
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh				
90h	P1 1111 1111			SSCON 0000 0000	SSCS 1111 1000	SSDAT 1111 1111	SSADR 1111 1110	CKRL 1111 1111	97h				
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX00 1000	CKCON0 0000 0000	8Fh				
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000		CKSEL XXXX XXX0	OSSCON XXXX X001	PCON 00X1 0000	87h				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F					

Reserved

9 AT89C51ID2 -

Pin Configurations

 Table 20.
 Overview (Continued)

PCON.1	PCON.0	OscBEn	OscAEn	CKS	Selected Mode	Comment
0	1	1	x	0	IDLE MODE B	The CPU is off, OscB supplies the peripherals, OscA can be disabled (OscAEn = 0)
1	х	х	1	х	POWER DOWN MODE	The CPU and peripherals are off, OscA and OscB are stopped

Design Considerations

Oscillators Control

- PwdOscA and PwdOscB signals are generated in the Clock generator and used to control the hard blocks of oscillators A and B.
- PwdOscA ='1' stops OscA
- PwdOscB ='1' stops OscB
- The following tables summarize the Operating modes:

PCON.1	OscAEn	PwdOscA	Comments
0	1	0	OscA running
1	Х	1	OscA stopped by Power-down mode
0	0	1	OscA stopped by clearing OscAEn
PCON.1	OscBEn	PwdOscB	Comments
PCON.1	OscBEn 1	PwdOscB 0	Comments OscB running
PCON.1 0 1	OscBEn 1 X	PwdOscB 0 1	Comments OscB running OscB stopped by Power-down mode

Prescaler Divider

- A hardware RESET puts the prescaler divider in the following state:
 - CKRL = FFh: $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/2$ (Standard C51 feature)
- CKS signal selects OSCA or OSCB: F_{CLK OUT} = F_{OSCA} or F_{OSCB}
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
 - CKRL = 00h: minimum frequency
 - $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/1020$ (Standard Mode)
 - $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/510 (X2 Mode)$
 - CKRL = FFh: maximum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}/2$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSCA}$ (X2 Mode)

Reset Output

As detailed in Section "Hardware Watchdog Timer", page 107, the WDT generates a 96clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω resistor must be added as shown Figure 9.

Figure 9. Recommended Reset Output Schematic

Figure 14. PCA Timer/Counter

Table 27. CMOD Register

CMOD - PCA Counter Mode Register (D9h)

7	6	5	4	3	2	1	0					
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF					
Bit Number	Bit Mnemonic	Description	Description									
7	CIDL	Counter Idle Cleared to pr Set to progra	Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle.									
6	WDTE	Watchdog T Cleared to di Set to enable	imer Enable sable Watcho Watchdog T	log Timer fund	tion on PCA N on PCA Modu	Module 4. le 4.						
5	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.						
4	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.						
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.						
2	CPS1	PCA Count	Pulse Select									
1	CPS0	CPS1 CF 0 0 I 0 1Ir 1 0T 1 1 E	CPS1 CPS0Selected PCA input 0 0 Internal clock fCLK PERIPH/6 0 1Internal clock fCLK PERIPH/2 1 0Timer 0 Overflow 1 1 External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/4)									
0	ECF	PCA Enable Cleared to di Set to enable	PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt.									

Reset Value = 00XX X000b Not bit addressable

The CMOD register includes three additional bits associated with the PCA (See Figure 14 and Table 27).

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 28).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.

Table 45. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0				
TF2	EXF2	RCLK	RCLK TCLK EXEN2 TR2 C/T2# CP/F								
Bit Number	Bit Mnemonic		Description								
7	TF2	Timer 2 over Must be clear Set by hard	Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.								
6	EXF2	Timer 2 Ext Set when a EXEN2=1. When set, c interrupt is e Must be clea counter mod	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)								
5	RCLK	Receive Cle Cleared to u Set to use ti	ock bit for U/ use timer 1 ov mer 2 overflo	ART erflow as rece w as receive o	ive clock for s clock for serial	erial port in m port in mode	node 1 or 3. 1 or 3.				
4	TCLK	Transmit C Cleared to u Set to use ti	lock bit for U ise timer 1 ov mer 2 overflo	IART erflow as trans w as transmit	smit clock for clock for seria	serial port in r I port in mode	mode 1 or 3. e 1 or 3.				
3	EXEN2	Timer 2 Ext Cleared to ig Set to cause detected, if	ernal Enable gnore events a capture or timer 2 is not	bit on T2EX pin fo reload when a used to clock	or timer 2 oper a negative trar the serial port	ration. nsition on T2E	X pin is				
2	TR2	Timer 2 Ru Cleared to t Set to turn c	n control bit urn off timer 2 on timer 2.	2.							
1	C/T2#	Timer/Cour Cleared for Set for coun 0 for clock c	Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: F _{CLK PERIPH}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.								
0	CP/RL2#	Timer 2 Ca If RCLK=1 c timer 2 over Cleared to a if EXEN2=1 Set to captu	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Cleared to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.								

Reset Value = 0000 0000b Bit addressable

Table 50. IPL0 Register

IPL0 - Interrupt Priority Register (B8h)

7	6	5	5 4 3 2 1								
-	PPCL	PT2L	PT2L PSL PT1L PX1L PT0L I								
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value re	ad from this b	bit is indetermi	nate. Do not s	et this bit.					
6	PPCL	PCA interru Refer to PPC	pt Priority bi CH for priority	t level.							
5	PT2L	Timer 2 ove Refer to PT2	rflow interru	pt Priority bit level.							
4	PSL	Serial port I Refer to PSI	Priority bit I for priority le	evel.							
3	PT1L	Timer 1 ove Refer to PT1	rflow interru H for priority	pt Priority bit level.							
2	PX1L	External int Refer to PX1	errupt 1 Prio H for priority	rity bit level.							
1	PTOL	Timer 0 ove Refer to PTC	Fimer 0 overflow interrupt Priority bit Refer to PT0H for priority level.								
0	PX0L	External int Refer to PX0	errupt 0 Prio)H for priority	rity bit level.							

Reset Value = X000 0000b Bit addressable

Table 61. KBLS Register

KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0			
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0			
Bit Number	Bit Mnemonic	Description								
7	KBLS7	Keyboard lin Cleared to en Set to enable	ne 7 Level Se nable a low le e a high level	election bit vel detection of detection on F	on Port line 7. Port line 7.					
6	KBLS6	Keyboard lin Cleared to en Set to enable	ne 6 Level Se nable a low le e a high level	evel detection on F	on Port line 6. Port line 6.					
5	KBLS5	Keyboard lin Cleared to en Set to enable	ne 5 Level Se nable a low le e a high level	evel detection on F	on Port line 5. Port line 5.					
4	KBLS4	Keyboard lin Cleared to en Set to enable	ne 4 Level Se nable a low le e a high level	evel detection on F	on Port line 4. Port line 4.					
3	KBLS3	Keyboard lin Cleared to en Set to enable	ne 3 Level Se nable a low le e a high level	election bit evel detection of detection on F	on Port line 3. Port line 3.					
2	KBLS2	Keyboard lin Cleared to en Set to enable	ne 2 Level Se nable a low le e a high level	evel detection on F	on Port line 2. Port line 2.					
1	KBLS1	Keyboard lin Cleared to en Set to enable	Keyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.							
0	KBLS0	Keyboard lin Cleared to en Set to enable	ne 0 Level Se nable a low le e a high level	ection bit vel detection of detection on F	on Port line 0. Port line 0.					

Reset Value= 0000 0000b

2-wire Interface (TWI)

) This section describes the 2-wire interface. The 2-wire bus is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The serial data transfer is limited to 400 Kbit/s in standard mode. Various communication configuration can be designed using this bus. Figure 29 shows a typical 2-wire bus configuration. All the devices connected to the bus can be master and slave.

Table 66. Status in Master Transmitter Mode

		Appli	cation soft	ware respo	nse		
Status	Status of the Two-			To SSC	CON		
SSSTA	wire Hardware	To/From SSDAT	SSSTA	SSSTO	SSI	SSAA	Next Action Taken by Two-wire Hardware
08h	A START condition has been transmitted	Write SLA+W	х	0	0	х	SLA+W will be transmitted.
106	A repeated START	Write SLA+W	х	0	0	x	SLA+W will be transmitted.
TOIT	transmitted	Write SLA+R	х	0	0	х	SLA+R will be transmitted. Logic will switch to master receiver mode
		Write data byte	0	0	0	x	Data byte will be transmitted.
	SLA+W has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted.
18h	transmitted; ACK has	No SSDAT action	0	1	0	X	STOP condition will be transmitted and SSSTO flag will be reset.
	been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write data byte	0	0	0	x	Data byte will be transmitted.
	SLA+W has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted.
20h	transmitted; NOT ACK	No SSDAT action	0	1	0	Х	STOP condition will be transmitted and SSSTO flag will be reset.
	has been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write data byte	0	0	0	x	Data byte will be transmitted.
	Data byte has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted.
28h	transmitted; ACK has	No SSDAT action	0	1	0	х	STOP condition will be transmitted and SSSTO flag will be reset.
	been received	No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
		Write data byte	0	0	0	х	Data byte will be transmitted.
	Data byte has been	No SSDAT action	1	0	0	х	Repeated START will be transmitted.
30h	transmitted; NOT ACK	No SSDAT action	0	1	0	х	STOP condition will be transmitted and SSSTO flag will be reset.
		No SSDAT action	1	1	0	х	STOP condition followed by a START condition will be transmitted and SSSTO flag will be reset.
3.8h	Arbitration lost in	No SSDAT action	0	0	0	х	Two-wire bus will be released and not addressed slave mode will be entered.
3011	SLA+W or data bytes	No SSDAT action	1	0	0	х	A START condition will be transmitted when the bus becomes free.

AT89C51ID2

Bit Number	Bit Mnemonic	Description
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.

Reset Value = 00X0 XXXXb

Not Bit addressable

Serial Peripheral DATa Register (SPDAT) The Serial Peripheral Data Register (Table 81) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 81. SPDAT Register

SPDAT - Serial Peripheral Data Register (0C5H)

Table 3.							
7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0

Reset Value = Indeterminate

R7:R0: Receive data bits

SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.

Flash Registers and Memory Map

The AT89C51ID2 Flash memory uses several registers for his management:

- Hardware registers can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

Hardware Register The only hardware register of the AT89C51ID2 is called Hardware Security Byte (HSB).

7 6 5 4 3 2 1 0 X2 BLJB osc XRAM LB2 LB1 LB0 Bit Bit Number Mnemonic Description X2 Mode Programmed ('0' value) to force X2 mode (6 clocks per instruction) after reset. 7 Х2 Unprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset (Default). **Boot Loader Jump Bit** Unprogrammed ('1' value) to start the user's application on next reset at address 6 BLJB 0000h. Programmed ('0' value) to start the boot loader at address F800h on next reset (Default). **Oscillator Bit** OSC 5 Programmed to allow oscillator B at startup Unprogrammed this bit to allow oscillator A at startup (Default). 4 Reserved _ XRAM config bit (only programmable by programmer tools) XRAM Programmed to inhibit XRAM 3 Unprogrammed, this bit to valid XRAM (Default) User Memory Lock Bits (only programmable by programmer tools) 2-0 LB2-0 See Table 89

 Table 88.
 Hardware Security Byte (HSB)

Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

- When this bit is programmed ('1' value) the boot address is 0000h.
- When this bit is unprogrammed ('1' value) the boot address is F800h. By default, this bit is unprogrammed and the ISP is enabled.

Flash Memory Lock Bits

The three lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 89.

Table 90.Default Values

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
HSB	Copy of the Hardware security byte	101x 1011b	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	ATMEL
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: memories size and type	ECh	AT89C51ID2 64KB
	Copy of the Device ID #3: name and revision	EFh	AT89C51ID2 64KB, Revision 0

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 90 and Table 93.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 91. Software Security Byte

Table 92.

7	6	5	4	3	2	1	0
-	-	-	-	-	-	LB1	LB0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved Do not clear t	his bit.				
6	-	Reserved Do not clear t	his bit.				
5	-	Reserved Do not clear t	his bit.				
4	-	Reserved Do not clear t	his bit.				
3	-	Reserved Do not clear t	his bit.				
2	-	Reserved Do not clear t	his bit.				
1-0	LB1-0	User Memory See Table 93	/ Lock Bits }				

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown to Table 93.

Full Chip Erase

The ISP command "Full Chip Erase" erases all User Flash memory (fills with FFh) and sets some bytes used by the bootloader at their default values:

- BSB = FFh
- SBV = FCh
- SSB = FFh and finally erase the Software Security Bits

The Full Chip Erase does not affect the bootloader.

Checksum Error When a checksum error is detected send 'X' followed with CR&LF.

Display Data

Description

Note: The maximum size of block is 400h. To read more than 400h bytes, the Host must send a new command.

Table 99.	AC Parameters	for	а	Fix	Clock
-----------	---------------	-----	---	-----	-------

Symbol	-M			-L	Units
	Min	Мах	Min	Max	
Т	25		25		ns
T _{LHLL}	35		35		ns
T _{AVLL}	5		5		ns
T _{LLAX}	5		5		ns
T _{LLIV}		n 65		65	ns
T _{LLPL}	5		5		ns
T _{PLPH}	50		50		ns
T _{PLIV}		30		30	ns
T _{PXIX}	0		0		ns
T _{PXIZ}		10		10	ns
T _{AVIV}		80		80	ns
T _{PLAZ}		10		10	ns
Table 10	0. AC Parameters for a Variable C	lock	•		

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	X parameter for -L range	Units
T _{LHLL}	Min	2 T - x	T - x	15	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	20	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	20	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	35	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	15	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	25	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	45	45	ns
T _{PXIX}	Min	х	х	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	15	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	45	45	ns
T _{PLAZ}	Max	х	х	10	10	ns

	-М				
Symbol	Min	Max	Min	Мах	Units
T _{RLRH}	125		125		ns
T _{WLWH}	125		125		ns
T _{RLDV}		95		95	ns
T _{RHDX}	0		0		ns
T _{RHDZ}		25		25	ns
T _{LLDV}		155		155	ns
T _{AVDV}		160		160	ns
T _{LLWL}	45	105	45	105	ns
T _{AVWL}	70		70		ns
T _{QVWX}	5		5		ns
T _{QVWH}	155		155		ns
T _{WHQX}	10		10		ns
T _{RLAZ}	0		0		ns
T _{WHLH}	5	45	5	45	ns

Table 102. AC Parameters for a Fix Clock

 Table 103.
 AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	X parameter for -L range	Units
T _{RLRH}	Min	6 T - x	3 T - x	25	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	25	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	30	30	ns
T _{RHDX}	Min	х	х	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	25	25	ns
T _{LLDV}	Max	8 T - x	4T -x	45	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	65	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	30	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	30	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	30	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	20	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	20	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	15	15	ns
T _{RLAZ}	Max	х	х	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	20	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	20	20	ns

