

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51id2-slrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The AT89C51ID2 retains all features of the Atmel 80C52 with 256 bytes of internal RAM, a 10-source 4-level interrupt controller and three timer/counters.

In addition, the AT89C51ID2 has a Programmable Counter Array, an XRAM of 1792 bytes, a Hardware Watchdog Timer, SPI and Keyboard, a more versatile serial channel that facilitates multiprocessor communication (EUART) and a speed improvement mechanism (X2 mode).

The fully static design of the AT89C51ID2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The AT89C51ID2 has 2 software-selectable modes of reduced activity and 8-bit clock prescaler for further reduction in power consumption. In the Idle mode the CPU is frozen while the peripherals and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

The added features of the AT89C51ID2 make it more powerful for applications that need pulse width modulation, high speed I/O and counting capabilities such as alarms, motor control, corded phones, smart card readers.

AT89C51ID2	Flash (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
PLCC44/VQFP44	64K	1792	2048	34

Table 1. Memory Size and I/O pins

2

Table 11. Two-Wire Interface Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SSCON	93h	Synchronous Serial control	SSCR2	SSPE	SSSTA	SSSTO	SSI	SSAA	SSCR1	SSCR0
SSCS	94h	Synchronous Serial Status	SSC4	SSC3	SSC2	SSC1	SSC0	0	0	0
SSDAT	95h	Synchronous Serial Data	SSD7	SSD6	SSD5	SSD4	SSD3	SSD2	SSD1	SSD0
SSADR	96h	Synchronous Serial Address	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSGC

Table 12. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

Table 13. EEPROM data Memory SFR

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
EECON	D2h	EEPROM Data Control							EEE	EEBUSY

Oscillators

Overview

Two oscillators are available (for AT8xC511xD2 devices only, the others part number provide only the main high frequency oscillator):

- OSCA used for high frequency: Up to 40 MHz
- OSCB used for low frequency: 32.768 kHz

Several operating modes are available and programmable by software:

- to switch OSCA to OSCB and vice-versa
- to stop OSCA or OSCB to reduce consumption

In order to optimize the power consumption and the execution time needed for a specific task, an internal prescaler feature has been implemented between the selected oscillator and the CPU.

Registers

Table 16. CKSEL Register (for AT8xC51Ix2 only)

CKSEL - Clock Selection Register (85h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	CKS
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	СКЅ	CPU Oscilla Cleared, CPI Set, CPU an Programmed (HSB).HSB.0	tor Select Bi U and periphe d peripherals I by hardware DSC (Default	t: (CKS) erals connected connected to after a Power setting, OSCA	ed to OSCB OSCA r-up regarding A selected)	Hardware Se	curity Byte

Reset Value = 0000 000'HSB.OSC'b (see Hardware Security Byte (HSB)) Not bit addressable

Table 22. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SPIX2
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	SPIX2	SPI (This cor this bit has n Clear to sele Set to select	ntrol bit is vali o effect). ct 6 clock peri 12 clock perio	dated when th iods per peripl ods per periph	e CPU clock > neral clock cyc eral clock cyc	K2 is set; when cle. le.	n X2 is low,

Reset Value = XXXX XXX0b Not bit addressable

Expanded RAM (XRAM)

The AT89C51ID2 provides additional Bytes of random access memory (RAM) space for increased data parameter handling and high level language usage.

AT89C51ID2 devices have expanded RAM in external data space configurable up to 1792bytes (see Table 24.).

The AT89C51ID2 has internal data memory that is mapped into four separate segments.

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly addressable.
- The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80h to FFh) are directly addressable only.
- 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register (see Table 24).

The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7Fh, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0h (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM.
 For example: MOV @R0, # data where R0 contains 0A0h, accesses the data byte at address 0A0h, rather than P2 (whose address is 0A0h).
- The XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a part of the available XRAM as explained in Table 24. This can be

Table 27. CMOD Register

CMOD - PCA Counter Mode Register (D9h)

7	6	5	4	3	2	1	0				
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF				
Bit Number	Bit Mnemonic	Description									
7	CIDL	Counter Idle Cleared to pr Set to progra	Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle.								
6	WDTE	Watchdog T Cleared to di Set to enable	imer Enable sable Watcho Watchdog T	log Timer fund	tion on PCA N on PCA Modu	Module 4. le 4.					
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.					
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.					
2	CPS1	PCA Count	Pulse Select								
1	CPS0	CPS1 CF 0 0 I 0 1Ir 1 0T 1 1 E	CPS1 CPS0Selected PCA input 0 0 Internal clock fCLK PERIPH/6 0 1Internal clock fCLK PERIPH/2 1 0Timer 0 Overflow 1 1 External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/ 4)								
0	ECF	PCA Enable Cleared to di Set to enable	PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt.								

Reset Value = 00XX X000b Not bit addressable

The CMOD register includes three additional bits associated with the PCA (See Figure 14 and Table 27).

- The CIDL bit which allows the PCA to stop during idle mode.
- The WDTE bit which enables or disables the watchdog function on module 4.
- The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON SFR) to be set when the PCA timer overflows.

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 28).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.

Registers

Table 35. SADEN Register

SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Table 36. SADDR Register

SADDR - Slave Address Register (A9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b Not bit addressable

Baud Rate Selection for UART for Mode 1 and 3

The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON registers.

Figure 23. Baud Rate Selection

Table 38. SCON Register

SCON - Serial Control Register (98h)

7	6	5	5	4	3	2	1	0			
FE/SM0	SM1	SN	/ 12	REN	TB8	RB8	TI	RI			
Bit Number	Bit Mnemo	nic	Description								
7	FE		Frami Clear Set by SMOE	ng Error bit to reset the e hardware wh 00 must be se	(SMOD0=1) rror state, not ten an invalid t to enable ad	cleared by a v stop bit is dete ccess to the FE	valid stop bit. ected. E bit.				
	SM)	Serial Refer SMOE	port Mode b to SM1 for se 00 must be cle	it 0 rial port mode eared to enab	e selection. le access to th	e SM0 bit.				
6	SM	1	Serial <u>SM0</u> 0 1 1	port Mode b SM1 M 0 SI 1 8- 0 9- 1 9-	it 1 o <u>de</u> nift Register bit UART bit UART bit UART	<u>Baud Rate</u> F _{XTAL} /12 (or F ₂ Variable F _{XTAL} /64 or F _X Variable	_{KTAL} /6 in mode _{TAL} /32	⇒ X2)			
5	SM	2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, ar eventually mode 1. This bit should be cleared in mode 0.								
4	REI	1	Recep Clear Set to	otion Enable to disable ser enable serial	bit ial reception. reception.						
3	ТВ	3	Trans Clear Set to	mitter Bit 8 / to transmit a l transmit a log	Ninth bit to t ogic 0 in the s gic 1 in the 9tl	e ransmit in m e 9th bit. n bit.	odes 2 and 3				
2	RB	}	Recei Cleare Set by In mod used.	ver Bit 8 / Ni ed by hardwar / hardware if 9 de 1, if SM2 =	nth bit receive re if 9th bit rec 9th bit receive 0, RB8 is the	red in modes ceived is a logi d is a logic 1. e received stop	2 and 3 c 0. 9 bit. In mode () RB8 is not			
1	ті		Trans Clear Set by of the	mit Interrupt to acknowled hardware at stop bit in the	flag ge interrupt. the end of the other modes	8th bit time in	mode 0 or at t	he beginning			
0	RI		Recei Clear Set by and Fi	ve Interrupt to acknowled whardware at igure 22. in th	ilag ge interrupt. the end of the e other mode	e 8th bit time ir s.	n mode 0, see	Figure 21.			

Reset Value = 0000 0000b Bit addressable

Table 46. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic			Desc	ription				
7	SMOD1	Serial port Set to select	Mode bit 1 fo t double baud	or UART	1, 2 or 3.				
6	SMOD0	Serial port Cleared to s Set to selec	Mode bit 0 fo select SM0 bit t FE bit in SC0	or UART in SCON regis DN register.	ster.				
5	-	Reserved The value re	ead from this I	oit is indeterm	nate. Do not s	set this bit.			
4	POF	Power-Off Cleared to r Set by hard by software	Flag ecognize next ware when VC	reset type. CC rises from	0 to its nomina	al voltage. Car	n also be set		
3	GF1	General pu Cleared by Set by user	rpose Flag user for gener for general pu	al purpose usa Irpose usage.	age.				
2	GF0	General pu Cleared by Set by user	rpose Flag user for gener for general pu	al purpose usa Irpose usage.	age.				
1	PD	Power-Dow Cleared by Set to enter	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle mode I Cleared by Set to enter	bit hardware whe idle mode.	n interrupt or	reset occurs.				

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 47. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0	
-	-	-	BRR	ТВСК	RBCK	SPD	SRC	
Bit Number	Bit Mnemonic	Description	n					
7	-	Reserved The value re	eserved ne value read from this bit is indeterminate. Do not set this bit					
6	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit					
5	-	Reserved The value re	teserved 'he value read from this bit is indeterminate. Do not set this bit.					
4	BRR	Baud Rate Cleared to s Set to start f	Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator.					
3	ТВСК	Transmissi Cleared to s Set to selec	Transmission Baud rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator.					
2	RBCK	Reception Cleared to s Set to selec	Reception Baud Rate Generator Selection bit for UART Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator. Set to select internal Baud Rate Generator.					
1	SPD	Baud Rate Cleared to s Set to selec	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.					
0	SRC	Baud Rate Cleared to s mode). Set to selec	Baud Rate Source select bit in Mode 0 for UART Cleared to select F _{OSC} /12 as the Baud Rate Generator (F _{CLK PERIPH} /6 in X2 mode). Set to select the internal Baud Rate Generator for UARTs in mode 0.					

Reset Value = XXX0 0000b Not bit addressablef

Interrupt System

The AT89C51ID2 has a total of 10 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 25.

Figure 25. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 52 and Table 50). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 53) and in the Interrupt Priority High register (Table 51 and Table 52) shows the bit values and priority levels associated with each combination.

Registers

The PCA interrupt vector is located at address 0033H, the SPI interrupt vector is located at address 0043H and Keyboard interrupt vector is located at address 004BH. All other vectors addresses are the same as standard C52 devices.

Table 48. Priority Level Bit Values

IPH. x	IPL. x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

	B

Table 68.	Status in	Slave	Receiver	Mode
-----------	-----------	-------	----------	------

		Application Software Response					
Status		To/from SSDAT		To SS	CON		
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	ѕто	SI	АА	Next Action Taken By 2-wire Software
	Own SLA+W has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
60h	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
COh	Arbitration lost in SLA+R/W as master; own SLA+W has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
0011	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
706	General call address has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
700	returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
706	Arbitration lost in SLA+R/W as master; general call address	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
7011	has been received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
001	Previously addressed with own SLA+W; data has been	No SSDAT action or	х	0	0	0	Data byte will be received and NOT ACK will be returned
800	received; ACK has been returned	No SSDAT action	х	0	0	1	Data byte will be received and ACK will be returned
		Read data byte or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA
		Read data byte or	0	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if
	Previously addressed with		Ŭ	Ū	Ŭ		GC=logic 1 Switched to the not addressed slave mode: no
88h	own SLA+W; data has been received; NOT ACK has been returned	Read data byte or	1	0	0	0	recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
001	Previously addressed with general call; data has been	Read data byte or	х	0	0	0	Data byte will be received and NOT ACK will be returned
900	received; ACK has been returned	Read data byte	х	0	0	1	Data byte will be received and ACK will be returned

				EL.	
	drive the pins (Figu selected a	network. ire 37). To it a time b	The Maste p prevent y the Mas	er may select each Slave devi bus conflicts on the MISO lin ster for a transmission.	ice by software through port e, only one slave should be
	In a Maste the SPI S SCK (see	er configu tatus reg Error con	ration, the ister (SP៖ ditions).	STA) to prevent multiple mas	nction with the MODF flag in ters from driving MOSI and
	A high lev	el on the	SS pin pu	ts the MISO line of a Slave SP	I in a high-impedance state.
	The \overline{SS} pi	n could be	e used as	a general-purpose if the follow	ving conditions are met:
 The device is configured as a Master and the SSDIS control bit in SF This kind of configuration can be found when only one Master is drivin and there is no way that the SS pin could be pulled low. Therefore, the the SPSTA will never be set⁽¹⁾. 					ontrol bit in SPCON is set. Aaster is driving the network Therefore, the MODF flag in
	• The D kind o Slave that th	evice is c f configur only. The ne Master	onfigured ation can refore, the uses the	as a Slave with CPHA and SS happen when the system com device should always be sele SS pin to select the communic	DIS control bits set ⁽²⁾ . This prises one Master and one ected and there is no reason ating Slave device.
	Note: 1.	Clearing	SSDIS cor	trol bit does not clear MODF.	
	2.	Special c in this mo	are sho <u>uld</u> ode, the SS	be taken not to set SSDIS controls is used to start the transmission.	bl bit when CPHA = '0' because
Baud Rate	In Master trolled by selected f 2, 4, 8, 16	mode, the three bits rom one c , 32, 64 o	e baud rate in the SP(of seven cl r 128.	e can be selected from a baud CON register: SPR2, SPR1 ar lock rates resulting from the div	rate generator which is con- nd SPR0.The Master clock is vision of the internal clock by
	Table 77 g	gives the o	different c	lock rates selected by SPR2:S	PR1:SPR0.
	Table 77.	SPI Mas	ter Baud F	Rate Selection	
	SPR2	SPR1	SPR0	Clock Rate	Baud Rate Divisor (BD)
	0	0	0	F _{CLK PERIPH} /2	2
	0	0	1	F _{CLK PERIPH} /4	4
	0	1	0	F _{CLK PERIPH} /8	8

F_{CLK PERIPH} /16

F_{CLK PERIPH} /32

F_{CLK PERIPH} /64

F_{CLK PERIPH} /128

Don't Use

No BRG

Figure 42. SPI Interrupt Requests Generation

Registers

Serial Peripheral Control Register (SPCON) There are three registers in the Module that provide control, status and data storage functions. These registers are describes in the following paragraphs.

- The Serial Peripheral Control Register does the following:
- Selects one of the Master clock rates
- Configure the SPI Module as Master or Slave
- Selects serial clock polarity and phase
- Enables the SPI Module
- Frees the SS pin for a general-purpose

Table 79 describes this register and explains the use of each bit

Table 79. SPCON Register

SPCON - Serial Peripheral Control Register (0C3H)

Table 1.

7	6	5	4	3	2	1	0
SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0
Bit Number	Bit Mne	emonic	Description				
7	SF	PR2	Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate.				
6	SF	PEN	Serial Peripheral Enable Cleared to disable the SPI interface. Set to enable the SPI interface.				
5	SS	DIS	SS Disable Cleared to enable SS in both Master and Slave modes. Set to disable SS in both Master and Slave modes. In Slave m this bit has no effect if CPHA ='0'. When SSDIS is set, no MOD interrupt request is generated.				lave mode, io MODF
4	MS	STR	Serial Peripheral Master Cleared to configure the SPI as a Slave. Set to configure the SPI as a Master.				
3	CF	POL	Clock Polarity Cleared to have the SCK set to '0' in idle state. Set to have the SCK set to '1' in idle low.				
2	CF	РНА	Clock Phase Cleared to have the data sampled when the SCK leaves the id state (see CPOL). Set to have the data sampled when the SCK returns to idle stat CPOL).				the idle le state (see

Bootloader Architecture

Introduction

The bootloader manages a communication according to a specific defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Acronyms

ISP : In-System Programming
SBV: Software Boot Vector
BSB: Boot Status Byte
SSB: Software Security Bit
HW : Hardware Byte

API Call Description

Several Application Program Interface (API) calls are available for use by an application program to permit selective erasing and programming of Flash pages. All calls are made through a common interface, PGM_MTP. The programming functions are selected by setting up the microcontroller's registers before making a call to PGM_MTP at FFF0h. Results are returned in the registers.

When several bytes have to be programmed, it is highly recommended to use the Atmel API "PROGRAM DATA PAGE" call. Indeed, this API call writes up to 128 bytes in a single command.

All routines for software access are provided in the C Flash driver available on Atmel web site.

The API calls description and arguments are shown in Table

Table 97. API Call Summary

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect				
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier				
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1				
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2				
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3				
			DPH = 00h			Erase block 0				
			DPH = 20h			Erase block 1				
			DPH = 40h			Erase block 2				
ERASE BLOCK	01h	XXh	Address of byte to program	00h	00h	00h	00h	00h	ACC = DPH	Program one Data Byte in user Flash
			XXh			Erase Software boot vector and boot status byte. (SBV = FCh and BSB = FFh)				
			DPH = 00h DPL = 00h			Set SSB level 1				
PROCRAM SSR	05h	YYb	DPH = 00h DPL = 01h	- 00h	ACC = SSB value	Set SSB level 2				
FROGRAM 33B		7711	DPH = 00h DPL = 10h			Set SSB level 0				
			DPH = 00h DPL = 11h			Set SSB level 1				
PROGRAM BSB	06h	New BSB value	0000h	XXh	none	Program boot status byte				
PROGRAM SBV	06h	New SBV value	0001h	XXh	none	Program software boot vector				
READ SSB	07h	XXh	0000h	XXh	ACC = SSB	Read Software Security Byte				
READ BSB	07h	XXh	0001h	XXh	ACC = BSB	Read Boot Status Byte				
READ SBV	07h	XXh	0002h	XXh	ACC = SBV	Read Software Boot Vector				

Table 99.	AC Parameters	for	a Fix	Clock
-----------	---------------	-----	-------	-------

Symbol	-М			-L		
	Min	Мах	Min	Max		
Т	25		25		ns	
T _{LHLL}	35		35		ns	
T _{AVLL}	5		5		ns	
T _{LLAX}	5		5		ns	
T _{LLIV}		n 65		65	ns	
T _{LLPL}	5		5		ns	
T _{PLPH}	50		50		ns	
T _{PLIV}		30		30	ns	
T _{PXIX}	0		0		ns	
T _{PXIZ}		10		10	ns	
T _{AVIV}		80		80	ns	
T _{PLAZ}		10		10	ns	
Table 10	0. AC Parameters for a Variable C	lock	•			

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	X parameter for -L range	Units
T _{LHLL}	Min	2 T - x	T - x	15	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	20	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	20	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	35	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	15	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	25	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	45	45	ns
T _{PXIX}	Min	х	х	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	15	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	45	45	ns
T _{PLAZ}	Max	х	х	10	10	ns

External Program Memory Read Cycle

External Data Memory Characteristics

Table 101. Symbol Description

,	•
Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data Set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high