E. Renesas Electronics America Inc - UPD78F0754MC-CAA-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	DALI, I ² C, LINbus, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0754mc-caa-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/TI000/INTP0/ <toh1>/</toh1>	5-AQ	I/O	Input: Independently connect to VDD or VSS via a resistor.
<ti51></ti51>			Output: Leave open.
ANI0/P20/AMP-Note 1	11-P		<digital input="" setting=""></digital>
ANI1/P21/AMPOUT ^{Note 1} / PGAIN ^{Note 1}	11-0		Independently connect to AVREF or Vss via a resistor. <analog and="" digital="" input="" output="" setting=""></analog>
ANI2/P22/AMP+ ^{Note 1}	11-N		Leave open .
ANI3/P23/CMP2+	11-Q		
ANI4/P24/CMP0+			
ANI5/P25/CMP1+			
P31/TOX00/INTP2/TOOLC1	5-AQ		Input: Independently connect to VDD or VSS via a resistor.
P32/TOX01/INTP3/TOOLD1			Output: Leave open.
P33/TOX10			
P34/TOX11/INTP4/ <toh1>/</toh1>			
<ti51></ti51>			
P60/SCLA0/TxD6	5-AS		Input: Independently connect to VDD or VSS via a resistor.
P61/SDAA0/RxD6			Output: Leave this pin open at low-level output after clearing the output latch of the port to 0.
P121/X1/TOOLC0 ^{Note 2} /	37-A	Input	Independently connect to VDD or Vss via a resistor.
<ti000>/<intp0></intp0></ti000>			
P122/X2/EXCLK/TOOLD0 ^{Note 2}			
RESET/P125	42-A		Connect directly to VDD or via a resistor.
AVREF	-	-	Connect directly to VDD.

Table 2-3. Pin I/O Circuit Types (78K0/IA2)

Notes 1. µPD78F0753, 78F0754 (products with operational amplifier) only

- 2. Use recommended connection above in input port mode (refer to Figure 5-2 Format of Clock Operation Mode Select Register (OSCCTL)) when these pins are not used.
- **3.** If this pin is left open when specified as an analog input pin, the input voltage level might become undefined. It is therefore recommended to leave this pin open after specifying it as a digital output pin.
- Cautions 1. ANI0/P20/AMP-, ANI1/P21/AMPOUT/PGAIN, ANI2/P22/AMP+, ANI3/P23/CMP2+, ANI4/P24/CMP0+, and ANI5/P25/CMP1+ are set in the analog input mode after release of reset.
 - 2. Pin function of RESET/P125 is set in the external reset input after release of reset.

Remark Functions in angle brackets < > can be assigned by setting the input switch control register (MUXSEL).

Address	Symbol				Bit	No.				R/W	R/W Number of E Manipulate Simultaneou			After Reset	eference page
		7	6	5	4	3	2	1	0		1	8	16		Å
FFA1H	мсм	0	0	0	0	0	<xsel></xsel>	<mcs></mcs>	<mcm 0></mcm 	R/W	\checkmark	\checkmark	-	00H	177
FFA2H	мос	<mst OP></mst 	0	0	0	0	0	0	0	R/W	\checkmark	\checkmark	-	80H	176
FFA3H	OSTC	0	0	0	MOST 11	MOST 13	MOST 14	MOST 15	MOST 16	R	\checkmark	\checkmark	_	00H	178, 606
FFA4H	OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0	R/W	-	\checkmark	-	05H	179, 607
FFA5H	IICA	-	-	-	_	_	_	_	-	R/W	-	\checkmark	_	00H	482
FFA6H	SVA0	_	-	-	_	-	_	_	-	R/W	-	\checkmark	_	00H	482
FFA7H	IICACTL0	<iice0></iice0>	<lrel 0></lrel 	<wrel 0></wrel 	<spie0></spie0>	<wtim 0></wtim 	<acke 0></acke 	<stt0></stt0>	<spt0></spt0>	R/W	\checkmark	\checkmark	_	00H	484
FFA8H	IICACTL1	<wup></wup>	0	<cld0></cld0>	<dad0></dad0>	<smc0></smc0>	<dfc0></dfc0>	0	0	R/W	\checkmark	\checkmark	_	00H	493
FFA9H	IICAF0	<stcf></stcf>	<iicbs Y></iicbs 	0	0	0	0	<stce N></stce 	<iicrs V></iicrs 	R/W	\checkmark	\checkmark	_	00H	491
FFAAH	IICAS0	<msts 0></msts 	<ald0></ald0>	<exc0></exc0>	<coi0></coi0>	<trc0></trc0>	<ackd 0></ackd 	<std0></std0>	<spd0></spd0>	R	\checkmark	\checkmark	_	00H	489
FFABH	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
FFACH	RESF	0	0	0	WDTR F	0	0	0	LVIRF	R	-	\checkmark	_	00H ^{Note}	628
FFADH	IICWL	_	-	-	-	_	_	_	-	R/W	-	\checkmark	_	FFH	495
FFAEH	IICWH	_	-	-	-	-	-	-	-	R/W	-	\checkmark	-	FFH	495
FFAFH	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FFB0H		_	-	-	_	-	_	_	-	D/\//			al		204
FFB1H	INICRI	-	-	-	-	-	_	-	-		-	-	v	00000	204
FFB2H FFB3H	TX1CR2	-	-	-	-	-	-	-	-	R/W	_	-	\checkmark	0000H	204
FFB4H		_	-	-	Ι	_	_	_	-						
FFB5H	TX1CR3	_	-	-	I	_	_	_	_	R/W	-	-	V	0000H	204
FFB6H		_	I	I	-	_	_	_	-				,		
FFB7H	TX1CCR0	_	-	-	I	_	_	-	-	R/W	I	I	N	0000H	204
FFB8H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FFB9H	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
FFBAH	TMC00	0	0	0	0	TMC00 3	TMC00 2	TMC00 1	<ovf0 0></ovf0 	R/W	\checkmark	\checkmark	-	00H	263
FFBBH	PRM00	ES110	ES100	ES010	ES000	0	0	PRM00 1	PRM00 0	R/W	\checkmark	\checkmark	-	00H	268
FFBCH	CRC00	0	0	0	0	0	CRC00 2	CRC00 1	CRC00 0	R/W	\checkmark	\checkmark	-	00H	264

Table 3-8. Special Function Register List : 78K0/IB2 (30 Pins) (6/7)

Note The reset value of RESF varies depending on the reset source.

Remark For a bit name enclosed in angle brackets (<>), the bit name is defined as a reserved word in the RA78K0, and is defined as an sfr variable using the #pragma sfr directive in the CC78K0.

Figure 4-15. Block Diagram of P33

- P3: Port register 3
- PU3: Pull-up resistor option register 3
- PM3: Port mode register 3
- RD: Read signal
- WR××: Write signal

Figure 4-21. Block Diagram of P61

- P6: Port register 6
- PU6: Pull-up resistor option register 6
- PM6: Port mode register 6
- PIM6: Port input mode register 6
- POM6: Port output mode register 6
- RD: Read signal
- WR××: Write signal

4.6 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

- <Example> When P20 is an output port, P21 to P27 are input ports (all pin statuses are high level), and the port latch value of port 2 is 00H, if the output of output port P20 is changed from low level to high level via a 1-bit manipulation instruction, the output latch value of port 2 is FFH.
- Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.
 - A 1-bit manipulation instruction is executed in the following order in the 78K0/lx2 microcontrollers.
 - <1> The Pn register is read in 8-bit units.
 - <2> The targeted one bit is manipulated.
 - <3> The Pn register is written in 8-bit units.

In step <1>, the output latch value (0) of P20, which is an output port, is read, while the pin statuses of P21 to P27, which are input ports, are read. If the pin statuses of P21 to P27 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

Remark The following instructions are 1-bit manipulation instructions.

• MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT11, NOT1

78K0/lx2

Caution When setting RSTOP to 1, be sure to confirm that the CPU operates with a clock other (MCS = 1) than the internal high-speed oscillation clock. Specifically, set under either of the following conditions.

In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock before setting RSTOP to 1.

Remarks 1. The source clock supplied to the peripheral hardware differs depending on the SELPLL setting.

SELPLL	16 bit timer X0, X1	Peripheral hardware
0	fprs = fxp	fprs = fxp
1	• When TXnCKS0 = 0: fTMX = 10 fXP	$f_{PRS} = 10 f_{XP} \times 1/2$
	(40 MHz: fxp = 4 MHz operation)	(20 MHz: fxp = 4 MHz operation)
	• When TXnCKS0 = 0: f_{PRS} = 10 $f_{XP} \times 1/2$	
	(20 MHz: fxp = 4 MHz operation)	

2. TXnCKS0: Bit 0 of the 16 bit timer Xn operation control register 0 (TXnCTL0)

(4) Main OSC control register (MOC)

This register selects the operation mode of the high-speed system clock.

This register is used to stop the X1 oscillator or to disable an external clock input from the EXCLK pin when the CPU operates with a clock other than the high-speed system clock.

MOC can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 80H.

Figure 5-5. Format of Main OSC Control Register (MOC)

Address: FFA2H After reset: 80H R/W

Symbol <7> 6 5 4 3 2 1 0 MOC **MSTOP** 0 0 0 0 0 0 0

MSTOP	Control of high-speed system clock operation						
	X1 oscillation mode	External clock input mode					
0	X1 oscillator operating	External clock from EXCLK pin is enabled					
1	X1 oscillator stopped	External clock from EXCLK pin is disabled					

Cautions 1. Clear MSTOP to 0 while the regulator mode control register (RMC) is 00H.

2. When setting MSTOP to 1, be sure to confirm that the CPU operates with a clock other (MCS = 0) than the high-speed system clock.

In addition, stop peripheral hardware that is operating on the high-speed system clock before setting MSTOP to 1.

- 3. Do not clear MSTOP to 0 while bit 6 (OSCSEL) of the clock operation mode select register (OSCCTL) is 0 (input port mode).
- 4. The peripheral hardware cannot operate when the peripheral hardware clock is stopped. To resume the operation of the peripheral hardware after the peripheral hardware clock has been stopped, initialize the peripheral hardware.

Table 5-4 shows transition of the CPU clock and examples of setting the SFR registers.

Table 5-4. CPU Clock Transition and SFR Register Setting Examples (1/3)

(1) CPU operating with internal high-speed oscillation clock (B) after reset release (A)

Status Transition	SFR Register Setting				
$(A) \rightarrow (B)$	SFR registers do not have to be set (default status after reset release).				

(2) CPU operating with high-speed system clock (C) after reset release (A)

(The CPU operates with the internal high-speed oscillation clock (B) immediately after a reset release.)

(Setting sequence of SFR registers)						
Setting Flag of SFR Register Status Transition	EXCLK	OSCSEL	MSTOP	OSTC Register	XSEL	MCM0
$(A) \rightarrow (B) \rightarrow (C) \text{ (X1 clock)}$	0	1	0	Must be checked	1	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main system clock)	1	1	0	Must not be checked	1	1

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (refer to CHAPTER 28 ELECTRICAL SPECIFICATIONS).

(3) CPU clock changing from internal high-speed oscillation clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers)						
Setting Flag of SFR Register Status Transition	EXCLK	OSCSEL	MSTOP	OSTC Register	XSEL ^{Note}	MCM0
$(B) \rightarrow (C) (X1 \text{ clock})$	0	1	0	Must be checked	1	1
(B) \rightarrow (C) (external main system clock)	1	1	0	Must not be checked	1	1
	())		

Unnecessary if these Unnecessary if the CPU registers are already set is operating with the high-speed system clock

Note The value of this flag can be changed only once after a reset release. This setting is not necessary if it has already been set.

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (refer to CHAPTER 28 ELECTRICAL SPECIFICATIONS).

- **Remarks 1.** (A) to (K) in Table 5-4 correspond to (A) to (K) in Figure 5-14.
 - 2.
 EXCLK, OSCSEL:
 Bits 7 and 6 of the clock operation mode select register (OSCCTL)

 MSTOP:
 Bit 7 of the main OSC control register (MOC)

 XSEL, MCM0:
 Bits 2 and 0 of the main clock mode register (MCM)

CHAPTER 6 16-BIT TIMERS X0 AND X1

6.1 Functions of 16-Bit Timers X0 and X1

16-bit timers X0 and X1 are mounted onto all 78K0/Ix2 microcontroller products.

16-bit timers X0 and X1 are dedicated PWM output timers and have two outputs each, enabling the generation of up to four PWM outputs. Complementary PWM output can also be generated to control a half-bridge circuit (2 outputs) or full-bridge circuit (4 outputs). Also, by linking with a comparator or INTP0, PFC control and PWM output can be stopped urgently.

16-bit timers X0 and X1 are provided with the following functions.

(1) PWM output

- A variable pulse with any duty or cycle can be output while the timer is operating.
- The default timer output level (high or low level) can be set.

(2) A/D conversion start timing signal output

The A/D conversion start timing signal can be output by using a compare register (TXnCCR0 register: n = 0, 1).

(3) Capture function

This function captures the count value to the capture register by detecting a comparator output or an external interrupt input (INTP0).

(4) Timer start synchronization function

Up to 4 PWM outputs can be simultaneously started by combining two timer units (16-bit timers X0 and X1).

(5) Timer start/clear synchronization function

Up to 4 PWM output cycles can be synchronized by combining two timer units (16-bit timers X0 and X1).

(6) Timer output gating function (by interlocking with 8-bit timer H1)

Timer output can be gate-controlled by using the output of 8-bit timer H1 (the TOH1 output).

(7) Timer reset mode (comparator, INTP0 interlocking mode 1)

Timer output can be reset and the timer counter cleared while the comparator 0 to 2 outputs or the INTP0 input is high level. When the comparator 0 to 2 outputs or the INTP0 input go to low level, timer output restarts.

(8) Timer restart mode (comparator, INTP0 interlocking mode 2)

Timer can be restarted upon detection of the rising edge of the comparator 0 to 2 outputs or the INTP0 input.

(9) Timer output reset mode (comparator, INTP0 interlocking mode 3)

Timer output can be reset upon detection of the rising edge of the comparator 0 to 2 outputs or the INTPO input. The reset status is cleared when the next timer interrupt occurs and timer output restarts.

(10) High-impedance output control function (by interlocking with comparator and INTP0)

Timer output can be made high impedance upon detection of the valid edge of the comparator 0 to 2 outputs or the INTP0 input.

Figure 7-38. Timing Example of Free-Running Timer Mode (CR000: Capture Register, CR010: Capture Register) (1/2)

(a) TOC00 = 13H, PRM00 = 50H, CRC00 = 05H, TMC00 = 04H

This is an application example where the count values that have been captured at the valid edges of separate capture trigger signals are stored in separate capture registers in the free-running timer mode.

The count value is captured to CR010 when the valid edge of the TI000 pin input is detected and to CR000 when the valid edge of the TI010 pin input is detected.

(4) Port mode registers 0 and 3 (PM0, PM3)

These registers set ports 0 and 3 input/output in 1-bit units. PM0 and PM3 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

• 78K0/IY2

<u>When using the <TI51>/P34/TOX11/<TOH1>/INTP4 pin for timer input, set PM34 to 1</u>. The output latch of P34 at this time may be 0 or 1.

• 78K0/IA2, 78K0/IB2 (32 pins)

When using the <TI51>/P34/TOX11/<TOH1>/INTP4 and <TI51>/P00/TI000/<TOH1>/INTP0 pins for timer input, set PM34 and PM00 to 1. The output latches of P34 and P00 at this time may be 0 or 1.

• 78K0/IB2 (30 pins)

<u>When using the TI51/P30/TOH1/INTP1pin for timer input, set PM30 to 1</u>. The output latch of P30 at this time may be 0 or 1.

Figure 8-7. Format of Port Mode Register 0 (PM0)

Address:	FF20H A	fter reset: FI	FH R/W					
Symbol	7	6	5	4	3	2	1	0
PM0	1	1	1	1	1	1	1	PM00

ſ	PM00	P00 pin I/O mode selection						
ſ	0	utput mode (output buffer on)						
ĺ	1	Input mode (output buffer off)						

Remark The figure shown above presents the format of port mode register 0 of the 78K0/IA2.

Figure 8-8. Format of Port Mode Register 3 (PM3)

Address:	FF23H	After reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PM3	PM37	PM36	PM35	PM34	PM33	PM32	PM31	PM30

PM3n	P3n pin I/O mode selection (n = 0 to 7)					
0	utput mode (output buffer on)					
1	nput mode (output buffer off)					

Remark The figure shown above presents the format of port mode register 3 of the 78K0/IB2 (30 pins). For the format of port mode register 3 of other products, refer to (1) Port mode registers (PMxx) in 4.3 Registers Controlling Port Function.

Figure 8-9. Interval Timer Operation Timing (2/2)

11.4.2 Basic operation of A/D converter (timer trigger mode)

- <1> Set the A/D conversion time and the operation mode by using bits 5 to 1 (FR2 to FR0, LV1, and LV0) of the A/D converter mode register 0 (ADM0).
- <2> Set bit 0 (ADCE) of ADM0 to 1 to start the operation of the A/D voltage comparator.
- <3> Set channels for A/D conversion to analog input by using the A/D port configuration registers 0 and 1 (ADPC0, ADPC1) and set to input mode by using port mode registers 2 and 7 (PM2, PM7).
- <4> Set the PGA operation to set the PGA output and the single Amp operation to set the operational amplifier output for analog input. (refer to CHAPTER 12 OPERATIONAL AMPLIFIER).
- <5> Select TMX0 or TMX1 synchronization by using bits 4 and 5 (ADTRG0, ADTRG1) of the analog input channel specification register (ADS).
- <6> Select one channel for A/D conversion by using the analog input channel specification register (ADS).
- <7> Set the timer trigger wait state by setting (1) bit 7 (ADCS) of ADM0. (<8> to <16> are operations performed by hardware.)
- <8> A conversion operation is started when a trigger signal (TMX0 or TMX1 output) is detected.
- <9> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <10> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the sampled voltage is held until the A/D conversion operation has ended.
- <11> Bit 9 of the successive approximation register (SAR) is set. The comparison voltage generator outputs (1/2) AV_{REF} voltage.
- <12> The voltage difference between the output voltage of the comparison voltage generator and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB of SAR remains set to 1. If the analog input is smaller than (1/2) AVREF, the MSB is reset to 0.
- <13> Next, bit 8 of SAR is automatically set to 1, and the operation proceeds to the next comparison. The output voltage of the comparison voltage generator is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF

• Bit 9 = 0: (1/4) AVREF

The output voltage of the comparison voltage generator and sampled voltage are compared and bit 8 of SAR is manipulated as follows.

- Analog input voltage ≥ Output voltage of comparison voltage generator: Bit 8 = 1
- Analog input voltage < Output voltage of comparison voltage generator: Bit 8 = 0
- <14> Comparison is continued in this way up to bit 0 of SAR.
- <15> Upon completion of the comparison of 10 bits, an effective digital result value remains in SAR, and the result value is transferred to the A/D conversion result register (TMX0 synchronization: ADCRX0, ADCRX0L, TMX1 synchronization: ADCRX1, ADCRX1L) and then latched.

At the same time, the A/D conversion end interrupt request (INTAD) can also be generated.

<16> Repeat steps <9> to <15>, until ADCS is cleared to 0.

To stop the A/D converter, clear ADCS to 0.

To restart A/D conversion from the status of ADCE = 1, start from <7>. To start A/D conversion again when ADCE = 0, set ADCE to 1, wait for 1 μ s or longer, and start <7>. To change a channel of A/D conversion, start from <6>.

CHAPTER 12 OPERATIONAL AMPLIFIER

Item	78K0/IY2	78K0/IA2	78K0	/IB2
	16 Pins	20 Pins	30 Pins	32 Pins
Operational amplifier (products with operational amplifier only)	1 ch (PGA mode only)	1 ch (Single AMP mod	le and PGA mode)	

12.1 Function of Operational Amplifier

Operational amplifier is mounted onto products with operational amplifier of the 78K0/lx2 microcontrollers. The operational amplifier has the following modes.

• Single AMP mode^{Note}

Operational amplifier has two input pins (the AMP- pin and the AMP+ pin) and one output pin (the AMPOUT pin), and can be used as single-power supply amplifier that can be externally connected.

The amplified voltage can be used as an analog input of the A/D converter, because the AMPOUT pin is alternatively used with analog input pin of the A/D converter.

Note Products with operational amplifier of the 78K0/IA2, 78K0/IB2 only.

• PGA (Programmable gain amplifier) mode

In this mode, the analog voltage input from the PGAIN pin is amplified within the microcontroller. The gain can be selected from four types (\times 4, \times 8, \times 16, \times 32).

The amplified voltage can be used as an analog input of the A/D converter.

13.4.3 Stopping comparator operation

Figure 13-14. Example of Setting Procedure when Stopping Comparator Operation

Note Only when using the internal reference voltage.

Address: FFE0H After reset: 00H R/W								
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IFOL	SREIF6	PIF5	PIF4	PIF3	PIF2	PIF1 Note	PIF0	LVIIF
Address: FFI	E1H After re	eset: 00H F	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0H	TMIF010	TMIF000	TMIFX1	TMIFX0	TMIFH1	CSIIF11	STIF6	SRIF6
Address: FFI	E2H After re	eset: 00H F	R/W					
Symbol	7	<6>	<5>	<4>	<3>	2	1	<0>
IF1L	0	CMPIF2	CMPIF1	CMPIF0	TMIF51	0	0	ADIF
Address: FFI	E3H After re	eset: 00H F	R/W					
Symbol	7	6	5	4	3	2	1	<0>
IF1H	0	0	0	0	0	0	0	IICAIF0
	XXIFX			Inte	rrupt request	flag		
	0	No interrupt	request signa	l is generated				
	1	Interrupt req	uest is genera	ated, interrupt	request statu	s		

Figure 18-4. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H) (78K0/IB2)

Note 78K0/IB2 (30 pins) only

Caution When using the 78K0/IB2 (30 pins), be sure to clear bits 1, 2, and 7 of IF1L, and bits 1 to 7 of IF1H to 0. When using the 78K0/IB2 (32 pins), be sure to clear bit 2 of IF0L, bits 1, 2, and 7 of IF1L, and bits 1 to 7 of IF1H to 0.

Table 18-3. Ports Corresponding to EGPn and EGNn (1/2)

(3) 78K0/IB2 (30 pins)

Detection En	able Register	Edge Detection Port	Interrupt Request Signal
EGP0	EGN0	P00 or P121 ^{Note}	INTP0
EGP1	EGN1	P30	INTP1
EGP2	EGN2	P31	INTP2
EGP3	EGN3	P32	INTP3
EGP4	EGN4	P34	INTP4
EGP5	EGN5	P02	INTP5
EGP6	EGN6	-	INTCMP0
EGP7	EGN7	_	INTCMP1
EGP8	EGN8	_	INTCMP2

(4) 78K0/IB2 (32 pins)

Detection En	able Register	Edge Detection Port	Interrupt Request Signal
EGP0	EGN0	P00 or P121 ^{Note}	INTP0
EGP2	EGN2	P31	INTP2
EGP3	EGN3	P32	INTP3
EGP4	EGN4	P34	INTP4
EGP5	EGN5	P02	INTP5
EGP6	EGN6	-	INTCMP0
EGP7	EGN7	_	INTCMP1
EGP8	EGN8	_	INTCMP2

Note The pin functions can be assigned by setting the port alternate switch control register (MUXSEL).

Caution Select the port mode by clearing EGPn and EGNn to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remark n = 0 to 8: 78K0/IB2 (30 pins) n = 0, 2 to 8: 78K0/IB2 (32 pins)

	After Reset Acknowledgment ^{Note 1}	
Program counter (PC	The contents of the reset vector table (0000H, 0001H) are set.	
Stack pointer (SP)		Undefined
Program status word	(PSW)	02H
RAM	Data memory	Undefined ^{Note 2}
	General-purpose registers	Undefined ^{Note 2}
Port registers 0, 2, 3	00H	
Port mode registers	FFH	
Pull-up resistor optio	00H	
Pull-up resistor optio	20H	
Port input mode regi	00H	
Port output mode rec	00H	
Reset pin mode regi	00H	
Port alternate switch	00H	
Internal memory size	e switching register (IMS)	CFH ^{Note 3}

Table 20-2. Hardware Statuses After Reset Acknowledgment (1/4)

Notes 1. During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

- 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
- **3.** Reset signal generation makes the setting of the ROM area undefined. Therefore, set the value corresponding to each product as indicated below after release of reset.

Products				ROM	Internal High-Speed RAM
78K0/IY2	78K0/IA2	78K0/IB2		Capacity	Capacity
μPD78F0740, 78F0750	-	-	61H	4 KB	384 bytes
μPD78F0741, 78F0751	<i>µ</i> PD78F0743, 78F0753	<i>µ</i> PD78F0745, 78F0755	42H	8 KB	512 bytes
μPD78F0742, 78F0752	<i>µ</i> PD78F0744, 78F0754	<i>µ</i> PD78F0746, 78F0756	04H	16 KB	768 bytes

Remark The special function registers (SFRs) mounted depend on the product. Refer to 3.2.3 Special function registers (SFRs).

(2) When using the TOOLC0 and TOOLD0 pins (with X1/X2 oscillator is used, both debugging and programming are performed)

Notes 1. If there are capacitance elements such as capacitors, on-chip debugging might not operate normally.

2. A clock signal provided on the 78K0-OCD board, a 4, 8, or 16 MHz clock signal generated in QB-MINI2, or the clock signal generated by the internal high-speed oscillator of the device can be used for the clock signal of the target device during on-chip debugging.

Only the internal high-speed oscillator of the device can be used during flash programming.

- **3.** During on-chip debugging, the settings specified by the user program are ignored, because these pins are used as pins dedicated to on-chip debugging. However, if the pins are specified as input pins, the pins must be processed (because they are left open when QB-MINI2 is not connected.)
- **4.** This connection is designed assuming that the reset signal is output from the N-ch open-drain buffer (output resistance: 100 Ω or less). For details, refer to **4.1.3 Connection of reset pin** of QB-MINI2 On-Chip Debug Emulator with Programming Function (18371E).
- 5. Never connect an oscillation circuit to the 78K0-OCD board during on-chip debugging and flash programming. To prevent an oscillation circuit from not oscillating due to wiring capacitance when the target device operates (when QB-MINI2 is not connected), also consider countermeasures such as disconnecting the oscillation circuit from the target connectors by setting the jumpers.

A program that was downloaded using the debugger does not operate when QB-MINI2 is not connected.

Caution The bold lines in the figure (TOOLD0 and TOOLC0) must be designed so that the device pins are less than 30 mm from the QB-MINI2 connectors or the paths must be shielded by connecting them to GND.

(2) Non-port functions

Port		78K0/IY2	78K0/IA2	78K0/IB2		
		16 pins	20 pins	30 pins	32 pins	
Power supply, ground		VDD, VSS, AVREF		VDD, AVREF, VSS, AVSS		
Reg	gulator	REGC				
Res	set	RESET				
Clo osc	ck illation	X1, X2, EXCLK				
Inte	rrupt	INTP0, INTP2 to INTP4		INTP0 to INTP5	INTP0, INTP2 to INTP5	
	TMX0, TMX1	TOX00, TOX01, TOX10, TOX11				
Timer	TM00	TI000		TI000, TI010, TO00	TI000	
	TM51	TI51				
	TMH1	TOH1				
terface	UART6/ DALI	-	RxD6, TxD6			
al in	IICA	_	SCLA0, SDAA0			
Seri	CSI11	_	-	SCK11, SI11, SO11, SSI17)11, <u>SSI11</u>	
A/D converter		ANI0, ANI1, ANI3 to ANI5	ANI0 to ANI5	ANI0 to ANI8		
Operational amplifier ^{Note}		PGAIN	AMP+, AMP-, AMPOUT, PGAIN			
Comparator		CMP0+ to CMP2+	CMP0+ to CMP2+, CMPCOM			
On-chip debug function		TOOLC0, TOOLC1, TOOL	D0, TOOLD1			

Note Products with operational amplifier only.

Table 30-1. Surface Mounting Type Soldering Conditions (2/2)

(2) 32-pin plastic WQFN (fine pitch) (5 x 5)

μPD78F0745K8-3B4-AX, 78F0746K8-3B4-AX, 78F0755K8-3B4-AX, 78F0756K8-3B4-AX

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: 3 times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR60-107-3

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Cautions1. Do not use different soldering methods together (except for partial heating).

2. The 78K0/lx2 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

