E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	256КВ (256К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51ac256bcfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51AC256 series is summarized in Table 1.

Table 1. MCF51AC256 Series Device Comparison

Fasture	MCF51	AC256A	МС	F51AC2	56B	MCF51AC128A		MCF51AC128C		28C
Feature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
Flash memory size (Kbytes)			256				I	128	I	
RAM size (Kbytes)			32					32 or 16 ¹		
V1 ColdFire core with BDM (background debug module)					١	⁄es				
ACMP1 (analog comparator)					١	⁄es				
ACMP2 (analog comparator)	Ye	es	Ye	es	No		Y	es		No
ADC (analog-to-digital converter) channels (12-bit)	24	20	24	20	9	24	20	24	20	9
CAN (controller area network)	Ye	es		No		Ye	es		No	
COP (computer operating properly)					١	⁄es				
CRC (cyclic redundancy check)					١	⁄es				
RTI	Yes									
DBG (debug)					١	⁄es				
IIC1 (inter-integrated circuit)					У	⁄es				
IRQ (interrupt request input)					١	⁄es				
INTC (interrupt controller)					١	⁄es				
KBI (keyboard interrupts)					١	⁄es				
LVD (low-voltage detector)					١	⁄es				
MCG (multipurpose clock generator)					١	⁄es				
OSC (crystal oscillator)					١	⁄es				
Port I/O ²	69	54	69	54	36	69	54	69	54	36
RGPIO (rapid general-purpose I/O)		1	6		12		1	16		12
SCI1, SCI2 (serial communications interfaces)	ations Yes									
SPI1 (serial peripheral interface)					١	⁄es				
SPI2 (serial peripheral interface)	Yes	No	Yes	Ν	lo	Yes	No	Yes	N	0
FTM1 (flexible timer module) channels		(6		4		(6	-	4
FTM2 channels	6	2	6	2	2	6	2	6	2	2

1.3 Features

Table 2 describes the functional units of the MCF51AC256 series. Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1_INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

- Double-buffered transmit and receive
- Serial clock phase and polarity options
- Slave select output
- Selectable MSB-first or LSB-first shifting
- 16-bit and FIFO operations in SPI2
- Input/Output
 - 69 GPIOs
 - 8 keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins
 - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

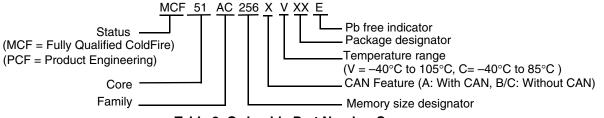


 Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51AC256AVFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256BVFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256AVLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256BVLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256AVPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC256BVPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC128AVFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 105°C
MCF51AC128CVFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 105°C
MCF51AC128AVLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 105°C
MCF51AC128CVLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 105°C
MCF51AC128AVPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 105°C
MCF51AC128CVPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 105°C
MCF51AC256ACFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256BCFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256ACLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 85°C
MCF51AC256BCLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	-40°C to 85°C

MCF51AC256ACPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCFGE	MCF51AC256 ColdFire Microcontroller without CAN	256/32	44 LQFP	–40°C to 85°C
MCF51AC128ACFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 85°C
MCF51AC128CCFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 85°C
MCF51AC128ACLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 85°C
MCF51AC128CCLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 85°CC
MCF51AC128ACPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 85°C
MCF51AC128CCPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 85°C
MCF51AC128CCFGE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	44 LQFP	–40°C to 85°C

Table 3. Orderable Part Number Summary

Pir	Pin Number Lowest < Priority> Highest					ghest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
8	8	6	PTF4	RGPIO12	FTM2CH0	
9	9	—	PTC6	FTM2FLT		
10	10	_	PTF7	RGPIO15		
11	11	7	PTF5	RGPIO13	FTM2CH1	
12	12	—	PTF6	RGPIO14	FTM1FLT	
13	_	—	PTJ0	PST0		
14		_	PTJ1	PST1		
15	_	_	PTJ2	PST2		
16	_	_	PTJ3	PST3		
17	13	8	PTE0	RGPIO0	TxD1	
18	14	9	PTE1	RGPIO1	RxD1	
19	15	10	PTE2	RGPIO2	FTM1CH0	
20	16	11	PTE3	RGPIO3	FTM1CH1	
21	17	12	PTE4	RGPIO4	SS1	
22	18	13	PTE5	RGPIO5	MISO1	
23	19	14	PTE6	RGPIO6	MOSI1	
24	20	15	PTE7	RGPIO7	SPSCK1	
25	21	16	V _{SS}			
26	22	17	V _{DD}			
27	_	_	PTJ4	DDATA0		
28	_	_	PTJ5	DDATA1		
29	—	—	PTJ6	DDATA2		
30	—	—	PTJ7	DDATA3		
31	23	18	PTG0	KBI1P0		
32	24	19	PTG1	KBI1P1		
33	25	20	PTG2	KBI1P2		
34	26	21	PTA0	TxCAN ²		
35	27	22	PTA1	RxCAN ³		
36	28	-	PTA2			
37	29		PTA3	ACMP2O		
38	30		PTA4	ACMP2-		
39	31		PTA5	ACMP2+		
40	32	—	PTA6	AD1P16		
41	33	—	PTA7	AD1P17		
42			PTH0	FTM2CH2	AD1P20	
43	—	—	PTH1	FTM2CH3	PSTCLK0	AD1P21
44	—	—	PTH2	FTM2CH4	PSTCLK1	AD1P22
45	—	—	PTH3	FTM2CH5	BKPT	AD1P23
46	34	23	PTB0	TPM3CH0	AD1P0	
47	35	24	PTB1	TPM3CH1	AD1P1	
48	36	25	PTB2	AD1P2		

Table 4. Pin Availability by Package Pin-Count (continued)

Pir	n Num	ber	Low	Lowest < Priority> Highest			
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3	
49	37	26	PTB3	AD1P3			
50	38		PTB4	AD1P4			
51	39	—	PTB5	AD1P5			
52	40	—	PTB6	AD1P6			
53	41	—	PTB7	AD1P7			
54	42	27	PTD0	AD1P8	ACMP1+		
55	43	28	PTD1	AD1P9	ACMP1-		
56	44	29	V _{DDA}				
57	45	30	V _{SSA}				
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10	
59	47	32	PTD3	KBI1P6	AD1P11		
60	48	33	PTG3	KBI1P3	AD1P18		
61	49	—	PTG4	KBI1P4	AD1P19		
62	50		PTD4	FTM2CLK	AD1P12		
63	51	—	PTD5	AD1P13			
64	52	—	PTD6	FTM1CLK	AD1P14		
65	53	—	PTD7	KBI1P7	AD1P15		
66	54	34	V _{REFH}				
67	55	35	V _{REFL}				
68	56	36	BKGD	MS			
69	57	37	PTG5	XTAL			
70	58	38	PTG6	EXTAL			
71	59	39	V _{SS}				
72	_	—	V _{DD}				
73	60	40	PTC0	SCL1			
74	61	41	PTC1	SDA1			
75	—	—	PTH4	SPCK2			
76	—	—	PTH5	MOSI2			
77	—	—	PTH6	MISO2			
78	62	42	PTC2	MCLK			
79	63	43	PTC3	TxD2			
80	64	44	PTC5	RxD2			

Table 4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

 2 TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	۱ _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Maximum junction temperature		Т _Ј	150	°C
Thermal resistance 1,2,3,4				
80-pin LQFP 64-pin LQFP 64-pin QFP	1s 2s2p 1s 2s2p	θյΑ	51 38 59 41	°C/W
44-pin LQFP	1s 2s2p 1s 2s2p		50 36 67 45	

Table 7. Thermal Characteristics

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A =$ Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulse per pin	—	3	
Charge device	Series resistance	R1	0	Ω
model	Storage capacitance	С	0	pF
Charge device Series resistance	Number of pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	_	7.5	V

Table 8. ESD and Latch-up Test Conditions

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 85 \ ^\circ C$	I _{LAT}	±100		mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	—	Operating voltage		2.7		5.5	V
2	Р	Output high voltage — Low drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = -4 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -2 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = -2 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -1 \text{ mA}$ Output high voltage — High drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{Load} = -15 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -8 \text{ mA}$	V _{OH}	$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$ $V_{DD} - 1.5$ $V_{DD} - 1.5$			v
		$5 \text{ V}, I_{\text{Load}} = -8 \text{ mA}$ $5 \text{ V}, I_{\text{Load}} = -8 \text{ mA}$ $3 \text{ V}, I_{\text{Load}} = -4 \text{ mA}$		V _{DD} – 0.8 V _{DD} – 0.8	—	—	

Table 10. DC Characteristics

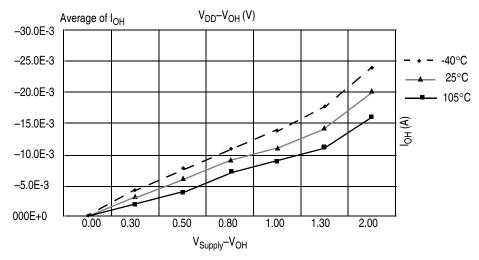


Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit									
			2 MHz		5	2.27										
					3.3	2.24										
			4 MHz		5	3.67	—									
1	т	Run supply current measured at			3.3	3.64										
1		FEI mode, all modules off, system clock at:	0 1411-		5	6.55										
			8 MHz		3.3	6.54	—									
					5	11.90										
			16 MHz		3.3	11.85										
					5	3.28	_									
			2 MHz		3.3	3.26	_									
				-	5	4.33	_	-								
	- -	Run supply current measured at			3.3	4.32	_	-								
2	Т	FEI mode, all modules on, system clock at:		_	1											
					3.3	8.05 —	_									
			16 MHz	RI _{DD}	5	14.8	_									
					3.3	14.74	_									
			2 MHz		5	3.28	_	mA								
									2 MHZ				3.3	3.26	_	-
									5	4.69	_	-				
3	т	Run supply current measured at FBE mode, all modules off	4 MHz		3.3	4.67	_	-								
		(RANGE = 1, HGO = 0), system	0.0411-		5	7.48	_	-								
		clock at:	8 MHz		3.3	7.46	_	-								
				-	5	13.10	_	-								
			16 MHz		3.3	13.07	_	-								
			0.0411-		5	3.64	_	-								
			2 MHz		3.3	3.63	_	-								
			4 6411-		5	5.38	_									
4	т	Run supply current measured at FBE mode, all modules on	4 MHz		3.3	5.35	_									
		(RANGE = 1, HGO = 0), system	0 1411-		5	8.65	_									
		clock at:	8 MHz		3.3	8.64	_									
					5	15.55	_									
			16 MHz		3.3	15.40	_									

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	_	Conversion	Short sample (ADLSMP = 0)		_	20		ADCK	See
7	Р	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}	_	40	_	cycles	Table 10 for
	Ŧ		Short sample (ADLSMP = 0)		_	3.5	_	ADCK	conversion time
8	Т	Sample time	Long sample (ADLSMP = 1)	t _{ADS}	_	23.5	_	cycles	variances
	Т	Total	12-bit mode		_	±3.0	_		Includes
9	Р	unadjusted	10-bit mode	E _{TUE}	_	±1	±2.5	LSB ²	quantizatio
	Т	error	8-bit mode		_	±0.5	±1.0		n
	Т		12-bit mode		_	±1.75	_		
10	Р	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²	
	Т	non-inearity	8-bit mode ³		_	±0.3	±0.5		
	Т	Integral non-linearity	12-bit mode	INL		±1.5		LSB ²	
11	Т		10-bit mode			±0.5	±1.0		
	Т		8-bit mode			±0.3	±0.5		
	Т		12-bit mode	E _{ZS}		±1.5			V _{ADIN} = V _{SSA}
12	Р	Zero-scale error	10-bit mode			±0.5	±1.5	LSB ²	
	Т		8-bit mode			±0.5	±0.5		
	Т		12-bit mode			±1			V _{ADIN} = V _{DDA}
13	Р	Full-scale error	10-bit mode	E _{FS}		±0.5	±1	LSB ²	
	Т		8-bit mode			±0.5	±0.5		
			12-bit mode			-1 to 0			
14	D	Quantization error	10-bit mode	EQ		—	±0.5	LSB ²	
			8-bit mode			_	±0.5	1	
			12-bit mode			±1			Pad
15 D	D	Input leakage error	10-bit mode	E _{IL}		±0.2	±2.5	LSB ²	leakage ⁴ *
			8-bit mode	1	_	±0.1	±1	1	R _{AS}
16	D	Temp sensor voltage	25°C	V _{TEMP25}	_	1.396	_	V	
17	P	Temp sensor	–40 °C–25 °C	~	—	3.266	—	m\//°C	
17 D	ע ו	slope	25 °C–85 °C	m		3.638		mV/°C	1

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{\text{N}}$.

³ Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes

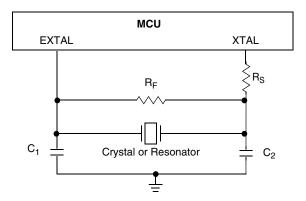
⁴ Based on input pad leakage current. Refer to pad electricals.

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Мах	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz MHz
2		Load capacitors	C ₁ C ₂		e crystal o acturer's ree		
3		Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F		10 1		MΩ
4		Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	t CSTL-LP ÇSTL-HGO CSTH-LP t CSTH-HGO		200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.


² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

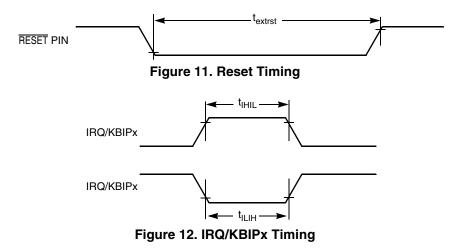
2.10 MCG Specifications

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequency — factory trimmed at $V_{DD} = 5 V$ and temperature = 25 °C		f _{int_ft}	_	32.768	_	kHz
2	С	Average internal reference	frequency — untrimmed	f _{int_ut}	31.25	—	39.0625	kHz
3	Т	Internal reference startup ti	me	t _{irefst}	_	60	100	μs
	С		Low range (DRS=00)		16	—	20	
4	С	DCO output frequency range — untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	—	40	MHz
	С	ango antininoa	High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		_	16.82	_	
5	Ρ	reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	_	33.69	_	MHz
	Ρ	and DMX32 = 1	High range (DRS=10)		_	50.48	_	
6	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed D voltage and temperature	CO output frequency over	Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed D fixed voltage and temperat		Δf_{dco_t}		±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	_	—	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	_	—	1	ms
12	D	Long term jitter of DCO output clock (averaged over 2ms interval) 5		C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	—	55.0	MHz
16	D	Jitter of PLL output clock m	easured over 625 ns ⁶	f _{pll_jitter_625ns}	_	0.566 ⁶	—	%f _{pll}
17	D	Lock entry frequency tolera	ince ⁷	D _{lock}	±1.49	—	±2.98	%

2.11.1 Control Timing

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	—	24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	800	—	1500	μs
3	D	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$66 imes t_{cyc}$	—	_	ns
5	D	Active background debug mode latch setup time	t _{MSSU}	500	—	_	ns
6	D	Active background debug mode latch hold time	t _{MSH}	100	—	_	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	D	Port rise and fall time $(load = 50 \text{ pF})^4$ Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive	t _{Rise} , t _{Fall}	 	11 35 40 75	_	ns


Table 17. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 $\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 18	. TPM/FTM	Input Timing
----------	-----------	--------------

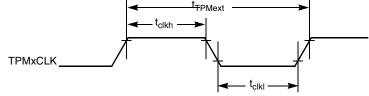


Figure 13. Timer External Clock

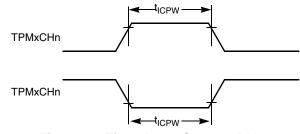


Figure 14. Timer Input Capture Pulse

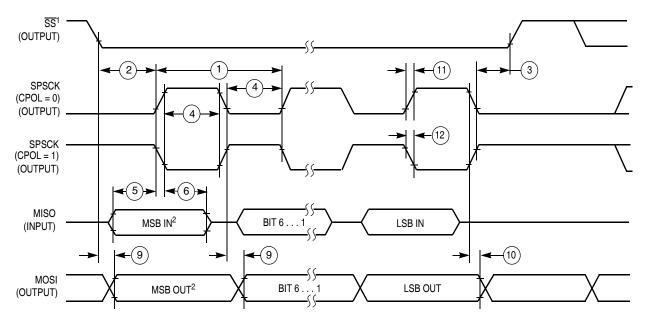
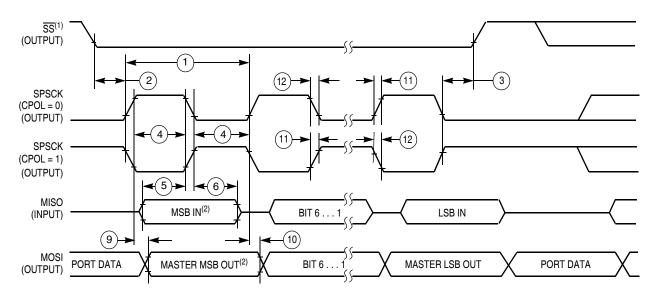

2.11.3 MSCAN

Table 19. MSCAN Wake-Up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	_	—	2	μs
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	—	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

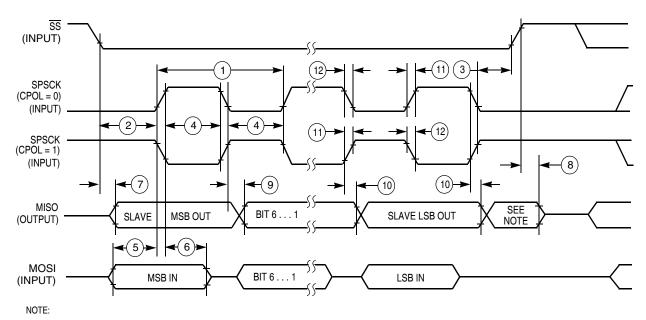


NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)


NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI Master Timing (CPHA =1)

1. Not defined but normally MSB of character just received

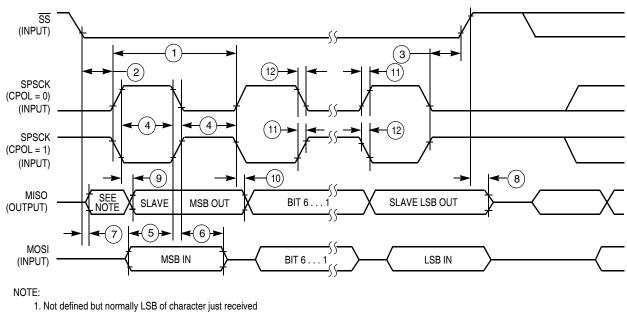


Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see Chapter 4, "Memory."

4 Revision History

Table 23. Revision History

Revision	Description
1	Initial published
2	Updated ADC channels, Item 1, 4-5 on Table 2.10
3	Completed all theTBDs. Changed RTC to RTI in Figure 1. Corrected the block diagram. Changed V_{DDAD} to V_{DDA} , V_{SSAD} to V_{SSA} . Added charge device model data and removed machine data in Table 8. Updated the specifications of V_{LVDH} , V_{LVDL} , V_{LVWH} and V_{LVWL} in Table 10. Updated S2I _{DD} , S3I _{DD} in Table 11. Added C column in Table 14. Updated f _{dco_DMX32} in Table 16.
4	Corrected the expansion of SPI to serial peripheral interface.
5	Updated V _{LVDL} in the Table 10. Updated RI _{DD} in the Table 11.
6	Updated V_{LVDH} , V_{LVDL} , V_{LVWH} and V_{LVWL} in the Table 10. Added LPO on the Figure 1 and LPO features in the Section 1.3, "Features."
7	Added 44-pin LQFP package information for AC256 and AC128.