
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401ceu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.9 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\$}$ -M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.10 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected to the 16 external interrupt lines.

3.11 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.

The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop modes

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the V_{CAP_1} and V_{CAP_2} pins. The V_{CAP_2} pin is only available for the LQFP100 and UFBGA100 packages.

All packages have the regulator ON feature.

3.15.2 Regulator OFF

The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP-1} and V_{CAP-2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 14: General operating conditions*.

The two 2.2 μ F V_{CAP} ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 18: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

	Pin	Nun	nber				e.	-	· ·	
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	39	65	E10	PC8	I/O	FT	-	USART6_CK, TIM3_CH3, SDIO_D0, EVENTOUT	-
-	-	40	66	D12	PC9	I/O	FT	-	I2S_CKIN, I2C3_SDA, TIM3_CH4, SDIO_D1, MCO_2, EVENTOUT	-
29	D1	41	67	D11	PA8	I/O	FT	-	I2C3_SCL, USART1_CK, TIM1_CH1, OTG_FS_SOF, MCO_1, EVENTOUT	-
30	D2	42	68	D10	PA9	I/O	FT	-	I2C3_SMBA, USART1_TX, TIM1_CH2, EVENTOUT	OTG_FS_VBUS
31	C2	43	69	C12	PA10	I/O	FT	-	USART1_RX, TIM1_CH3, OTG_FS_ID, EVENTOUT	-
32	C1	44	70	B12	PA11	I/O	FT	-	USART1_CTS, USART6_TX, TIM1_CH4, OTG_FS_DM, EVENTOUT	-
33	C3	45	71	A12	PA12	I/O	FT	-	USART1_RTS, USART6_RX, TIM1_ETR, OTG_FS_DP, EVENTOUT	-
34	B3	46	72	A11	PA13 (JTMS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
-	-	-	73	C11	VCAP2	S	-	-	-	-
35	B1	47	74	F11	VSS	S	-	-	-	-
36	-	48	75	G11	VDD	S	-	-	-	-
-	B2	-	-	-	VDD	S	-	-	-	-
37	A1	49	76	A10	PA14 (JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
38	A2	50	77	A9	PA15 (JTDI)	I/O	FT	-	JTDI, SPI1_NSS, SPI3_NSS/I2S3_WS, TIM2_CH1/TIM2_ETR, JTDI, EVENTOUT	-
-	-	51	78	B11	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, SDIO_D2, EVENTOUT	-
-	-	52	79	C10	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, SDIO_D3, EVENTOUT	-
-	-	53	80	B10	PC12	I/O	FT	-	SPI3_MOSI/I2S3_SD, SDIO_CK, EVENTOUT	-
-	-	-	81	C9	PD0	I/O	FT	-	EVENTOUT	-

Table 8. STM32F401xD/xE pin definitions (continued)

	Pir	n Nur	nber				re			
UQFN48	WLCSP49	WLCSP49 LQFP64 LQFP100 UFBGA100		UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
47	A6	63	99	-	VSS	S	-	-	-	-
-	B6	-	-	H3	PDR_ON	I	FT -		-	-
48	A7	64	100	-	VDD	S	-	-	-	-

Table 8. STM32F401xD/xE pin definitions (continued)

1. Function availability depends on the chosen device.

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF.
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

These I/Os must not be used as a current source (e.g. to drive an LED).

 Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F401xx reference manual.

4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).

5. If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low)

5

DocID025644 Rev 3

4
Ġ
Ň
<u> </u>
ω
U I

											· ·						
	Port	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Ton	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PB0	-	TIM1_CH2N	TIM3_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK/ I2S3_CK	-	-	I2C2_SDA	-	-	-	-	-	EVENT OUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_ MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1 _MOSI	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT
Port B	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	-	-	-	EVENT OUT
	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	-	-	-	SDIO_ D4	-	-	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	SDIO_ D5	-	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB15	RTC_ REFN	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT

 Table 9. Alternate function mapping (continued)

STM32F401xD STM32F401xE

Pinouts and pin description

5

4
<u>%</u>
3
Οī

											,						
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
Port	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PD0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	SDIO_ CMD	-	-	EVENT OUT
	PD3	-	-	-	-	-	SPI2_SCK/ I2S2_CK	-	USART2_ CTS		-	-	-	-	-	-	EVENT OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS		-	-	-	-	-	-	EVENT OUT
	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_MOSI /I2S3_SD	-	USART2_ RX	-	-	-	-	-	-	-	EVENT OUT
Q	PD7	-	-	-	-	-	-	-	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
Port D	PD8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

STM32F401xD STM32F401xE

Pinouts and pin description

_					Т	able 9. A	lternate f	unction ma	apping (c	ontinue	d)						
	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15	
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PHO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

6.3 Operating conditions

6.3.1 General operating conditions

Table 14	General	operating	conditions
----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
£		Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x01	0	-	60	
f _{HCLK}	Internal AHB clock frequency	Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x10	0	-	84	MHz
f _{PCLK1}	Internal APB1 clock frequency		0	-	42	
f _{PCLK2}	Internal APB2 clock frequency		0	-	84	
V_{DD}	Standard operating voltage		1.7 ⁽¹⁾	-	3.6	
V _{DDA} (2)(3)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $V_{DD}^{(4)}$	1.7 ⁽¹⁾	-	2.4	
(2)(3)	Analog operating voltage ADC limited to 2.4 M samples)		2.4	-	3.6	
V _{BAT}	Backup operating voltage		1.65	-	3.6	
M	Regulator ON: 1.2 V internal	VOS[1:0] bits in PWR_CR register = 0x01 Max frequency 60 MHz	1.08 ⁽⁵⁾	1.14	1.20 ⁽⁵⁾	V
V ₁₂	voltage on V_{CAP_1}/V_{CAP_2} pins	tage on V _{CAP_1} /V _{CAP_2} pins VOS[1:0] bits in PWR_CR register = 0x10 Max frequency 84 MHz		1.26	1.32 ⁽⁵⁾	
	Regulator OFF: 1.2 V external	Max. frequency 60 MHz.	1.1	1.14	1.2	
V ₁₂	voltage must be supplied on V_{CAP_1}/V_{CAP_2} pins	Max. frequency 84 MHz.	1.2	1.26	1.32	
	Input voltage on RST and FT	$2 \text{ V} \leq \text{ V}_{DD} \leq 3.6 \text{ V}$	-0.3	-	5.5	
V_{IN}	pins ⁽⁶⁾	$V_{DD} \leq 2 V$	-0.3	-	5.2	
	Input voltage on BOOT0 pin		0	-	9	
		UFQFPN48	-	-	625	
		WLCSP49	-	-	392	mW
PD	Maximum allowed package power dissipation for suffix 7 ⁽⁷⁾	LQFP64	-	-	313	
	The second s	LQFP100	-	-	465	
		UFBGA100	-	-	323	

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage @ 3.3V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19		
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08		
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37		
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25		
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51		
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39		
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65		
M	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V	
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V	
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71		
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99		
		PLS[2:0]=101 (falling edge)	2.65	2.84	3.02		
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10		
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99		
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21		
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09		
V _{PVDhyst} ⁽²⁾	PVD hysteresis		-	100	-	mV	
	Power-on/power-down	Falling edge	1.60 ⁽¹⁾	1.68	1.76	v	
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	v	
V _{PDRhyst} ⁽²⁾	PDR hysteresis		-	40	-	mV	
	Brownout level 1	Falling edge	2.13	2.19	2.24		
V _{BOR1}	threshold	Rising edge	2.23	2.29	2.33		
N/	Brownout level 2	Falling edge	2.44	2.50	2.56	V	
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V	
V	Brownout level 3	Falling edge	2.75	2.83	2.88		
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	1	
V _{BORhyst} ⁽²⁾	BOR hysteresis		-	100	-	mV	
T _{RSTTEMPO} (2)(3)	POR reset timing		0.5	1.5	3.0	ms	

Table 22. Typical and maximum current consumption in run mode, code with data processing	
(ART accelerator enabled except prefetch) running from Flash memory- V _{DD} = 1.7 V	

Symbol Paramet			£			Max ⁽¹⁾		
	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			84	23.2	24.5	25.6	26.6	
			60	15.1	16.3	17.4	18.4	-
		External clock, all peripherals enabled ⁽²⁾⁽³⁾	40	10.8	12.1	13.2	14.2	
		- F- F	30	8.8	10.0	11.1	12.2	
	Supply current		20	6.9	8.0	9.0	10.1	mA
	in Run mode		84	12.3	13.6	14.7	15.7	
		External clock, all peripherals disabled ⁽³⁾	60	8.2	9.4	10.5	11.5	
			40	6.0	7.3	8.3	9.4	
			30	4.9	6.2	7.2	8.3	
			20	4.0	5.1	6.1	7.2	

1. Guaranteed by characterization, not tested in production unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

Table 23. Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - V_{DD} = 3.3 V

			f		Max ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			84	23.4	24.7	25.8	26.8	
Supply currer I _{DD} in Run mode		External clock, all peripherals enabled ⁽²⁾⁽³⁾	60	15.3	16.5	17.6	18.6	
			40	11.0	12.3	13.4	14.4	
			30	9.0	10.2	11.3	12.4	
	Supply current		20	7.1	8.2	9.2	10.3	mΔ
	in Run mode		84	12.5	13.8	14.9	12.4 10.3 15.9	
		External clock, all peripherals disabled ⁽³⁾		60	8.4	9.6	10.7	IA = 105 °C 26.8 18.6 14.4 12.4 10.3
			40	6.2	7.5	8.5	9.6	
			30	5.1	6.4	7.4	8.5	
			20	4.2	5.3	6.3	7.4	

1. Guaranteed by characterization, not tested in production unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

Perip	heral	I _{DD} (typ)	Unit
	TIM1	5.71	
	TIM9	2.86	-
	TIM10	1.79	
	TIM11	2.02	
	ADC1 ⁽²⁾	2.98	
APB2 (up to 84MHz)	SPI1	1.19	µA/MHz
	USART1	3.10	
	USART6	2.86	-
	SDIO	5.95	-
	SPI4	1.31	
	SYSCFG	0.71	

1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.

2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 34* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

Table 34. Low-power mode wakeup timings ⁽¹⁾	Table 34	ower	Low-	mode	wakeup	timings ⁽¹⁾
--	----------	------	------	------	--------	------------------------

Symbol	Parameter		Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep mode		4	6	CPU clock cycle
t _{WUSTOP} ⁽²⁾	Wakeup from Stop mode, usage of main regulator	-	13.5	14.5	
	Wakeup from Stop mode, usage of main regulator, Flash memory in Deep power down mode	-	105	111	
	Wakeup from Stop mode, regulator in low power mode	-	21	33	μs
	Wakeup from Stop mode, regulator in low power mode, Flash memory in Deep power down mode	-	113	130	
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	-	314	407	μs

1. Guaranteed by characterization, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ maximum value is given at -40 °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	113
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾		-	5	-	pF
DuCy _(LSE)	Duty cycle		30	-	70	%
ΙL	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 36. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

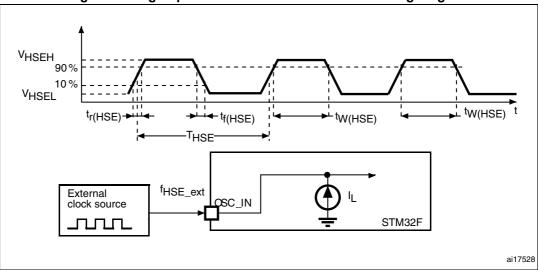


Figure 22. High-speed external clock source AC timing diagram

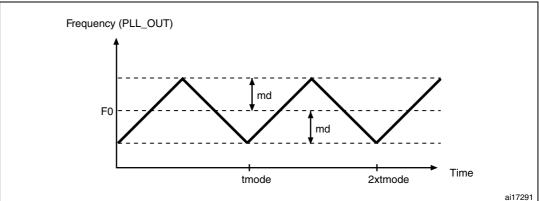
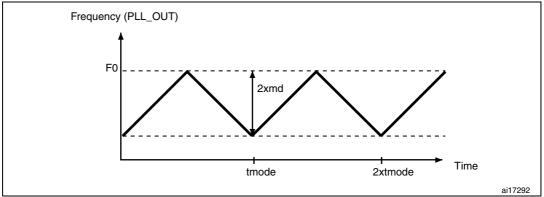


Figure 28 and *Figure 29* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.


 T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Table 44.	Flash	memory	characteristics
	1 14311	III CIII CI Y	onuluotonotioo

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}		Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V _{DD} = 3.3 V	-	12	-	

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4	
t _{ERASE128KB}		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	S
		Program/erase parallelism (PSIZE) = x 32	-	1	2	
		Program/erase parallelism (PSIZE) = x 8	-	8	16	
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	5.5	11	s
		Program/erase parallelism (PSIZE) = x 32	-	4	8	
		32-bit program operation	2.7	-	3.6	V
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V
		8-bit program operation	1.7	-	3.6	V

Table 45. Flash memory programming

1. Guaranteed by characterization, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	1.750	-	s

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/84 MHz	Unit
	{EMI} Peak level	ak level V{DD} = 3.6 V, T _A = 25 °C, conforming to IEC61967-2	0.1 to 30 MHz	-4	
6			30 to 130 MHz	-4	dBµV
SEMI			130 MHz to 1 GHz	-2	
			SAE EMI Level	1.5	-

Table 49. EMI characteristics for WLCSP49

Table 50. EMI characteristics for LQFP100

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/84 MHz	Unit
			0.1 to 30 MHz	19	
6	Deels level	V_{DD} = 3.6 V, T _A = 25 °C, conforming to	30 to 130 MHz	19	dBµV
S _{EMI}	Peak level	IEC61967-2	130 MHz to 1 GHz	11	
			SAE EMI Level	3.5	-

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

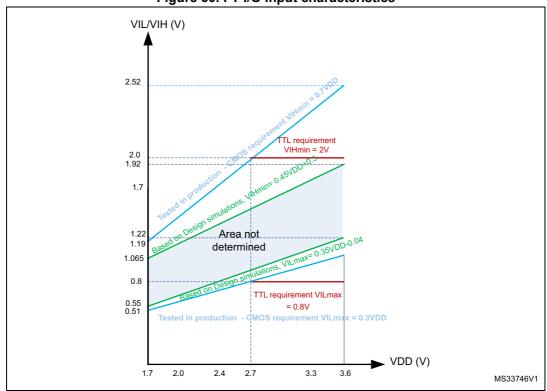
		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on BOOT0 pin	-0	NA	
	Injected current on NRST pin	-0	NA	
	Injected current on PB3, PB4, PB5, PB6, PB7, PB8, PB9, PC13, PC14, PC15, PH1, PDR_ON, PC0, PC1,PC2, PC3, PD1, PD5, PD6, PD7, PE0, PE2, PE3, PE4, PE5, PE6	-0	NA	mA
	Injected current on any other FT pin	-5	NA	
	Injected current on any other pins	-5	+5	

Table 53. I/O current in	jection susce	ptibility ⁽¹⁾
--------------------------	---------------	--------------------------

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.16 I/O port characteristics


General input/output characteristics

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
V _{IL}	FT, and NRST I/O input low	17//// 28//			0.35V _{DD} -0.04 ⁽¹⁾					
	level voltage	1.7 V≤ V _{DD} ≤ 3.6 V	-	-	0.3V _{DD} ⁽²⁾					
	BOOT0 I/O input low level voltage	$1.75 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ -40 °C $\le \text{T}_{A} \le 105 \text{ °C}$	-	-		V				
		$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V},$ 0 °C ≤ T _A ≤ 105 °C	-	-	0.1V _{DD} +0.1					
	FT and NRST I/O input high level voltage ⁽⁵⁾ BOOT0 I/O input high level	$\begin{array}{c} 1.7 \ V {\leq} \ V_{DD} {\leq} \ 3.6 \ V \\ \\ 1.75 \ V {\leq} \ V_{DD} {\leq} \ 3.6 \ V, \\ -40 \ ^{\circ}C {\leq} \ T_A {\leq} \ 105 \ ^{\circ}C \end{array}$	0.45V _{DD} +0.3 ⁽¹⁾	-	-					
			0.4V _{DD} ⁽²⁾							
V _{IH}			0.17V _{DD} +0.7 ⁽¹⁾	_	_	V				
	voltage	$1.7 V \le V_{DD} \le 3.6 V$, 0 °C $\le T_A \le 105 °C$	0.17 0.7	_						

Table	54	1/0	static	characteristics
lable	54.	1/0	้อเลเเบ	characteristics

Figure 30. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ± 3 mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 12*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 12*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

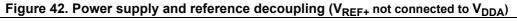
STM32F401xD STM32F401xE

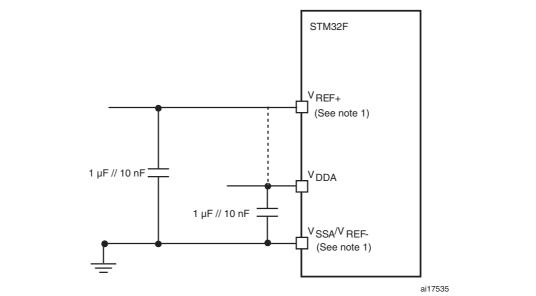
OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
			C _L = 50 pF, V _{DD} ≥ 2.70 V	-	-	25	
	f	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	12.5	MHz
	^I max(IO)out		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	50	
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	20	
01			C _L = 50 pF, V _{DD} ≥2.7 V	-	-	10	
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C _L = 50 pF, V _{DD} ≥ 1.7 V	-	-	20	ne
	t _{r(IO)out}	level rise time	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	6	ns
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	10	
			C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	50 ⁽⁴⁾	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	25	MHz
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾	
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾	
10	^t f(IO)out [/] ^t r(IO)out	$t_{f(IO)out}'$ Output high to low level fall time and output low to high level rise time	C _L = 40 pF, V _{DD} ≥ 2.70 V	-	-	6	ns
			C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10	
			C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	4	
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6	
			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	100 ⁽⁴⁾	
	F	Maximum fraguena (3)	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	50 ⁽⁴⁾	1
	rmax(IO)out	Maximum frequency ⁽³⁾	C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	180 ⁽⁴⁾	MHz
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	100 ⁽⁴⁾	
11			C _L = 30 pF, V _{DD} ≥ 2.70 V	-	-	4	
	t _{f(IO)out} /	Output high to low level fall	C _L = 30 pF, V _{DD} ≥ 1.7 V	-	-	6	
	t _{r(IO)out}		C _L = 10 pF, V _{DD} ≥ 2.70 V	-	-	2.5	ns
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	4	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	-	ns

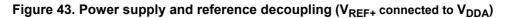
Table 56. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

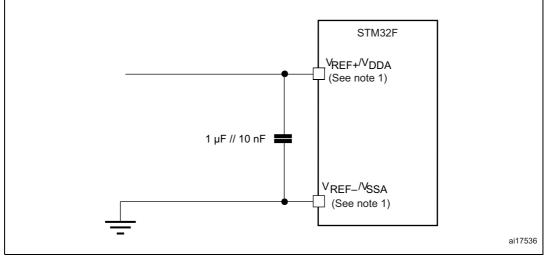
1. Guaranteed by characterization, not tested in production.

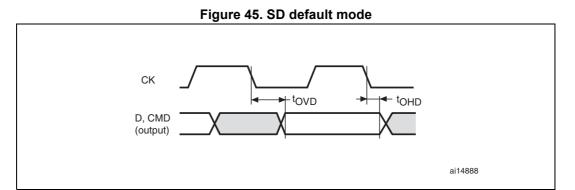
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.


3. The maximum frequency is defined in *Figure 31*.


4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.


General PCB design guidelines


Power supply decoupling should be performed as shown in *Figure 42* or *Figure 43*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.


1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

Table 77. Dynamic characteristics: SD / MMC characteristics ⁽¹⁾⁽²⁾									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
f _{PP}	Clock frequency in data transfer mode		0	-	48	MHz			
-	SDIO_CK/fPCLK2 frequency ratio		-	-	8/3	-			
t _{W(CKL)}	Clock low time	fpp = 48MHz	8.5	9	-				
t _{W(CKH)}	Clock high time	fpp = 48MHz	8.3	10	-	– ns			
CMD, D inp	outs (referenced to CK) in MMC and SE) HS mode							
t _{ISU}	Input setup time HS	fpp = 48MHz	3.5	-	-				
t _{IH}	Input hold time HS	fpp = 48MHz	0	-	-	ns			
CMD, D ou	tputs (referenced to CK) in MMC and S	D HS mode							
t _{OV}	Output valid time HS	fpp = 48MHz	-	4.5	7				
t _{OH}	Output hold time HS	fpp = 48MHz	3	-	-	ns			
CMD, D inp	outs (referenced to CK) in SD default m	node							
t _{ISUD}	Input setup time SD	fpp = 24MHz	1.5	-	-				
t _{IHD}	Input hold time SD	fpp = 24MHz	0.5	-	-	ns			
CMD, D ou	tputs (referenced to CK) in SD default	mode							
t _{OVD}	Output valid default time SD	fpp =24MHz	-	4.5	6.5				
t _{OHD}	Output hold default time SD	fpp =24MHz	3.5	-	-	- ns			

Table 77. Dynamic characteristics: SD / MMC characteristics⁽¹⁾⁽²⁾

1. Data based on characterization results, not tested in production.

2. V_{DD} = 2.7 to 3.6 V.

6.3.25 RTC characteristics

Table 78. RTC characteristics

Syı	mbol	Parameter	Conditions	Min	Max
	-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

