

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I²C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ac128cvlke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51AC256 series is summarized in Table 1.

Table 1. MCF51AC256 Series Device Comparison

Easture	MCF51	AC256A	MCF51AC256B		MCF51	AC128A	MCF51AC128C		28C	
Feature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
Flash memory size (Kbytes)			256				I	128	I	<u>I</u>
RAM size (Kbytes)			32					32 or 16 ¹		
V1 ColdFire core with BDM (background debug module)					١	/es				
ACMP1 (analog comparator)					١	⁄es				
ACMP2 (analog comparator)	Ye	es	Ye	es	No		Y	es		No
ADC (analog-to-digital converter) channels (12-bit)	24	20	24	20	9	24	20	24	20	9
CAN (controller area network)	Ye	es		No		Ye	es		No	
COP (computer operating properly)					١	⁄es				
CRC (cyclic redundancy check)		Yes								
RTI	Yes									
DBG (debug)	Yes									
IIC1 (inter-integrated circuit)					Υ	⁄es				
IRQ (interrupt request input)					١	⁄es				
INTC (interrupt controller)					١	⁄es				
KBI (keyboard interrupts)	Yes									
LVD (low-voltage detector)					١	⁄es				
MCG (multipurpose clock generator)					١	/es				
OSC (crystal oscillator)					١	⁄es				
Port I/O ²	69	54	69	54	36	69	54	69	54	36
RGPIO (rapid general-purpose I/O)		1	6		12		1	6		12
SCI1, SCI2 (serial communications interfaces)	Yes									
SPI1 (serial peripheral interface)					١	⁄es				
SPI2 (serial peripheral interface)	Yes No		Yes	N	lo	Yes	No	Yes	N	0
FTM1 (flexible timer module) channels		(3	1	4			6		4
FTM2 channels	6	2	6	2	2	6	2	6	2	2

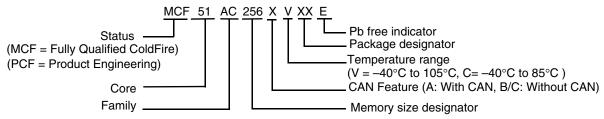
1.3 Features

Table 2 describes the functional units of the MCF51AC256 series.

Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7



- Trimmable internal reference allows 0.2% resolution and 2% deviation
- Analog-to-digital converter (ADC)
 - 24 analog inputs with 12 bits resolution
 - Output formatted in 12-, 10- or 8-bit right-justified format
 - Single or continuous conversion (automatic return to idle after single conversion)
 - Operation in low-power modes for lower noise operation
 - Asynchronous clock source for lower noise operation
 - Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value
 - On-chip temperature sensor
- Flexible timer/pulse-width modulators (FTM)
 - 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned
 - Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode
 - Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs)
 - Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal)
 - Deadtime insertion is available for each complementary pair
 - The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers
 - Generation of the triggers to ADC (hardware trigger)
 - A fault input for global fault control
 - Backwards compatible with TPM
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Two channels, each channel may be input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt
- Cyclic redundancy check (CRC) generator
 - High speed hardware CRC generator circuit using 16-bit shift register
 - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
 - Error detection for all single, double, odd, and most multi-bit errors
 - Programmable initial seed value
- Analog comparators (ACMP)
 - Full rail to rail supply operation
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to allow comparator output to be visible on a pin, ACMPxO

- Double-buffered transmit and receive
- Serial clock phase and polarity options
- Slave select output
- Selectable MSB-first or LSB-first shifting
- 16-bit and FIFO operations in SPI2
- Input/Output
 - 69 GPIOs
 - 8 keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins
 - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51AC256AVFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256BVFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256AVLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256BVLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	-40°C to 105°C
MCF51AC256AVPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	-40°C to 105°C
MCF51AC256BVPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	-40°C to 105°C
MCF51AC128AVFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	-40°C to 105°C
MCF51AC128CVFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	-40°C to 105°C
MCF51AC128AVLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 105°C
MCF51AC128CVLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	-40°C to 105°C
MCF51AC128AVPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	-40°C to 105°C
MCF51AC128CVPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	-40°C to 105°C
MCF51AC256ACFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256BCFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	-40°C to 85°C
MCF51AC256ACLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	-40°C to 85°C
MCF51AC256BCLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	-40°C to 85°C

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

Table 3. Orderable Part Number Summary

MCF51AC256ACPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCFGE	MCF51AC256 ColdFire Microcontroller without CAN	256/32	44 LQFP	–40°C to 85°C
MCF51AC128ACFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 85°C
MCF51AC128CCFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 85°C
MCF51AC128ACLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 85°C
MCF51AC128CCLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 85°CC
MCF51AC128ACPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 85°C
MCF51AC128CCPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 85°C
MCF51AC128CCFGE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	44 LQFP	–40°C to 85°C

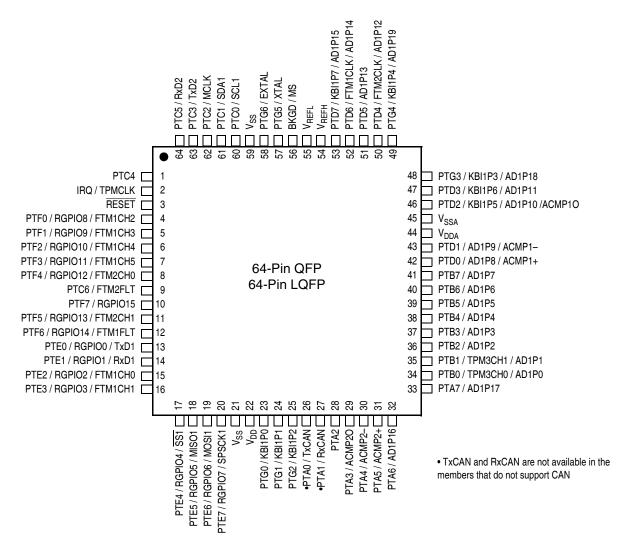


Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP

Figure 4 shows the pinout of the 44-pin LQFP.

Table 4. Pin Availability by Package Pin-Count (continued)

Pir	n Num	ber	Lowe	est < Pric	ority> Hi	ghest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
8	8	6	PTF4	RGPIO12	FTM2CH0	
9	9	_	PTC6	FTM2FLT		
10	10	_	PTF7	RGPIO15		
11	11	7	PTF5	RGPIO13	FTM2CH1	
12	12	_	PTF6	RGPIO14	FTM1FLT	
13		_	PTJ0	PST0		
14		_	PTJ1	PST1		
15		_	PTJ2	PST2		
16		_	PTJ3	PST3		
17	13	8	PTE0	RGPIO0	TxD1	
18	14	9	PTE1	RGPIO1	RxD1	
19	15	10	PTE2	RGPIO2	FTM1CH0	
20	16	11	PTE3	RGPIO3	FTM1CH1	
21	17	12	PTE4	RGPIO4	SS1	
22	18	13	PTE5	RGPIO5	MISO1	
23	19	14	PTE6	RGPIO6	MOSI1	
24	20	15	PTE7	RGPI07	SPSCK1	
25	21	16	V_{SS}			
26	22	17	V_{DD}			
27	_	_	PTJ4	DDATA0		
28	_	_	PTJ5	DDATA1		
29	_	_	PTJ6	DDATA2		
30	_	_	PTJ7	DDATA3		
31	23	18	PTG0	KBI1P0		
32	24	19	PTG1	KBI1P1		
33	25	20	PTG2	KBI1P2		
34	26	21	PTA0	TxCAN ²		
35	27	22	PTA1	RxCAN ³		
36	28	_	PTA2			
37	29	_	PTA3	ACMP2O		
38	30	_	PTA4	ACMP2-		
39	31	_	PTA5	ACMP2+		
40	32	_	PTA6	AD1P16		
41	33	_	PTA7	AD1P17		
42	_	_	PTH0	FTM2CH2	AD1P20	
43	_	_	PTH1	FTM2CH3	PSTCLK0	AD1P21
44	_	_	PTH2	FTM2CH4	PSTCLK1	AD1P22
45	_	_	PTH3	FTM2CH5	BKPT	AD1P23
46	34	23	PTB0	TPM3CH0	AD1P0	
47	35	24	PTB1	TPM3CH1	AD1P1	
48	36	25	PTB2	AD1P2		

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

Table 4. Pin Availability by Package Pin-Count (continued)

Pir	n Num	Number Lowest < Priority> Highest				
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
49	37	26	PTB3	AD1P3		
50	38	_	PTB4	AD1P4		
51	39	_	PTB5	AD1P5		
52	40	_	PTB6	AD1P6		
53	41	_	PTB7	AD1P7		
54	42	27	PTD0	AD1P8	ACMP1+	
55	43	28	PTD1	AD1P9	ACMP1-	
56	44	29	V_{DDA}			
57	45	30	V_{SSA}			
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10
59	47	32	PTD3	KBI1P6	AD1P11	
60	48	33	PTG3	KBI1P3	AD1P18	
61	49	_	PTG4	KBI1P4	AD1P19	
62	50	_	PTD4	FTM2CLK	AD1P12	
63	51	_	PTD5	AD1P13		
64	52	_	PTD6	FTM1CLK	AD1P14	
65	53	_	PTD7	KBI1P7	AD1P15	
66	54	34	V_{REFH}			
67	55	35	V_{REFL}			
68	56	36	BKGD	MS		
69	57	37	PTG5	XTAL		
70	58	38	PTG6	EXTAL		
71	59	39	V_{SS}			
72	_	_	V_{DD}			
73	60	40	PTC0	SCL1		
74	61	41	PTC1	SDA1		
75			PTH4	SPCK2		
76			PTH5	MOSI2		
77			PTH6	MISO2		
78	62	42	PTC2	MCLK		
79	63	43	PTC3	TxD2		
80	64	44	PTC5	RxD2	_	

TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

² TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_A + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
3	Р	Output low voltage — Low Drive (PTxDSn = 0) 5 V, I_{Load} = 4 mA 3 V, I_{Load} = 2 mA 5 V, I_{Load} = 2 mA 3 V, I_{Load} = 1 mA	\ \	_	_	1.5 1.5 0.8 0.8	V
J	•	Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V, } I_{\text{Load}} = 15 \text{ mA} \\ 3 \text{ V, } I_{\text{Load}} = 8 \text{ mA} \\ 5 \text{ V, } I_{\text{Load}} = 8 \text{ mA} \\ 3 \text{ V, } I_{\text{Load}} = 4 \text{ mA} \\ \end{cases}$	A	_	_	1.5 1.5 0.8 0.8	·
4	С	Output high current — Max total I _{OH} for all ports 5\ 3\		_	_	100 60	mA
5	С	Output low current — Max total I _{OL} for all ports 5 \ 3 \		_	_	100 60	mA
6	Р	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	_	_	V
7	Р	Input low voltage; all digital inputs	V _{IL}	_	_	$0.35 \times V_{DD}$	V
8	D	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$	_	_	mV
9	Р	Input leakage current; input only pins ²	II _{In} I	_	0.1	1	μΑ
10	Р	High impedance (off-state) leakage current ²	II _{OZ} I	_	0.1	1	μΑ
11	Р	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Р	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input capacitance; all non-supply pins	C _{In}	_	_	8	pF
14	Р	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
15	D	POR rearm time	t _{POR}	10	_	_	μS
16	Р	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising		4.2 4.27	4.35 4.4	4.5 4.6	V
17	Р	Low-voltage detection threshold — low range $V_{DD} \text{ falling } \\ V_{DD} \text{ rising } \\ V_{D$	V _{LVDL}	2.48 2.5	2.68 2.7	2.7 2.72	V
18	Р	Low-voltage warning threshold — high range ${\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm rising} \\ {\rm V_{DD}} \ {\rm rising}$		4.2 4.27	4.4 4.45	4.5 4.6	V
19	Р	Low-voltage warning threshold low range ${\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm rising} \\$		2.48 2.5	2.68 2.7	2.7 2.72	V
20	Т	Low-voltage inhibit reset/recover hysteresis 5 \ 3 \		_	100 60	_	mV
21	D	RAM retention voltage	V_{RAM}	_	0.6	1.0	V

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

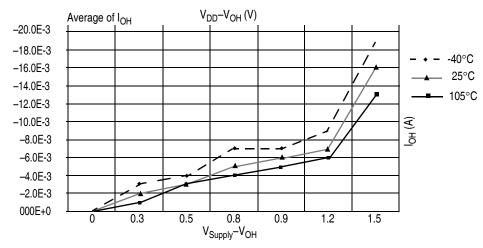


Figure 6. Typical I_{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD}=3$ V (High Drive, PTxDSn = 1)

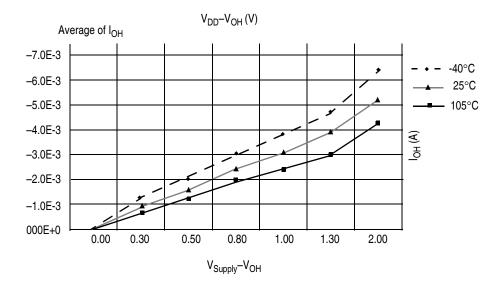


Figure 7. Typical I_{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD}=5$ V (Low Drive, PTxDSn = 0)

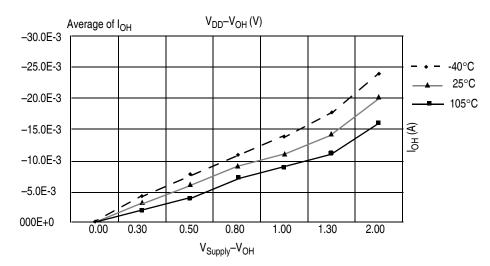


Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter		Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit			
			2 MHz		5	2.27	_				
			Z IVIMZ		3.3	2.24					
			4 MHz		5	3.67	_				
1	Т	Run supply current measured at	4 IVITIZ		3.3	3.64	_				
ı	'	FEI mode, all modules off, system clock at:	8 MHz		5	6.55					
			O IVITIZ		3.3	6.54					
			16 MHz		5	11.90	_				
			TO IVII IZ		3.3	11.85					
			2 MHz		5	3.28	_				
			Z IVII IZ		3.3	3.26					
		/ M⊔-		5	4.33						
2	Т	Run supply current measured at FEI mode, all modules on, system clock at:	4 MHz		3.3	4.32					
۷	'		8 MHz		5	8.17		mA			
					3.3	8.05					
			16 MHz		5	14.8	_				
				RI _{DD}	3.3	14.74					
		Burnal	2 MHz		5	3.28		IIIA			
				2 1011 12		3.3	3.26				
			Dun sunahu sunahusan sadah	Dun ounnly ourrent moony and at	4 MHz	4 MHz	4 MHz		5	4.69	
3	Т	Run supply current measured at FBE mode, all modules off	4 IVITZ		3.3	4.67					
		(RANGE = 1, HGO = 0), system	8 MHz		5	7.48	_				
		clock at:	O IVII IZ		3.3	7.46	_				
			16 MHz		5	13.10	_				
			TO IVII IZ		3.3	13.07	_				
			2 MHz		5	3.64	_				
			Z IVII 1Z		3.3	3.63					
		D	4 MHz		5	5.38	_				
4	Т	Run supply current measured at FBE mode, all modules on	₩ IVII IZ		3.3	5.35	_				
		(RANGE = 1, HGO = 0), system	8 MHz		5	8.65	_				
		clock at:	O IVITZ		3.3	8.64	_				
			16 M⊔-		5	15.55	_				
			16 MHz		3.3	15.40					

2.8 ADC Characteristics

Table 13. 5 Volt 12-bit ADC Operating Conditions

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	D		Absolute	V_{DDA}	2.7	_	5.5	٧	
1	D	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
2	D	Ground voltage	Delta to V _{SS} $(V_{SS} - V_{SSA})^2$	ΔV _{SSA}	-100	0	100	mV	
3	D	Reference voltage high		V _{REFH}	2.7	V_{DDA}	V _{DDA}	٧	
4	D	Reference voltage low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	٧	
5	D	Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
6	С	Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
7	С	Input resistance		R _{ADIN}	_	3	5	kΩ	
	С		12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz				2 5		
8	С	Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		5 10	kΩ	External to MCU
	С		8-bit mode (all valid f _{ADCK})		_	_	10		
9	D	ADC conversion	High speed (ADLPC = 0)		0.4	_	8.0	MHz	
9	D	clock frequency	Low power (ADLPC = 1)	f _{ADCK}	0.4	_	4.0	- MHz	

Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

- Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes
- Based on input pad leakage current. Refer to pad electricals.

External Oscillator (XOSC) Characteristics 2.9

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fil} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz
2	—	Load capacitors	C ₁ C ₂		e crystal o acturer's re		
3	_	Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F		10 1		МΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0	 0 10 20	kΩ
5	Т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO	_ _ _ _	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0	_ _ _	5 16 40	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

Freescale Semiconductor 31

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

Control Timing 2.11.1

Table 17. Control Timing

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	800	_	1500	μS
3	D	External reset pulse width ² $(t_{cyc} = 1/f_{Self_reset})$	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$66 \times t_{cyc}$	_		ns
5	D	Active background debug mode latch setup time	t _{MSSU}	500	_	_	ns
6	D	Active background debug mode latch hold time	t _{MSH}	100	-	_	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	D	Port rise and fall time (load = 50 pF) ⁴ Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive	t _{Rise} , t _{Fall}	_ _ _ _	11 35 40 75	_	ns

Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

 $^{^4}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40 $^{\circ}C$ to 105 $^{\circ}C$.

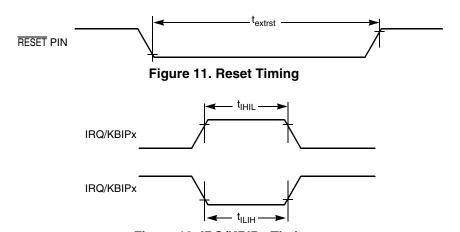


Figure 12. IRQ/KBIPx Timing

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 34 Freescale Semiconductor

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 18. TPM/FTM Input Timing

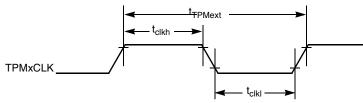


Figure 13. Timer External Clock

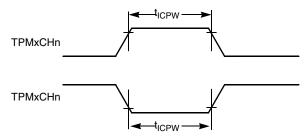
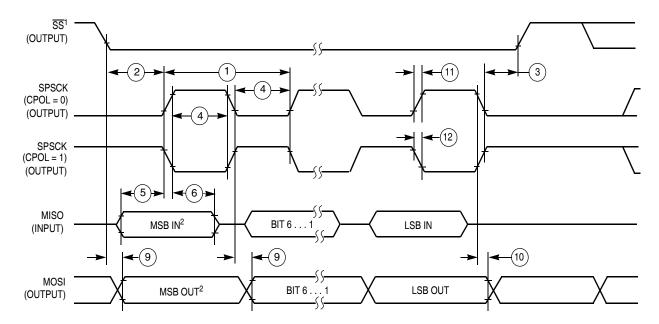


Figure 14. Timer Input Capture Pulse

2.11.3 MSCAN

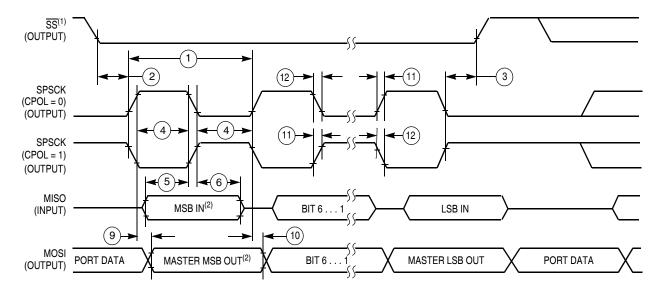
Table 19. MSCAN Wake-Up Pulse Characteristics


Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	_	_	2	μS
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	_	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

Freescale Semiconductor 35

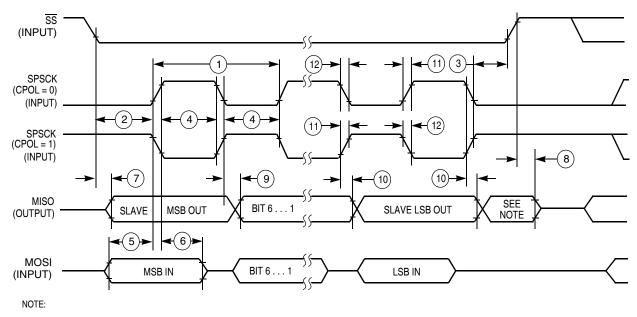
MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7



NOTES:

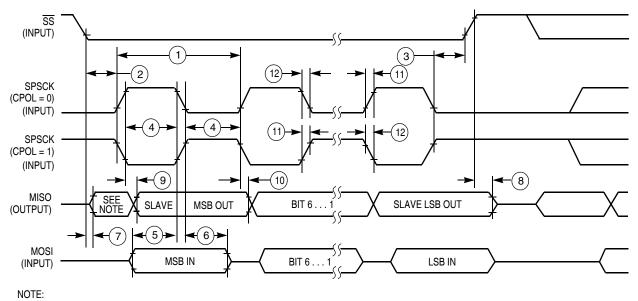
- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)



NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.


Figure 16. SPI Master Timing (CPHA =1)

1. Not defined but normally MSB of character just received

Figure 17. SPI Slave Timing (CPHA = 0)

1. Not defined but normally LSB of character just received

Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see Chapter 4, "Memory."

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	_	Supply voltage for program/erase	V _{prog/erase}	2.7	_	5.5	V
2	_	Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
3		Internal FCLK frequency ²	f _{FCLK}	150	_	200	kHz
4		Internal FCLK period (1/FCLK)	t _{Fcyc}	5	_	6.67	μS
5		Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6		Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7		Page erase time ³	t _{Page}	4000		t _{Fcyc}	
8		Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	О	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to 105 °C $T = 25$ °C	_	10,000 —	 100,000		cycles
10	С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 21. Flash Characteristics

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile Memory.

Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.