

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401cdy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.19.3	Independent watchdog	. 28
		3.19.4	Window watchdog	. 28
		3.19.5	SysTick timer	. 29
	3.20	Inter-inf	tegrated circuit interface (I2C)	. 29
	3.21	Univers	al synchronous/asynchronous receiver transmitters (USART) .	. 29
	3.22	Serial p	eripheral interface (SPI)	. 30
	3.23	Inter-inf	egrated sound (I ² S)	. 30
	3.24	Audio F	PLL (PLLI2S)	. 30
	3.25	Secure	digital input/output interface (SDIO)	. 31
	3.26	Univers	al serial bus on-the-go full-speed (OTG_FS)	. 31
	3.27	Genera	I-purpose input/outputs (GPIOs)	. 31
	3.28	Analog-	to-digital converter (ADC)	. 31
	3.29	Temper	ature sensor	. 32
	3.30	Serial w	vire JTAG debug port (SWJ-DP)	. 32
	3.31	Embed	ded Trace Macrocell™	. 32
4	Pinou	its and	pin description	. 33
5	Memo	ory map	oping	. 51
5	Memo	ory map	pping	. 51 . 55
5 6	Memo Elect	ory map rical ch Parame	aracteristics	. 51 . 55
5 6	Memo Electr 6.1	ory map rical ch Parame 6.1.1	aracteristics	. 51 . 55 . 55
5 6	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2	aracteristics	. 51 . 55 . 55 . 55 . 55
5 6	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3	aracteristics	. 51 . 55 . 55 . 55 . 55 . 55
5 6	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor	51 55 55 55 55 55 55
5	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage	51 55 55 55 55 55 55 55 55
5	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme	51 55 55 55 55 55 55 55 55 55 55
5 6	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement	51 55 55 55 55 55 55 55 56 56 57 58
5	Memo Electr 6.1	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut	aracteristics eter conditions Minimum and maximum values Typical values Typical values Dading capacitor Pin input voltage Power supply scheme Current consumption measurement re maximum ratings	51 55 55 55 55 55 55 55 56 57 58 58
5	Memo Elect 6.1 6.2 6.3	Dry map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operati	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement re maximum ratings ng conditions	51 55 55 55 55 55 55 56 57 58 58 58 58
5	Memo Elect 6.1 6.2 6.3	Dry map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operati 6.3.1	ping aracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement te maximum ratings ng conditions General operating conditions	51 55 55 55 55 55 55 55 55 55 55 55 55 55
5	Memo Electr 6.1 6.2 6.3	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operati 6.3.1 6.3.2	ping aracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions VCAP1/VCAP2 external capacitors	51 55 55 55 55 55 55 55 55 58 58 58 58 58 58
5	Memo Elect 6.1 6.2 6.3	Dry map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operati 6.3.1 6.3.2 6.3.3	ping aracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions General operating conditions VCAP1/VCAP2 external capacitors Operating conditions at power-up/power-down (regulator ON)	51 55 55 55 55 55 55 55 55 56 57 58 58 58 60 60 58 58 58 58 58 58 58 58 58 58 58 58 58
5 6	Memo Elect 6.1 6.2 6.3	Dry map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut Operati 6.3.1 6.3.2 6.3.3 6.3.4	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement e maximum ratings ng conditions General operating conditions VCAP1/VCAP2 external capacitors Operating conditions at power-up/power-down (regulator ON) Operating conditions at power-up / power-down (regulator OFF)	51 55 55 55 55 55 55 55 55 55 58 58 60 60 60 60 60 62 63 63
5	Memo Electr 6.1 6.2 6.3	rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 Absolut 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Current consumption measurement re maximum ratings ng conditions VCAP1/VCAP2 external capacitors Operating conditions at power-up/power-down (regulator ON) Operating conditions at power-up / power-down (regulator OFF)	51 55 55 55 55 55 55 55 55 55 55 58 58 58 60 58 58 58 58 58 58 58 58 58 58 58 58 58

Peripherals		S	STM32F401xD			STM32F401xE			
Flash memory in k		384			512				
SRAM in Kbytes	System				96				
Timers	General- purpose		7						
Timers	Advanced- control		1						
	SPI/ I ² S	3/2 (full o	luplex)	4/2 (full duplex)	3/2 (full o	duplex)	4/2 (full duplex)		
Communication interfaces	l ² C		3						
	USART	3							
	SDIO	- 1 -		-		1			
USB OTG FS					1				
GPIOs		36	50	81	36	50	81		
12-bit ADC					1				
Number of channe	ls	10 16 10 16		16					
Maximum CPU fre	quency	84 MHz							
Operating voltage	1.7 to 3.6 V								
			Ambient temperatures: -40 to +85 °C/-40 to +105 °C						
Operating tempera	atures	Junction temperature: -40 to + 125 °C							
Package		WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100		

Table 2. STM32F401xD/xE features and peripheral counts

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 with FPU core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F401xD/xE devices are compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F401xD/xE.

Note: Cortex[®]-M4 with FPU is binary compatible with Cortex[®]-M3.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 105 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 84 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

DocID025644 Rev 3

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop modes

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the V_{CAP_1} and V_{CAP_2} pins. The V_{CAP_2} pin is only available for the LQFP100 and UFBGA100 packages.

All packages have the regulator ON feature.

3.15.2 Regulator OFF

The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP-1} and V_{CAP-2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 14: General operating conditions*.

The two 2.2 μ F V_{CAP} ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 18: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach V₁₂ minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V₁₂ minimum value and until V_{DD} reaches 1.7 V (see *Figure 8*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach 1.7 V, then PA0 could be asserted low externally (see *Figure 9*).
- If V_{CAP_1} and V_{CAP_2} go below V_{12} minimum value and V_{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.
- Note: The minimum value of V₁₂ depends on the maximum frequency targeted in the application

Figure 8. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP 1}/V_{CAP 2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Figure 9. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before V_{CAP_1}/V_{CAP_2} stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

3.19.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.20 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, please contact your local ST sales representative. They also support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 5).

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks

3.21 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART6).

These three interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to 5.25 bit/s.

USART1 and USART2 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

5 Memory mapping

The memory map is shown in *Figure 15*.

DocID025644 Rev 3

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit	
$V_{DD}-V_{SS}$	External main supply voltage (including $V_{DDA^{\rm ,}}V_{DD}$ and $V_{BAT})^{(1)}$	-0.3			
	Input voltage on FT pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	+4.0 V 0	
V _{IN}	Input voltage on any other pin	V _{SS} -0.3	4.0		
	Input voltage for BOOT0	V_{SS}	9.0		
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	- 50		m\/	
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	- 50		IIIV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3.14: Absolute maximum ratings (electrical sensitivity)			

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V_{DD_x} power lines (source) ⁽¹⁾	160	
Σ I _{VSS}	$ \begin{array}{ c c c } & \Sigma \ I_{VSS} & \ Total \ current \ out \ of \ sum \ of \ all \ V_{SS_x} \ ground \ lines \ (sink)^{(1)} \\ \hline I_{VDD} & \ Maximum \ current \ into \ each \ V_{DD_x} \ power \ line \ (source)^{(1)} \\ \hline I_{VSS} & \ Maximum \ current \ out \ of \ each \ V_{SS_x} \ ground \ line \ (sink)^{(1)} \\ \end{array} $		
I _{VDD}			
I _{VSS}			
l	Output current sunk by any I/O and control pin	25	
١O	Output current sourced by any I/O and control pin	-25	mA
ΣI	Total output current sunk by sum of all I/O and control pins $^{(2)}$		
2110	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-120	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT pins ⁽⁴⁾	5/10	
	Injected current on NRST and B pins ⁽⁴⁾	-5/+0	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±25	1

|--|

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	ol Ratings Value		Unit
T _{STG}	Storage temperature range	–65 to +150	
TJ	Maximum junction temperature	125	
T _{LEAD}	Maximum lead temperature during soldering (WLCSP49, LQFP64/100, UFQFPN48, UFBGA100)	see note ⁽¹⁾	°C

Table 13. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK[®] 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TA	Ambient temperature for 6	Maximum power dissipation	-40	-	85	
	suffix version	Low power dissipation ⁽⁸⁾	-40	-	105	
	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	-	105	•
		Low power dissipation ⁽⁸⁾	-40	-	125	
TJ	lunction tomporature range	6 suffix version	-40	-	105	
		7 suffix version	-40	-	125	1

Table 14. General operating conditions (continued)

1. V_{DD}/V_{DDA} minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal reset OFF).

2. When the ADC is used, refer to *Table 66: ADC characteristics*.

- 3. If V_{REF+} pin is present, it must respect the following condition: $V_{DDA}-V_{REF+} < 1.2$ V.
- 4. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 5. Guaranteed by test in production
- 6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
- 7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 8. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

	Table 15. Features depending on the operating power supply range								
Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Clock output frequency on I/O pins ⁽³⁾	Possible Flash memory operations			
V _{DD} =1.7 to 2.1 V ⁽⁴⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁵⁾	84 MHz with 4 wait states	 No I/O compensation 	up to 30 MHz	8-bit erase and program operations only			
√ _{DD} = 2.1 to 2.4 V	Conversion time up to 1.2 Msps	22 MHz	84 MHz with 3 wait states	 No I/O compensation 	up to 30 MHz	16-bit erase and program operations			
√ _{DD} = 2.4 to 2.7 V	Conversion time up to 2.4 Msps	24 MHz	84 MHz with 3 wait states	 I/O compensation works 	up to 48 MHz	16-bit erase and program operations			
√ _{DD} = 2.7 to 3.6 V ⁽⁶⁾	Conversion time up to 2.4 Msps	30 MHz	84 MHz with 2 wait states	 I/O compensation works 	- up to 84 MHz when V_{DD} = 3.0 to 3.6 V - up to 48 MHz when V_{DD} = 2.7 to 3.0 V	32-bit erase and program operations			

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{RUSH} ⁽²⁾	InRush current on voltage regulator power- on (POR or wakeup from Standby)		-	160	200	mA
E _{RUSH} ⁽²⁾	InRush energy on voltage regulator power- on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

 Table 19. Embedded reset and power control block characteristics (continued)

1. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

2. Guaranteed by design, not tested in production.

3. The reset timing is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is fetched by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 19: Current consumption measurement scheme*.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted to both f_{HCLK} frequency and VDD ranges (refer to *Table 15: Features depending on the operating power supply range*).
- The voltage scaling is adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for $f_{HCLK} \leq 60 \text{ MHz}$
 - Scale 2 for 60 MHz < $f_{HCLK} \le 84$ MHz
- The system clock is HCLK, $f_{PCLK1} = f_{HCLK}/2$, and $f_{PCLK2} = f_{HCLK}$.
- External clock is 4 MHz and PLL is on
- The maximum values are obtained for V_{DD} = 3.6 V and a maximum ambient temperature (T_A), and the typical values for T_A= 25 °C and V_{DD} = 3.3 V unless otherwise specified.

Table 22. Typical and maximum current consumption in run mode, code with data pro	cessing
(ART accelerator enabled except prefetch) running from Flash memory- V _{DD} = 1.	7 V

			£						
Symbol	Parameter	Conditions	^т нс∟к т (MHz)		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
			84	23.2	24.5	25.6	26.6		
			60	15.1	16.3	17.4	18.4		
		External clock, all peripherals enabled ⁽²⁾⁽³⁾	40	10.8	12.1	13.2	14.2		
				30	8.8	10.0	11.1	12.2	
I	Supply current		20	6.9	8.0	9.0	10.1	m۵	
'DD	in Run mode	9	84	12.3	13.6	14.7	15.7		
			60	8.2	9.4	10.5	11.5		
		External clock, all peripherals disabled ⁽³⁾	40	6.0	7.3	8.3	9.4		
			30	4.9	6.2	7.2	8.3		
			20	4.0	5.1	6.1	7.2		

1. Guaranteed by characterization, not tested in production unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

Table 23. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - V_{DD} = 3.3 V

Symbol Para	fuerre			f	Max ⁽¹⁾				
	Parameter	Parameter Conditions	'HCLK (MHz)	MHz)		T _A = 85 °C	T _A = 105 °C	Unit	
			84	23.4	24.7	25.8	26.8		
			60	15.3	16.5	17.6	18.6		
		upply current Run mode	40	11.0	12.3	13.4	14.4		
			30	9.0	10.2	11.3	12.4		
I	Supply current		20	7.1	8.2	9.2	10.3	mA	
'DD	in Run mode		84	12.5	13.8	14.9	15.9	ШA	
			60	8.4	9.6	10.7	11.7		
		External clock, all peripherals disabled ⁽³⁾	40	6.2	7.5	8.5	9.6		
			30	5.1	6.4	7.4	8.5		
			20	4.2	5.3	6.3	7.4		

1. Guaranteed by characterization, not tested in production unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

Figure 27. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock			24	-	84	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock			-	48	75	MHz
f _{VCO_OUT}	PLL VCO output				-	432	MHz
	PLL lock time	VCO freq = 192 MHz		75	-	200	116
LOCK		VCO freq = 432 MHz		100	-	300	μο
			RMS	-	25	-	
	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	20
JILLEI		84 MHz	RMS	-	15	-	μs
	Period Jitter		peak to peak	-	±200	-	

Table 41. M	lain PLL	characteristics
-------------	----------	-----------------

Figure 28 and *Figure 29* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table	44.	Flash	memory	characteristics
IUNIC		1 14311	III CIII CI y	

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{DD} Supply cu		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

STM32F401xD STM32F401xE

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
			C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	25		
	f	Maximum frequency $^{(3)}$	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	12.5	MHz	
	'max(IO)out		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	50		
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	20		
01			C _L = 50 pF, V _{DD} ≥2.7 V	-	-	10		
	t _{f(IO)out} /	Output high to low level fall	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	20	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	6	115	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10		
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	50 ⁽⁴⁾		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25	MHz	
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾		
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾		
10	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high ut level rise time	C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	6		
			C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10	ns	
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	4		
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6		
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾		
	F	Maximum fraguana $u^{(3)}$	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾		
	rmax(IO)out		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	180 ⁽⁴⁾		
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	100 ⁽⁴⁾		
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	4		
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	6	20	
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	2.5	115	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	-	ns	

Table 56. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization, not tested in production.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.

3. The maximum frequency is defined in *Figure 31*.

4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

7.1.3 LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package

Figure 52. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline

1. Drawing is not to scale.

Cumhal		millimeters		inches ⁽¹⁾				
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	-	-	1.6	-	-	0.063		
A1	0.05	-	0.15	0.002	-	0.0059		
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571		
b	0.17	0.22	0.27	0.0067	0.0087	0.0106		
с	0.09	-	0.2	0.0035	-	0.0079		
D	15.8	16	16.2	0.622	0.6299	0.6378		
D1	13.8	14	14.2	0.5433	0.5512	0.5591		
D3	-	12	-	-	0.4724	-		
E	15.8	16	16.2	0.622	0.6299	0.6378		
E1	13.8	14	14.2	0.5433	0.5512	0.5591		
E3	-	12	-	-	0.4724	-		
е	-	0.5	-	-	0.0197	-		
L	0.45	0.6	0.75	0.0177	0.0236	0.0295		
L1	-	1	-	-	0.0394	-		
К	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
CCC		0.08	•	0.0031				

Table 83. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 84. UFBGA100, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array packagemechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 59. Recommended PCB design rules for pads (0.5 mm-pitch BGA)

1. Non solder mask defined (NSMD) pads are recommended.

2. 4 to 6 mils solder paste screen printing process.

8 Part numbering

Table 86. Ordering information scheme

Example:	STM32	F	401	С	Е	Y 6	TR
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Device subfamily							
401 = 401 family							
Pin count							
C = 48/49 pins							
R = 64 pins							
V = 100 pins							
Flash memory size							
D = 384 Kbytes of Flash memory							
E = 512 Kbytes of Flash memory							
Package							
H = UFBGA							
T = LQFP							
U = UFQFPN							
Y = WLCSP							
Temperature range							
6 = Industrial temperature range, –40 to 85 °C							
Packing							

TR = tape and reel

No character = tray or tube

