

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ac128avpue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF51AC256 Family Configurations

Table 1. MCF51AC256 Series Device Comparison (continued)

Feature	MCF51AC256A		MCF51AC256B		MCF51AC128A		MCF51AC128C			
reature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
TPM3 (timer pulse-width modulator) channels						2				
VBUS (debug visibility bus)	Yes	No	Yes	N	lo	Yes	No	Yes	N	0

¹ The members of MCF51AC128A with CAN support have 32 KB RAM. The other members have 16 KB RAM.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51AC256 series pins and modules.

 $^{^{2}\,}$ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.

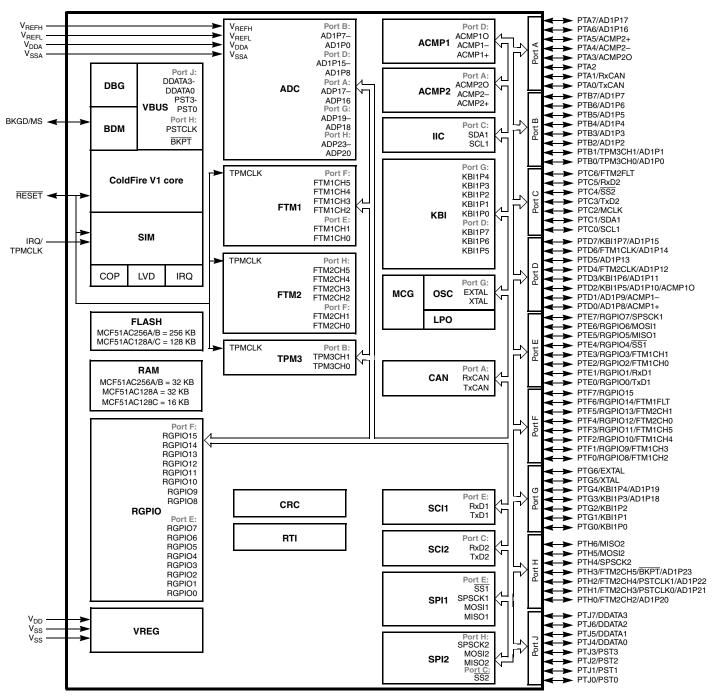


Figure 1. MCF51AC256 Series Block Diagram

MCF51AC256 Family Configurations

1.3 Features

Table 2 describes the functional units of the MCF51AC256 series.

Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- · Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1 INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

MCF51AC256 Family Configurations

- Trimmable internal reference allows 0.2% resolution and 2% deviation
- Analog-to-digital converter (ADC)
 - 24 analog inputs with 12 bits resolution
 - Output formatted in 12-, 10- or 8-bit right-justified format
 - Single or continuous conversion (automatic return to idle after single conversion)
 - Operation in low-power modes for lower noise operation
 - Asynchronous clock source for lower noise operation
 - Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value
 - On-chip temperature sensor
- Flexible timer/pulse-width modulators (FTM)
 - 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned
 - Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode
 - Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs)
 - Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal)
 - Deadtime insertion is available for each complementary pair
 - The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers
 - Generation of the triggers to ADC (hardware trigger)
 - A fault input for global fault control
 - Backwards compatible with TPM
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Two channels, each channel may be input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt
- Cyclic redundancy check (CRC) generator
 - High speed hardware CRC generator circuit using 16-bit shift register
 - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
 - Error detection for all single, double, odd, and most multi-bit errors
 - Programmable initial seed value
- Analog comparators (ACMP)
 - Full rail to rail supply operation
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to allow comparator output to be visible on a pin, ACMPxO

- Inter-integrated circuit (IIC)
 - Compatible with IIC bus standard
 - Multi-master operation
 - Software programmable for one of 64 different serial clock frequencies
 - Interrupt driven byte-by-byte data transfer
 - Arbitration lost interrupt with automatic mode switching from master to slave
 - Calling address identification interrupt
 - Bus busy detection
 - 10-bit address extension
- Controller area network (CAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Standard and extended data frames
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbps
 - Support for remote frames
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable listen-only mode for monitoring of CAN bus
 - Programmable bus-off recovery functionality
 - Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off)
 - Internal timer for time-stamping of received and transmitted messages
- Serial communications interfaces (SCI)
 - Full-duplex, standard non-return-to-zero (NRZ) format
 - Double-buffered transmitter and receiver with separate enables
 - Programmable baud rates (13-bit modulo divider)
 - Interrupt-driven or polled operation
 - Hardware parity generation and checking
 - Programmable 8-bit or 9-bit character length
 - Receiver wakeup by idle-line or address-mark
 - Optional 13-bit break character generation / 11-bit break character detection
 - Selectable transmitter output polarity
- Serial peripheral interfaces (SPI)
 - Master or slave mode operation
 - Full-duplex or single-wire bidirectional option
 - Programmable transmit bit rate

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

MCF51AC256 Family Configurations

Table 4. Pin Availability by Package Pin-Count (continued)

Pir	n Num	ber	Low	est < Pric	ority> Hi	ighest
80 64 44		Port Pin	Alt 1	Alt 2	Alt 3	
49	37	26	PTB3	AD1P3		
50	38	_	PTB4	AD1P4		
51	39	_	PTB5	AD1P5		
52	40	_	PTB6	AD1P6		
53	41	_	PTB7	AD1P7		
54	42	27	PTD0	AD1P8	ACMP1+	
55	43	28	PTD1	AD1P9	ACMP1-	
56	44	29	V_{DDA}			
57	45	30	V_{SSA}			
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10
59	47	32	PTD3	KBI1P6	AD1P11	
60	48	33	PTG3	KBI1P3	AD1P18	
61	49	_	PTG4	KBI1P4	AD1P19	
62	50	_	PTD4	FTM2CLK	AD1P12	
63	51	_	PTD5	AD1P13		
64	52	_	PTD6	FTM1CLK	AD1P14	
65	53	_	PTD7	KBI1P7	AD1P15	
66	54	34	V_{REFH}			
67	55	35	V_{REFL}			
68	56	36	BKGD	MS		
69	57	37	PTG5	XTAL		
70	58	38	PTG6	EXTAL		
71	59	39	V_{SS}			
72	_	_	V_{DD}			
73	60	40	PTC0	SCL1		
74	61	41	PTC1	SDA1		
75			PTH4	SPCK2		
76			PTH5	MOSI2		
77			PTH6	MISO2		
78	62	42	PTC2	MCLK		
79	63	43	PTC3	TxD2		
80	64	44	PTC5	RxD2	_	

TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

² TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 **Parameter Classification**

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.2 **Absolute Maximum Ratings**

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 17

Table 6. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to 5.8	٧
Input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 7. Thermal Characteristics

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Maximum junction temperature		TJ	150	°C
Thermal resistance 1,2,3,4				
80-pin LQFP	1s		51	
64-pin LQFP	2s2p		38 59	
64-pin QFP	2s2p	$\theta_{\sf JA}$	41 50	°C/W
44 pin LOED	1s 2s2p		36	
44-pin LQFP	1s 2s2p		67 45	

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

 $^{^{2}}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_A + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 8. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
Human body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulse per pin			
Charge device	Series resistance	R1	0	Ω
model	Storage capacitance	С	1500 g 100 g 3	pF
	Number of pulse per pin	_		_
Latch-up	Minimum input voltage limit	_	-2.5	V
	Maximum input voltage limit	_	7.5	٧

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	±2000		V
2	Charge device model (CDM)	V _{CDM}	±500	_	V
3	Latch-up current at T _A = 85 °C	I _{LAT}	±100		mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Table 10. DC Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	—	Operating voltage		2.7	_	5.5	V
		Output high voltage — Low drive (PTxDSn = 0)					
		5 V, $I_{Load} = -4 \text{ mA}$		V _{DD} – 1.5	_	_	
		3 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 1.5	_	_	
		5 V, $I_{Load} = -2 \text{ mA}$		$V_{DD} - 0.8$		_	
2	Р	3 V, $I_{Load} = -1 \text{ mA}$	V	$V_{DD} - 0.8$	_	_	V
	'	Output high voltage — High drive (PTxDSn = 1)	V _{OH}				V
		5 V, $I_{Load} = -15 \text{ mA}$		V _{DD} – 1.5	_	_	
		3 V, $I_{Load} = -8 \text{ mA}$		V _{DD} – 1.5		_	
		5 V, $I_{Load} = -8 \text{ mA}$		$V_{DD} - 0.8$	_	_	
		3 V, $I_{Load} = -4 \text{ mA}$		$V_{DD}^{-1} - 0.8$	_	_	

Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
		DC injection current ^{5 6 7 8} (single pin limit) $V_{IN} > V_{DD} \\ V_{IN} < V_{SS}$	4 . H	0 0	_	2 -0.2	mA
22		DC injection current (Total MCU limit, includes sum of all stressed pins) $ \frac{V_{IN}>V_{DD}}{V_{IN}< V_{SS}} $	I _{IC}	0 0	I	25 -5	mA

Typical values are based on characterization data at 25°C unless otherwise stated.

- $^{6}\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- 8 The $\overline{\text{RESET}}$ pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

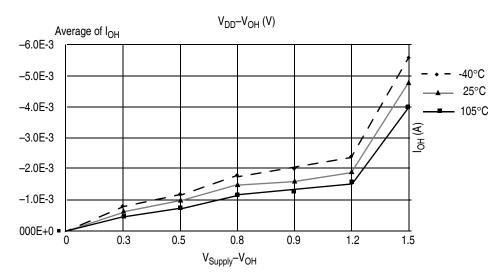


Figure 5. Typical I_{OH} vs. V_{DD}-V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0)

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

 $^{^{3}}$ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
			2 MHz		5	2.27	_	
			Z IVIMZ		3.3	2.24		
			4 MU-		5	3.67	_	
1	Т	Run supply current measured at	4 MHz	3.3	3.64	_	1	
ı	'	FEI mode, all modules off, system clock at:	8 MHz		5	6.55		
			O IVITIZ		3.3	6.54		
			16 MHz		5	11.90	_	
			TO IVII IZ		3.3	11.85		
			2 MHz		5	3.28	_	
			Z IVII IZ		3.3	3.26		
			4 MHz		5	4.33		
2	Т	Run supply current measured at FEI mode, all modules on, system clock at:	4 IVITZ		3.3	4.32		
۷	'		8 MHz		5	8.17		mA
					3.3	8.05		
			16 MHz		5	14.8	_	
					3.3	14.74	_	
		Run supply current measured at FBE mode, all modules off	2 M⊔-		5	3.28		IIIA
			2 MHz		3.3	3.26		
			4 MHz		5	4.69		
3	Т				3.3	4.67		
		(RANGE = 1, HGO = 0), system	8 MHz		5	7.48	_	
		clock at:	O IVII IZ		3.3	7.46	_	
			16 MHz		5	13.10	_	
			TO IVII IZ		3.3	13.07	_	
			2 MHz		5	3.64	_	
			Z IVII 1Z		3.3	3.63		
		D	4 MHz		5	5.38	_	
4	Т	Run supply current measured at FBE mode, all modules on	₩ IVII IZ		3.3	5.35	_	
		(RANGE = 1, HGO = 0), system	8 MHz		5	8.65	_	
		clock at:	O IVITZ		3.3	8.64	_	
			16 MHz		5	15.55	_	
		TO IVII IZ		3.3	15.40			

Figure 9. Typical Run $\rm I_{DD}$ vs. System Clock Freq. for FEI and FBE Modes

2.7 Analog Comparator (ACMP) Electricals

Table 12. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	_	Supply voltage	V_{DD}	2.7	_	5.5	V
2	Т	Supply current (active)	I _{DDAC}	_	20	35	μА
3	D	Analog input voltage	V _{AIN}	V _{SS} - 0.3	_	V_{DD}	V
4	D	Analog input offset voltage	V_{AIO}	_	20	40	mV
5	D	Analog comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	_	_	1.0	μА
7	D	Analog comparator initialization delay	t _{AINIT}	_	_	1.0	μS
8	Р	Bandgap voltage reference factory trimmed at $V_{DD} = 5.3248 \text{ V}$, Temp = 25 °C	V_{BG}	1.18	1.20	1.21	V

2.8 ADC Characteristics

Table 13. 5 Volt 12-bit ADC Operating Conditions

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	D		Absolute	V_{DDA}	2.7	_	5.5	٧	
1	D	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
2	D	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV _{SSA}	-100	0	100	mV	
3	D	Reference voltage high		V _{REFH}	2.7	V_{DDA}	V _{DDA}	٧	
4	D	Reference voltage low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	٧	
5	D	Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
6	С	Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
7	С	Input resistance		R _{ADIN}	_	3	5	kΩ	
	C 12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz			2 5					
8	С	Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		5 10	kΩ	External to MCU
	С		8-bit mode (all valid f _{ADCK})		_	_	10		
9	D	ADC conversion	High speed (ADLPC = 0)	f	0.4	_	8.0	MHz	
9	D	clock frequency	Low power (ADLPC = 1)	f _{ADCK}	0.4	_	4.0	IVIHZ	

Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

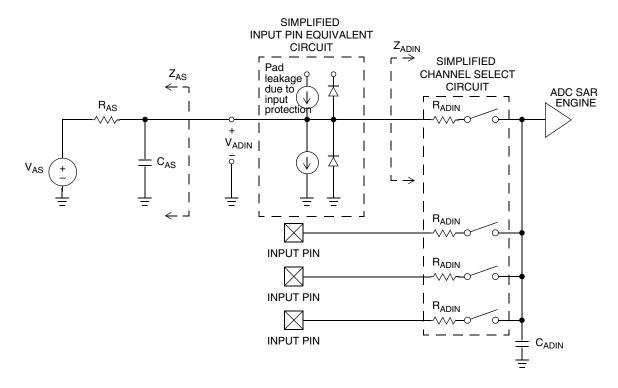


Figure 10. ADC Input Impedance Equivalency Diagram

Table 14. 5 Volt 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

	Table 1 ii o ten 12 bit /150 onaractenesics (TREFN = TDDA, TREFL = TSSA/											
Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment			
1	Т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μΑ				
2	Т	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}	_	218	_	μΑ				
3	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	327	_	μА				
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.582	1	mA				
5	Т	Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μΑ				
0	6 P	ADC	High speed (ADLPC = 0)	_	2	3.3	5	NAL 1-	t _{ADACK} =			
ь		Р		P	P	asynchronous clock source	Low power (ADLPC = 1)	f _{ADACK}	1.25	2	3.3	MHz

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
18	D	Lock exit frequency tolerance 8	D _{unl}	±4.47	_	±5.97	%
19	D	Lock time — FLL	t _{fll_lock}	_		t _{fll_acquire+} 1075(1/ ^f int_t)	S
20	D	Lock time — PLL	t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_ref)	s
21	D	Loss of external clock minimum frequency — RANGE = 0	f _{loc_low}	(3/5) × f _{int}	_	_	kHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- ⁴ This specification applies when the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.
- Below D_{lock} minimum, the MCG enters lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.
- Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

² The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.

This specification applies when the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 18. TPM/FTM Input Timing

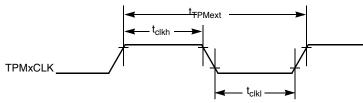


Figure 13. Timer External Clock

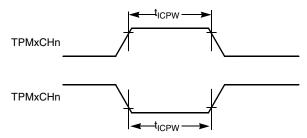


Figure 14. Timer Input Capture Pulse

2.11.3 MSCAN

Table 19. MSCAN Wake-Up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	_	_	2	μS
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	_	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

Freescale Semiconductor 35

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

4 Revision History

Table 23. Revision History

Revision	Description
1	Initial published
2	Updated ADC channels, Item 1, 4-5 on Table 2.10
3	Completed all the TBDs. Changed RTC to RTI in Figure 1. Corrected the block diagram. Changed V_{DDAD} to V_{DDA} , V_{SSAD} to V_{SSA} . Added charge device model data and removed machine data in Table 8. Updated the specifications of V_{LVDH} , V_{LVDL} , V_{LVWH} and V_{LVWL} in Table 10. Updated $S2I_{DD}$, $S3I_{DD}$ in Table 11. Added C column in Table 14. Updated f_{dco_DMX32} in Table 16.
4	Corrected the expansion of SPI to serial peripheral interface.
5	Updated V _{LVDL} in the Table 10. Updated RI _{DD} in the Table 11.
6	Updated V _{LVDH} , V _{LVDL} , V _{LVWH} and V _{LVWL} in the Table 10. Added LPO on the Figure 1 and LPO features in the Section 1.3, "Features."
7	Added 44-pin LQFP package information for AC256 and AC128.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2010. All rights reserved.

MCF51AC256 Rev.7 9/2011