

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LPC, SCI
Peripherals	POR, PWM, WDT
Number of I/O	114
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TQFP
Supplier Device Package	144-TQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r4f2113nft-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(10) PCS0 to PSC3 (Port CS) (V850ES/SA2) ... 3-state I/O PCS0 to PCS5 (Port CS) (V850ES/SA3) ... 3-state I/O

[V850ES/SA2]

Port CS is a 4-bit I/O port that can be set to the input or output mode in 1-bit units. Besides functioning as I/O port pins, in the control mode PCS0 to PSC3 also operate as the control signal output pins when the memory and peripheral I/O are expanded externally.

(a) Port mode

PCS0 to PSC3 can be set to the input or output mode in 1-bit units by using port mode register CM (PMCS).

(b) Control mode

(i) $\overline{CS0}$ to $\overline{CS3}$ (chip select) ... Output

executed, and inactive in the idle state (TI).

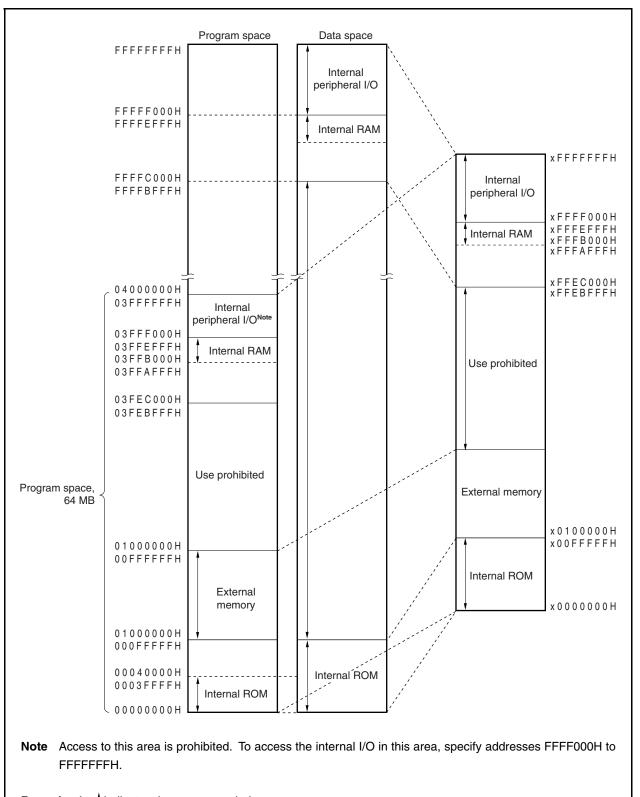
These are the chip select signals for the SRAM, external ROM, and external peripheral I/O area. The $\overline{\text{CSn}}$ signal is assigned to memory block n (n = 0 to 3). Each of these signals is active while the bus cycle accessing the corresponding memory block is being

[V850ES/SA3]

Port CS is an 8-bit I/O port that can be set to the input or output mode in 1-bit units.

Besides functioning as I/O port pins, in the control mode PCS0 to PSC3 also operate as the control signal output pins when the memory and peripheral I/O are expanded externally.

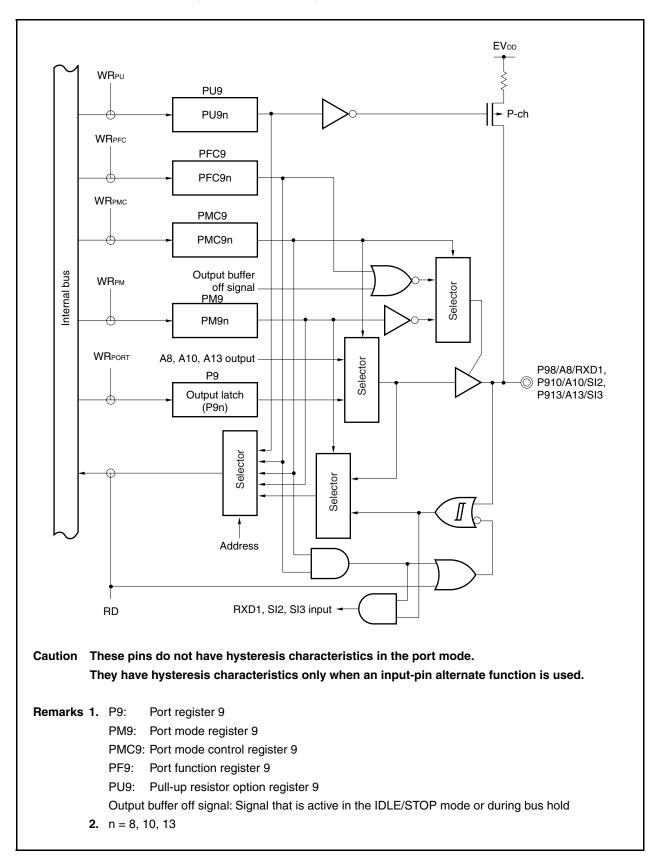
(a) Port mode


PCS0 to PCS7 can be set to the input or output mode in 1-bit units by using port mode register CS (PMCS).

(b) Control mode

(i) $\overline{CS0}$ to $\overline{CS3}$ (chip select) ... Output

These are the chip select signals for the SRAM, external ROM, and external peripheral I/O area. The $\overline{\text{CSn}}$ signal is assigned to memory block n (n = 0 to 3).


Each of these signals is active while the bus cycle accessing the corresponding memory block is being executed, and inactive in the idle state (TI).

Remarks 1. indicates the recommended area.

2. This figure is the recommended memory map of the μ PD703204.

4.3.13 Port DL

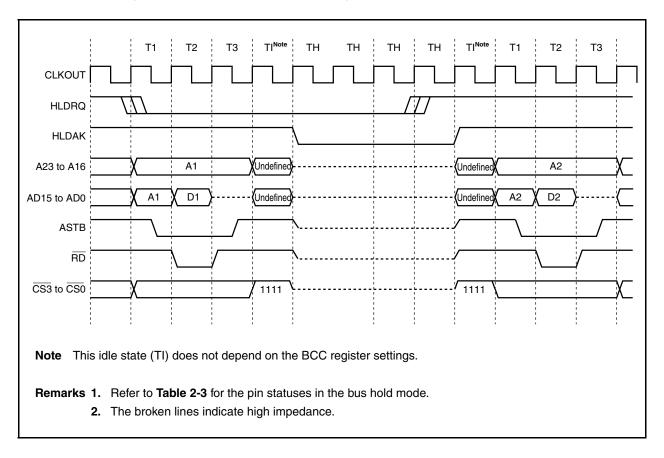
Port DL can be set to the input or output mode in 1-bit units. The number of I/O port bits of each product is the same.

Commercial Name	Number of I/O Port Bits
V850ES/SA2	16-bit I/O port
V850ES/SA3	16-bit I/O port

(1) Functions of port DL

○ Input/output data can be specified in 1-bit units by using port register DL (PDL).

- Can be set to the input or output mode in 1-bit units by using port mode register DL (PMDL).
- Can be set to the port mode or control mode (alternate function) in 1-bit units by using port mode control register DL (PMCDL).


Port DL has an alternate function as the following pins.

Pin Na	ame	Alternate-Function Pin	I/O	PULL ^{Note 1}	Remark
Port DL	PDL0 AD0		I/O	None	-
	PDL1	AD1			
	PDL2	AD2			
	PDL3	AD3			
	PDL4	AD4			
	PDL5	AD5/FLMD1 ^{Note 2}			
	PDL6	AD6			
	PDL7	AD7			
	PDL8	AD8			
	PDLDL	AD9			
	PDL10	AD10			
	PDL11	AD11			
	PDL12	AD12			
	PDL13	AD13			
	PDL14	AD14			
	PDL15	AD15			

Table 4-17. Alternate-Function Pins of Port DL

Notes 1. Software pull-up function

 Because these pins are used for setting in the flash programming mode, they do not have to be manipulated by using a port control register. For details, refer to CHAPTER 21 FLASH MEMORY (μPD70F3201, 70F3201Y, 70F3204, and 70F3204Y only).

Figure 5-8. Multiplexed Bus Hold Timing (Bus Size: 16 Bits, 16-Bit Access)

6.2 Configuration

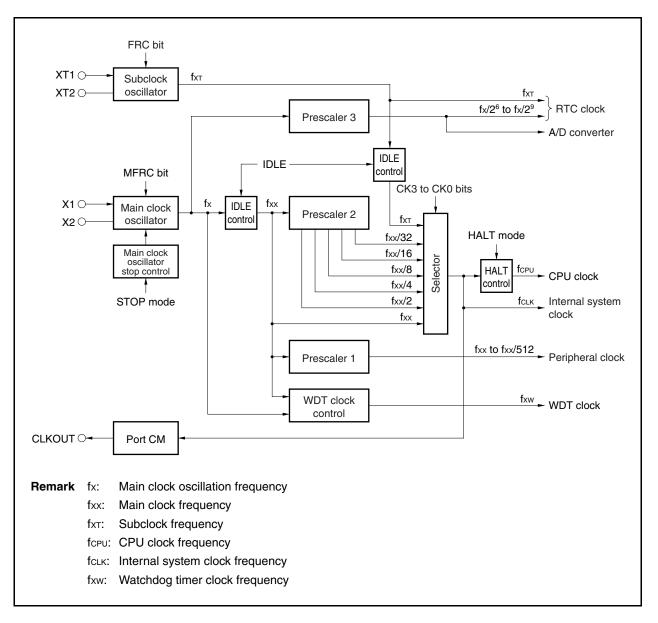


Figure 6-1. Clock Generator

(1) A/D converter mode register (ADM)

This register sets the conversion time of the analog input signal to be converted into a digital signal as well as conversion start and stop.

The ADM register can be read or written in 8-bit or 1-bit units.

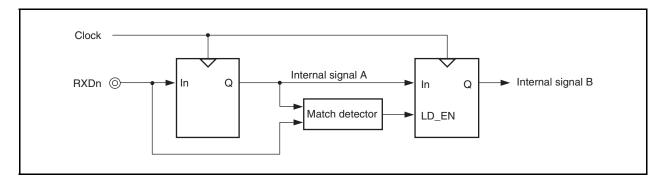
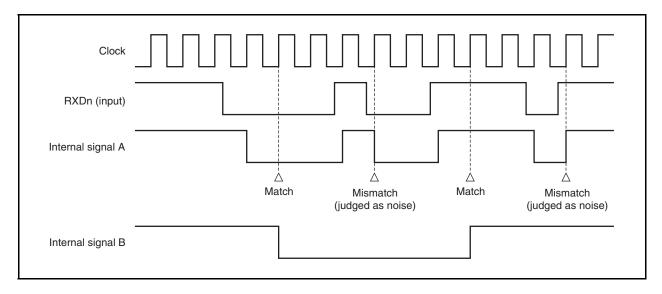
This register is cleared to 00H after reset.

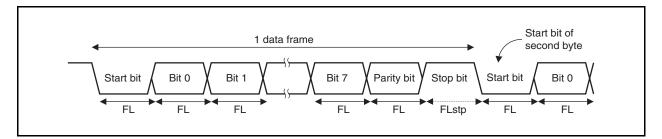
		_		-			<u>^</u>				
	4514	<7> ADCSB ^{Note 1}	6 0	5 FR3 ^{Note 2}	4 FB2 ^{Note 2}	3	2	1	0	1	
	ADM	ADCSBiole	0	FR3 ^{note 2}	FR2 ^{note 2}	FR1	FR0	0	0	J	
		ADCSNote 1		A/D conversion control							
		0	Stops co	nversion							
		1	Enables	conversion							
										-	
		FR3 ^{Note 2}	FR2 ^{Note 2}		Number of A	VD conve	rsion clocks	6			
		0	0	19 clocks	6						
		0	1	Setting p	rohibited						
		1	0	Setting p	rohibited						
		1	1	Setting prohibited							
				1						1	
		FR1	FR0		A/D co	onversion	clock				
		0	0	fxx/16							
		0	1	fxx/8							
		1	0	fxx/4							
		1	1	Clock of	prescaler 3	(fbrg)					
	To use fer	ag output a	is the cor	nversion c	lock of the					I-time count	
		gister 0 (R ⁻				out the fe	are clock i	n the IDI	E mode	To reduce t	
			-		-					6.5.1 (1)) a	
	-	-							,	, u	
			I register to 0. FR3 and FR2 bits to 00.								
	Be sure to	o clear the									
2.		o clear the									

(7) Receive data noise filter

The RXDn signal is sampled at the rising edge of the prescaler output base clock (Clock). If the same sampling value is obtained twice, the match detector output changes, and this output is sampled as input data. Therefore, data not exceeding one clock width is judged to be noise and is not delivered to the internal circuit (see **Figure 13-12**). Refer to **13.6 (1) (a) Base clock (Clock)** regarding the base clock.

Also, since the circuit is configured as shown in Figure 13-11, internal processing during a receive operation is delayed by up to 2 clocks according to the external signal status.


Figure 13-12. Timing of RXDn Signal Judged as Noise

(5) Transfer rate during continuous transmission

During continuous transmission, the transfer rate from a stop bit to the next start bit is extended two clocks of the base clock (Clock) longer than normal. However, on the reception side, the transfer result is not affected since the timing is initialized by the detection of the start bit.

Representing the 1-bit data length by FL, the stop bit length by FLstp, and the base clock frequency by fcksr yields the following equation.

FLstp = FL + 2/fcksr

Therefore, the transfer rate during continuous transmission is as follows.

Transfer rate = 11 × FL + 2/fcksr

14.1.2 Switching modes between CSI1 and UART0

CSI1 and UART0 of the V850ES/SA2 and V850ES/SA3 share pins, and therefore these interfaces cannot be used at the same time. Select CSI1 or UART0 in advance by using port mode control register 3 (PMC3) and port function control register 3 (PFC3) (refer to **4.3.3 Port 3**).

Caution CSI1 or UART0 transmission/reception operations are not guaranteed if the mode is changed during transmission or reception. Be sure to disable the operation of the unit that is not used.

After res	set: 00H	R/W	Address: F	FFFF446H	4			
	7	6	5	4	3	2	1	0
PMC3	0	0	0	0	0	PMC32	PMC31	PMC30
After res	set: 00H	R/W	Address: F	FFFF466H	ł			
	7	6	5	4	3	2	1	0
PFC3	0	0	0	0	0	0	PFC31	PFC30
	PMO	C3n	PFC3n		Operat	tion mode		
	C)	×	Port I/C) mode			
	1		0	CSI1 m	ode			1
	1		1	UART0	mode			7
		÷						
Remarks 1. n = 0, 1	1							
2. × = Do	n't care							

Figure 14-2. Selecting CSI1 or UART0 Mode

14.2 Configuration

CSIn is controlled by the clocked serial interface mode register (CSIMn). Transmit/receive data can be written to or read from the SIOn register.

(1) Clocked serial interface mode register n (CSIMn)

The CSIMn register is an 8-bit register for specifying the operation of CSIn.

(2) Clocked serial interface clock selection register n (CSICn)

The CSICn register is an 8-bit register for controlling the transmit operation of CSIn.

(3) Serial I/O shift register n (SIOn)

The SIOn register is an 8-bit register for converting between serial data and parallel data. SIOn is used for both transmission and reception.

Data is shifted in (reception) or shifted out (transmission) beginning at either the MSB side or the LSB side. Actual transmit/receive operations are controlled by reading or writing SIOn.

CKSn2	CKSn1	CKSn0		Baud Rate (bps)									
			20 MHz Operation	17 MHz Operation	13.5 MHz Operation	10 MHz Operation	8 MHz Operation	4 MHz Operation					
0	0	0	Setting prohibited	Setting prohibited	Setting prohibited	5,000,000	4,000,000	2,000,000					
0	0	1	5,000,000	4,250,000	3,375,000	2,500,000	2,000,000	1,000,000					
0	1	0	2,500,000	2,125,000	1,687,500	1,250,000	1,000,000	500,000					
0	1	1	1,250,000	1,062,500	843,750	625,000	500,000	250,000					
1	0	0	625,000	531,250	421,875	312,500	250,000	125,000					
1	0	1	312,500	265,625	210,938	156,250	125,000	62,500					

(a) Transfer rate selection example

(2/4)

WREL	Wait cancellation control						
0	Wait not canceled						
1	Wait canceled. This setting is automaticall	y cleared after wait is canceled.					
Condition	n for clearing (WREL = 0) ^{Note}	Condition for setting (WREL = 1)					
AutomaAfter re	tically cleared after execution set	Set by instruction					

SPIE	Enable/disable generation of interrupt request when stop condition is detected						
0	Disabled						
1	Enabled						
Condition	n for clearing $(SPIE = 0)^{Note}$	Condition for setting (SPIE = 1)					
Cleared	d by instruction	Set by instruction					
 After re 	set						

WTIM	Control of wait and interrupt request generation								
0	Interrupt request is generated at the eighth clockÕs falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master								
		device.							
1	Interrupt request is generated at the eighth clockÕs falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.								
		device.							
master n device th signal is	node, a wait is ir nat has received	lid during an address tran serted at the falling edge a local address, a wait is he slave device has rece	nsfer and is valid as the transfer is completed. When in a of the ninth clock during address transfers. For a slave is inserted at the falling edge of the ninth clock after an \overline{AC} ived an extension code, a wait is inserted at the falling						
master n device th signal is edge of t	node, a wait is ir nat has received issued. When t	lid during an address tran nserted at the falling edge a local address, a wait is he slave device has rece	e of the ninth clock during address transfers. For a slave s inserted at the falling edge of the ninth clock after an \overrightarrow{AC}						

Note This flag's signal is invalid when IICE = 0.

(4) IIC function expansion register (IICX)

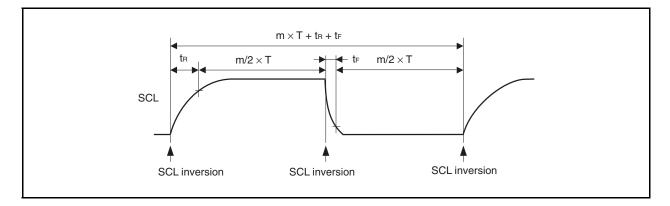
The IICX register is used to set the function expansion of I^2C (valid only in high-speed mode). The IICX register can be read or written in 8-bit or 1-bit units. Set the CLX bit in combination with the SMC, CL1, and CL0 bits of the IIC clock selection register (IICCL) (see **Table 15-2 Transfer Clock Setting**). This register is cleared to 00H after reset.

7 6 5 4 3 2 1 0 IICX 0 0 0 0 0 0 0 CLX	After res	et: 00H	R/W	Address: F	FFFFD85H	4			
IICX 0 0 0 0 0 0 0 CLX		7	6	5	4	3	2	1	0
	IICX	IICX 0		0	0	0	0	0	CLX

(5) I²C transfer clock setting method

The I²C transfer clock frequency (fscL) is calculated using the following expression.

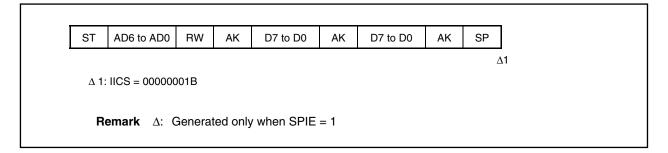
 $f_{SCL} = 1/(m \times T + t_R + t_F)$


m = 12, 18, 24, 48, 86, 88, 172 (see Table 15-2 Transfer Clock Setting.)

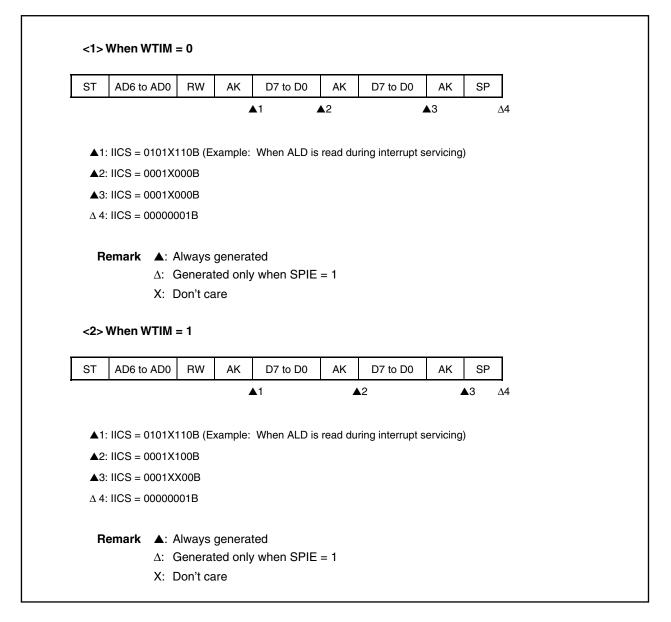
- T: 1/fxx
- tR: SCL rise time
- tF: SCL fall time

For example, the I²C transfer clock frequency (fscL) when fxx = 16 MHz, m = 172, $t_R = 200$ ns, and $t_F = 50$ ns is calculated using the following expression.

 $f_{SCL} = 1/(172 \times 62.5 \text{ ns} + 200 \text{ ns} + 50 \text{ ns}) \cong 90.9 \text{ kHz}$


Figure 15-4. I²C Transfer Clock Frequency (fscL)

The transfer clock is set using a combination of the SMC, CL1, and CL0 bits of IIC clock select register (IICCL), the CLX bit of IIC function expansion register (IICX).


(4) Operation without communication

(a) Start ~ Code ~ Data ~ Data ~ Stop

(5) Arbitration loss operation (operation as slave after arbitration loss)

(a) When arbitration loss occurs during transmission of slave address data

(e) When loss occurs due to stop condition during data transfer

ST	r ade	6 to AD0	RW	AK	D7 to Dn	SP		
	1		[1	▲1	1		
▲1: IICS = 1000X110B △ 2: IICS = 01000001B								
2								
	Rema	r k ≜ :/			ted / when SPIE	- 1		
			Don't ca			- 1		
		Dn =	= D6 to	D0				

(f) When arbitration loss occurs due to low-level data when attempting to generate a restart condition

15.7 Interrupt Request (INTIIC) Generation Timing and Wait Control

The setting of bit 3 (WTIM) of the IIC control register (IICC) determines the timing by which INTIIC is generated and the corresponding wait control, as shown below.

WTIM	Durii	ng Slave Device Ope	eration	During Master Device Operation			
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission	
0	9 ^{Notes 1, 2}	8 ^{Note 2}	8 ^{Note 2}	9	8	8	
1	9 ^{Notes 1, 2}	9 ^{Note 2}	9 ^{Note 2}	9	9	9	

Table 15-3. INTIIC Signal Generation Timing and Wait Control

Notes 1. The slave device's INTIIC signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to slave address register (SVA).

At this point, ACK is output regardless of the value set to bit 2 (ACKE) of the IICC register. For a slave device that has received an extension code, the INTIIC signal occurs at the falling edge of the eighth clock.

- 2. If the received address does not match the contents of slave address register (SVA), neither the INTIIC signal nor a wait occurs.
- **Remark** The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

(1) During address transmission/reception

- Slave device operation: The interrupt and wait timing are determined regardless of the WTIM bit.
- Master device operation: The interrupt and wait timing occur at the falling edge of the ninth clock regardless
 of the WTIM bit.

(2) During data reception

• Master/slave device operation: The interrupt and wait timing are determined according to the WTIM bit.

(3) During data transmission

• Master/slave device operation: The interrupt and wait timing are determined according to the WTIM bit.

(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting bit 5 (WREL) of the IIC control register (IICC) to 1
- By writing to the IIC shift register (IIC)
- By start condition setting (bit 1 (STT) of IIC control register (IICC) = 1)
- By stop condition setting (bit 0 (SPT) of IIC control register (IICC) = 1)

When an 8-clock wait has been selected (WTIM = 0), the output level of \overline{ACK} must be determined prior to wait cancellation.

(5) Stop condition detection

INTIIC signal is generated when a stop condition is detected.

16.3.3 DMA byte count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the byte transfer count for DMA channels n (n = 0 to 3). They store the remaining transfer count during DMA transfer.

These registers can be read or written in 16-bit units.

Remark If the DBCn register is read during DMA transfer after a terminal count has occurred without the register being overwritten, the value set immediately before the DMA transfer will be read out (0000H will not be read, even if DMA transfer has ended).

		DBC2 FFFF0C4H, DBC3 FFFF0C6H						
	15	14	13	12	11	10	9	8
DBCn	BC15	BC14	BC13	BC12	BC11	BC10	BC9	BC8
	7	6	5	4	3	2	1	0
	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
(n = 0 to 3)								
	BC15 to BC0		Byte transfer count setting or remaining byte transfer count during DMA transfer Byte transfer count 1 or remaining byte transfer count					
	0000H	Byte trar						
	0001H	Byte trar	Byte transfer count 2 or remaining byte transfer count					
	:	:						
	FFFFH	Puto tron	ofor count	65 526 (01		ning byte tr	anofor cou	nt

DC characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = \text{AV}_{DD} = \text{EV}_{DD} = 2.2 \text{ to } 2.7 \text{ V}, \text{ V}_{SS} = \text{AV}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(2/3)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply current ^{Note}	IDD1	Normal	$V_{DD} = 2.2$ to 2.7 V	@2 to 20 MHz		$0.8 \times f_{XX} + 2.5$	1.58 × fxx + 6.0	mA
		operation		fxx = 2 MHz		4.1	9.2	mA
V850ES/SA2		All peripheral functions		fxx = 4 MHz		5.7	12.3	mA
μPD70F3201,		operating		fxx = 8 MHz		8.9	18.6	mA
$\lfloor \mu$ PD70F3201Y \rfloor				fxx = 10 MHz		10.5	21.8	mA
				fxx = 12 MHz		12.1	25.0	mA
V850ES/SA3				fxx = 17 MHz		16.1	31.9	mA
(µPD70F3204,				fxx = 20 MHz		18.5	37.6	mA
<i>µ</i> PD70F3204Y ∫	IDD2	HALT mode	VDD = 2.2 to 2.7 V	@2 to 20 MHz		$0.37 \times f_{xx} + 2.0$	0.7 × fxx + 3.0	mA
		All peripheral		fxx = 2 MHz		2.7	4.4	mA
		functions		fxx = 4 MHz		3.5	5.8	mA
		operating		fxx = 8 MHz		5.0	8.6	mA
				fxx = 10 MHz		6.2	10.0	mA
				fxx = 12 MHz		6.9	11.4	mA
				fxx = 17 MHz		8.2	14.9	mA
				fxx = 20 MHz		9.4	17.0	mA
	Іррз	IDLE mode $V_{DD} = 2.2$ to 2.7 V		@2 to 20 MHz		40 × fxx + 300	70 × fxx + 500	μA
		RTC operation		fxx = 2 MHz		380	640	μA
				fxx = 4 MHz		460	780	μA
				fxx = 8 MHz		620	1060	μA
				fxx = 10 MHz		700	1200	μA
				fxx = 12 MHz		780	1340	μA
				fxx = 17 MHz		980	1690	μA
				fxx = 20 MHz		1100	1900	μA
	DD4	STOP mode	Sub oscillator,	T _A = 25°C		4	20	μA
			Only RTC operates	T _A = 85°C		-	60	μA
			Sub oscillator	T _A = 25°C		1	10	μA
			stopped (XT1 = Vss)	$T_A = 85^{\circ}C$		-	50	μA
	IDD5	Subclock operat	tion mode (fxr = 3	2.768 kHz)		150	250	μA
	DD6	Sub-IDLE mode (fxt = 32.768 kH		$T_A = 25^{\circ}C$		4	20	μA
		-	d, RTC operates	$T_A = 85^{\circ}C$		_	60	μA

Note The typical value of VDD is 2.5 V. The value does not include the current consumed at the output buffer.

Remark fxx: Main clock frequency (MHz)

Symbol	Name	Unit	Page
DDA1H	DMA destination address register 1H	DMAC	411
DDA1L	DMA destination address register 1L	DMAC	411
DDA2H	DMA destination address register 2H	DMAC	411
DDA2L	DMA destination address register 2L	DMAC	411
DDA3H	DMA destination address register 3H	DMAC	411
DDA3L	DMA destination address register 3L	DMAC	411
DMAIC0	Interrupt control register	INTC	441
DMAIC1	Interrupt control register	INTC	441
DMAIC2	Interrupt control register	INTC	441
DMAIC3	Interrupt control register	INTC	441
DSA0H	DMA source address register 0H	DMAC	410
DSA0L	DMA source address register 0L	DMAC	410
DSA1H	DMA source address register 1H	DMAC	410
DSA1L	DMA source address register 1L	DMAC	410
DSA2H	DMA source address register 2H	DMAC	410
DSA2L	DMA source address register 2L	DMAC	410
DSA3H	DMA source address register 3H	DMAC	410
DSA3L	DMA source address register 3L	DMAC	410
DTFR0	DMA trigger factor register 0	DMAC	415
DTFR1	DMA trigger factor register 1	DMAC	415
DTFR2	DMA trigger factor register 2	DMAC	415
DTFR3	DMA trigger factor register 2	DMAC	415
DUFR3 DWC0		BCU	-
ECR	Data wait control register 0	CPU	188
-	Interrupt source register		58
EIPC	Interrupt status saving register	CPU	57
	Interrupt status saving register	CPU	57
EXIMC	External bus interface mode control register	BCU	180
FEPC	NMI status saving register	CPU	58
FEPSW	NMI status saving register	CPU	58
HOUR	Hour count register	RTC	263
HOURB	Hour count setting register	RTC	264
IIC	IIC shift register	I ² C	363
IICC	IIC control register	I ² C	353
IICCL	IIC clock select register	I ² C	361
IICIC	Interrupt control register	INTC	441
IICS	IIC status register	l ² C	358
IICX	IIC function expansion register	l ² C	362
MR0	Interrupt mask register 0	INTC	442
IMR0H	Interrupt mask register 0H	INTC	442
IMR0L	Interrupt mask register 0L	INTC	442
MR1	Interrupt mask register 1	INTC	442
MR1H	Interrupt mask register 1H	INTC	442
MR1L	Interrupt mask register 1L	INTC	442
MR2	Interrupt mask register 2	INTC	442

			(7/
Symbol	Name	Unit	Page
TCL5	Timer clock selection register 5	Timer	243
TM0	Timer 0	Timer	214
TM1	Timer 1	Timer	214
TM2	Timer counter 2	Timer	241
ТМЗ	Timer counter 3	Timer	241
TM4	Timer counter 4	Timer	241
TM5	Timer counter 5	Timer	241
TMC00	Timer control register 00	Timer	217
TMC01	Timer control register 01	Timer	219
TMC10	Timer control register 10	Timer	217
TMC11	Timer control register 11	Timer	217
TMC2	Timer mode control register 2	Timer	244
ТМС3	Timer mode control register 3	Timer	244
TMC4	Timer mode control register 4	Timer	244
TMC5	Timer mode control register 5	Timer	244
TMIC2	Interrupt control register	INTC	441
ТМІСЗ	Interrupt control register	INTC	441
TMIC4	Interrupt control register	INTC	441
TMIC5	Interrupt control register	INTC	441
TXB0	Transmit buffer register 0	UART	309
TXB1	Transmit buffer register 1	UART	309
VSWC	System wait control register	BCU	87
WDCS	Watchdog timer clock selection register	WDT	272
WDTIC	Interrupt control register	INTC	441
WDTM	Watchdog timer mode register	WDT	273, 444
WEEK	Week count register	RTC	265
WEEKB	Week count setting register	RTC	265