

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401rdt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Periph	nerals	S	TM32F401	٢D	S	TM32F401x	E	
Flash memory in k	Kbytes		384			512		
SRAM in Kbytes	System				96			
Timers	General- purpose				7			
Timers	Advanced- control				1			
	SPI/ I ² S	3/2 (full o	luplex)	4/2 (full duplex)	3/2 (full o	4/2 (full duplex)		
Communication	l ² C			3				
Internaces	USART				3			
	SDIO	-		1	-		1	
USB OTG FS					1			
GPIOs		36	50	81	36	50	81	
12-bit ADC					1			
Number of channe	ls	10		16	10		16	
Maximum CPU fre	quency			84	MHz			
Operating voltage				1.7 1	to 3.6 V			
		A	Ambient ten	nperatures: –4	40 to +85 °C/	40 to +105 °	С	
Operating tempera	atures		Junc	ction temperat	ure: -40 to + 1	125 °C		
Package		WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	

Table 2. STM32F401xD/xE features and peripheral counts

Figure 2. Compatible board design for LQFP64 package

Figure 3. STM32F401xD/xE block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 42 MHz.

3.4 Embedded Flash memory

The devices embed 512 Kbytes of Flash memory available for storing programs and data.

3.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All devices embed:

 96 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

The RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{BAT} pin.

3.17 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/ tamper/ time stamp events).

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event occurs.

Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.18 V_{BAT} operation

The VBAT pin allows to power the device V_{BAT} domain from an external battery, an external super-capacitor, or from V_{DD} when no external battery and an external super-capacitor are present.

 V_{BAT} operation is activated when V_{DD} is not present.

The VBAT pin supplies the RTC and the backup registers.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from V_{BAT} operation. When PDR_ON pin is not connected to V_{DD} (internal Reset OFF), the V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD} .

4 Pinouts and pin description

1. The above figure shows the package bump side.

Figure 13. STM32F401xD/xE LQFP100 pinout

1. The above figure shows the package top view.

	Pir	n Nur	nber				e			
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structu	Notes	Alternate functions	Additional functions
13	E4	17	26	L3	PA3	I/O	FT	-	USART2_RX, TIM2_CH4, TIM5_CH4, TIM9_CH2, EVENTOUT	ADC1_IN3
-	-	18	27	-	VSS	S	-	-	-	-
-	-	19	28	-	VDD	s	-	-	-	-
-	-	-	-	E3	BYPASS_ REG	I	FT	-	-	-
14	G6	20	29	М3	PA4	I/O	FT	-	SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, EVENTOUT	ADC1_IN4
15	F5	21	30	K4	PA5	I/O	FT	-	SPI1_SCK, TIM2_CH1/TIM2_ETR, EVENTOUT	ADC1_IN5
16	F4	22	31	L4	PA6	I/O	FT	-	SPI1_MISO, TIM1_BKIN, TIM3_CH1, EVENTOUT	ADC1_IN6
17	F3	23	32	M4	PA7	I/O	FT	-	SPI1_MOSI, TIM1_CH1N, TIM3_CH2, EVENTOUT	ADC1_IN7
-	-	24	33	K5	PC4	I/O	FT	-	EVENTOUT	ADC1_IN14
-	-	25	34	L5	PC5	I/O	FT	-	EVENTOUT	ADC1_IN15
18	G5	26	35	M5	PB0	I/O	FT	-	TIM1_CH2N, TIM3_CH3, EVENTOUT	ADC1_IN8
19	G4	27	36	M6	PB1	I/O	FT	-	TIM1_CH3N, TIM3_CH4, EVENTOUT	ADC1_IN9
20	G3	28	37	L6	PB2	I/O	FT	-	EVENTOUT	BOOT1
-	-	-	38	M7	PE7	I/O	FT	-	TIM1_ETR, EVENTOUT	-
-	-	-	39	L7	PE8	I/O	FT	-	TIM1_CH1N, EVENTOUT	-
-	-	-	40	M8	PE9	I/O	FT	-	TIM1_CH1, EVENTOUT	-
-	-	-	41	L8	PE10	I/O	FT	-	TIM1_CH2N, EVENTOUT	-
-	-	-	42	M9	PE11	I/O	FT	-	SPI4_NSS, TIM1_CH2, EVENTOUT	-
-	-	-	43	L9	PE12	I/O	FT	-	SPI4_SCK, TIM1_CH3N, EVENTOUT	-
-	-	-	44	M10	PE13	I/O	FT	-	SPI4_MISO, TIM1_CH3, EVENTOUT	-

Table 8. STM32F401xD/xE pin definitions (continued)

5

DocID025644 Rev 3

4
6/1
35

	Deut	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO		AF14	
	PB0	-	TIM1_CH2N	TIM3_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB3	JTDO- SWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK/ I2S3_CK	-	-	I2C2_SDA	-	-	-	-	-	EVENT OUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_ MISO	SPI3_MISO	I2S3ext_S D	-	I2C3_SDA	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_ SMBA	SPI1 _MOSI	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_ TX	-	-	-	-	-	-	-	EVENT OUT
Port B	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	-	-	-	EVENT OUT
	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	-	-	-	SDIO_ D4	-	-	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	SDIO_ D5	-	-	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_ SMBA	SPI2_NSS/I 2S2_WS	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	-	-	SPI2_MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PB15	RTC_ REFN	TIM1_CH3N	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT

 Table 9. Alternate function mapping (continued)

STM32F401xD STM32F401xE

Pinouts and pin description

	Table 9. Alternate function mapping (continued)																
	Port	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	FOIL	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
I	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
Por	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 11: Voltage characteristics*, *Table 12: Current characteristics*, and *Table 13: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit	
$V_{DD}-V_{SS}$	External main supply voltage (including $V_{DDA^{\rm ,}}V_{DD}$ and $V_{BAT})^{(1)}$	-0.3	4.0		
V _{IN}	Input voltage on FT pins ⁽²⁾	V _{SS} -0.3	V _{DD} +4.0	V	
	Input voltage on any other pin	V _{SS} -0.3	4.0		
	Input voltage for BOOT0	V_{SS}	9.0		
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	m\/	
$ V_{SSX} - V_{SS} $	Variations between all the different ground pins	-	50	mv	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio Absolute n ratings (ele sensitivity)	ee Section 6.3.14: Absolute maximum atings (electrical sensitivity)		

Table 11. Voltage characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to *Table 12* for the values of the maximum allowed injected current.

Symbol				Тур		Ma			
	Parameter	Conditions ⁽¹⁾	Т	a = 25 °	С	T _A = 85 °C	T _A = 105 °C	Unit	
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} =	$ \begin{array}{c} \mathbf{x}^{(2)} \\ \mathbf{T}_{A} = \\ \mathbf{105 \ °C} \\ = 3.6 \ V \\ \hline 5.0 \\ 4.0 \\ \end{array} $		
	Backup	Low-speed oscillator (LSE) and RTC ON	0.66	0.76	0.97	3.0	5.0		
^I DD_VBAT	current	RTC and LSE OFF	0.1	0.1	0.1	2.0	4.0	μA	

Table 31. Typical and maximum current consumptions in V_{BAT} mode

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a C_{L} of 6 pF for typical values.

2. Guaranteed by characterization, not tested in production.

Figure 21. Typical V_{BAT} current consumption (LSE and RTC ON)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is

DocID025644 Rev 3

Figure 27. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	S	Min	Тур	Max	Unit	
f _{PLL_IN}	PLL input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz	
f _{PLL_OUT}	PLL multiplier output clock			24	-	84	MHz	
f _{PLL48_OUT}	48 MHz PLL multiplier output clock			-	48	75	MHz	
f _{VCO_OUT}	PLL VCO output			192	-	432	MHz	
t, ook	PLL lock time	VCO freq = 192 N	75	-	200	116		
LOCK		VCO freq = 432 N	100	-	300	μο		
			RMS	-	25	-		
littor ⁽³⁾	Cycle-to-cycle jitter	System clock	peak to peak	-	±150	-	ps	
JILLEI		84 MHz	RMS	-	15	-		
	Period Jitter		peak to peak	-	±200	-		

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit								
V _{prog}	Programming voltage		2.7	-	3.6	V								
V _{PP}	V _{PP} voltage range		7	-	9	V								
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin		10	-	-	mA								
t _{VPP} ⁽³⁾	Cumulative time during which V _{PP} is applied		-	-	1	hour								

Table 46. Flash memory programming with V_{PP} voltage (continued)

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol Baramotor		Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 47. Flash memory endurance and data retention

1. Guaranteed by characterization, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	-0	NA	
I _{INJ}	Injected current on NRST pin	-0	NA	
	Injected current on PB3, PB4, PB5, PB6, PB7, PB8, PB9, PC13, PC14, PC15, PH1, PDR_ON, PC0, PC1,PC2, PC3, PD1, PD5, PD6, PD7, PE0, PE2, PE3, PE4, PE5, PE6	-0	NA	mA
	Injected current on any other FT pin	-5	NA	
	Injected current on any other pins	-5	+5	

Fable 53. I/O current in	njection susce	ptibility ⁽¹⁾
--------------------------	----------------	--------------------------

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.16 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under the conditions summarized in *Table 14*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	FT, and NRST I/O input low	17//// / 36//			0.35V _{DD} -0.04 ⁽¹⁾	
	level voltage	$1.7 \text{ v} \le \text{v}_{\text{DD}} \le 3.0 \text{ v}$	-	-	0.3V _{DD} ⁽²⁾	
V _{IL}		$1.75 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$	-	-	0.1Vpp+0.1	V
	BOOT0 I/O input low level	-40 °C≤ T _A ≤ 105 °C				
	voltage	1.7 V≤ V _{DD} ≤ 3.6 V, 0 °C≤ T _A ≤ 105 °C	-	-		
	FT and NRST I/O input high		0.45V _{DD} +0.3 ⁽¹⁾	-	-	
	level voltage ⁽⁵⁾	1.7 v≤ v _{DD} ≤ 3.0 v	0.4V _{DD} ⁽²⁾			
V _{IH}		$1.75 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$				v
	BOOT0 I/O input high level	-40 °C≤ T _A ≤ 105 °C	$0.17V_{pp}+0.7^{(1)}$	_		
	voltage	$1.7 V \le V_{DD} \le 3.6 V$, 0 °C $\le T_A \le 105 °C$				

Table	54	1/0	static	characteristics
lane	54.	"U	้อเฉเเบ	Characteristics

٦

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 61* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode, SPI1/4, 2.7 V < V _{DD} < 3.6 V		_	42	
		Slave mode, SPI1/4, 2.7 V < V _{DD} < 3.6 V			42	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave transmitter/full-duplex mode, SPI1/4, 2.7 V < V _{DD} < 3.6 V	-		38 ⁽²⁾	MHz
		Master mode, SPI1/2/3/4, 1.7 V < V _{DD} < 3.6 V			21	
		Slave mode, SPI1/2/3/4, 1.7 V < V _{DD} < 3.6 V			21	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time Master mode, SPI presc = 2		T _{PCLK} -1.5	T _{PCLK}	T _{PCLK} +1.5	ns
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	ns
t _{su(MI)}	Data input sotup timo	Master mode	0	-	-	ns
t _{su(SI)}		Slave mode	2.5	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	6	-	-	ns
t _{h(SI)}	Bata input noid time	Slave mode	2.5	-	-	ns
t _{a(SO})	Data output access time	Slave mode	9	-	20	ns
t _{dis(SO)}	Data output disable time	Slave mode	8	-	13	ns
		Slave mode (after enable edge), 2.7 V < V_{DD} < 3.6 V	-	9.5	13	ns
ι _{v(SO)}		Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	-	9.5	17	ns
t	Data output hold time	Slave mode (after enable edge), 2.7 V < V_{DD} < 3.6 V	5.5	-	-	ns
^ւ h(SO)		Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	3.5	-	-	ns

Table 61. SP	l d'	vnamic	characteristics ⁽	1))

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	fade =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 V$	64	64.2	-	
SNR	Signal-to-noise ratio	Input Frequency = 20 KHz	64	65	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	-67	-72	-	

Table 70. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions⁽¹⁾

1. Guaranteed by characterization, not tested in production.

Table 71. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
ENOB	Effective number of bits	fade = 36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	$V_{DDA} = V_{REF+} = 3.3 V$	66	67	-	
SNR	Signal-to noise ratio	Input Frequency = 20 KHz	64	68	-	dB
THD	Total harmonic distortion	Iemperature = 25 °C	-70	-72	-	

1. Guaranteed by characterization, not tested in production.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 42* or *Figure 43*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

7.1.2 UFQFPN48, 7 x 7 mm, 0.5 mm pitch package

Figure 49. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197

Table 81. UFQFPN48, 7 x 7 mm, 0.5 mm pitch, package mechanical data

9 Revision history

Date	Revision	Changes
16-Jan-2014	1	Initial release.
24-Feb-2014	2	Updated Flash memory size in <i>Table 2:</i> <i>STM32F401xD/xE features and peripheral counts.</i> Added alternate functions mapped on PCx, PDx and PEx GPIOS in <i>Table 9: Alternate function mapping</i>
22-Jan-2015	3	 Updated UFQFPN48 in Table 3: Regulator ON/OFF and internal power supply supervisor availability. Updated number of EXTI lines in Section 3.10: External interrupt/event controller (EXTI). Updated Table 54: I/O static characteristics Added WLCSP49 Figure 47: WLCSP49 0.4 mm pitch wafer level chip size recommended footprint and Table 80: WLCSP49 recommended PCB design rules (0.4 mm pitch). Updated Figure 48: Example of WLCSP49 marking (top view). Updated Figure 51: Example of UFQFPN48 marking (top view). Updated Figure 54: Example of LQFP64 marking (top view). Updated Figure 60: Example of UFBGA100 marking (top view). Added notes below all engineering sample marking schematics.

Table 88. Document revision history

