

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51ac128aclke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51AC256 series is summarized in Table 1.

Table 1. MCF51AC256 Series Device Comparison

Fasture	MCF51	AC256A	MCF51AC256B			MCF51AC128A		MCF51AC128C		
Feature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
Flash memory size (Kbytes)			256				I	128	I	
RAM size (Kbytes)			32					32 or 16 ¹		
V1 ColdFire core with BDM (background debug module)					١	⁄es				
ACMP1 (analog comparator)					١	⁄es				
ACMP2 (analog comparator)	Ye	es	Ye	es	No		Y	es		No
ADC (analog-to-digital converter) channels (12-bit)	24	20	24	20	9	24	20	24	20	9
CAN (controller area network)	Ye	es		No		Ye	es		No	
COP (computer operating properly)					١	/es				
CRC (cyclic redundancy check)		Yes								
RTI	Yes									
DBG (debug)	Yes									
IIC1 (inter-integrated circuit)	Yes									
IRQ (interrupt request input)					١	⁄es				
INTC (interrupt controller)					١	⁄es				
KBI (keyboard interrupts)					١	⁄es				
LVD (low-voltage detector)	Yes									
MCG (multipurpose clock generator)					١	⁄es				
OSC (crystal oscillator)					١	⁄es				
Port I/O ²	69	54	69	54	36	69	54	69	54	36
RGPIO (rapid general-purpose I/O)		1	6		12		1	6		12
SCI1, SCI2 (serial communications interfaces)	Yes									
SPI1 (serial peripheral interface)		Yes								
SPI2 (serial peripheral interface)	Yes	No	Yes N		lo	Yes	No	Yes	N	0
FTM1 (flexible timer module) channels		(6		4		(6	-	4
FTM2 channels	6	2	6	2	2	6	2	6	2	2

1.3 Features

Table 2 describes the functional units of the MCF51AC256 series. Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1_INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

- Trimmable internal reference allows 0.2% resolution and 2% deviation
- Analog-to-digital converter (ADC)
 - 24 analog inputs with 12 bits resolution
 - Output formatted in 12-, 10- or 8-bit right-justified format
 - Single or continuous conversion (automatic return to idle after single conversion)
 - Operation in low-power modes for lower noise operation
 - Asynchronous clock source for lower noise operation
 - Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value
 - On-chip temperature sensor
- Flexible timer/pulse-width modulators (FTM)
 - 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned
 - Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode
 - Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs)
 - Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal)
 - Deadtime insertion is available for each complementary pair
 - The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers
 - Generation of the triggers to ADC (hardware trigger)
 - A fault input for global fault control
 - Backwards compatible with TPM
- Timer/pulse width modulator (TPM)
 - 16-bit free-running or modulo up/down count operation
 - Two channels, each channel may be input capture, output compare, or edge-aligned PWM
 - One interrupt per channel plus terminal count interrupt
- Cyclic redundancy check (CRC) generator
 - High speed hardware CRC generator circuit using 16-bit shift register
 - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
 - Error detection for all single, double, odd, and most multi-bit errors
 - Programmable initial seed value
- Analog comparators (ACMP)
 - Full rail to rail supply operation
 - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
 - Option to compare to fixed internal bandgap reference voltage
 - Option to allow comparator output to be visible on a pin, ACMPxO

- Inter-integrated circuit (IIC)
 - Compatible with IIC bus standard
 - Multi-master operation
 - Software programmable for one of 64 different serial clock frequencies
 - Interrupt driven byte-by-byte data transfer
 - Arbitration lost interrupt with automatic mode switching from master to slave
 - Calling address identification interrupt
 - Bus busy detection
 - 10-bit address extension
- Controller area network (CAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Standard and extended data frames
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbps
 - Support for remote frames
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable listen-only mode for monitoring of CAN bus
 - Programmable bus-off recovery functionality
 - Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off)
 - Internal timer for time-stamping of received and transmitted messages
- Serial communications interfaces (SCI)
 - Full-duplex, standard non-return-to-zero (NRZ) format
 - Double-buffered transmitter and receiver with separate enables
 - Programmable baud rates (13-bit modulo divider)
 - Interrupt-driven or polled operation
 - Hardware parity generation and checking
 - Programmable 8-bit or 9-bit character length
 - Receiver wakeup by idle-line or address-mark
 - Optional 13-bit break character generation / 11-bit break character detection
 - Selectable transmitter output polarity
- Serial peripheral interfaces (SPI)
 - Master or slave mode operation
 - Full-duplex or single-wire bidirectional option
 - Programmable transmit bit rate

MCF51AC256ACPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCFGE	MCF51AC256 ColdFire Microcontroller without CAN	256/32	44 LQFP	–40°C to 85°C
MCF51AC128ACFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 85°C
MCF51AC128CCFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 85°C
MCF51AC128ACLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 85°C
MCF51AC128CCLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 85°CC
MCF51AC128ACPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 85°C
MCF51AC128CCPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 85°C
MCF51AC128CCFGE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	44 LQFP	–40°C to 85°C

Table 3. Orderable Part Number Summary

1.5 Pinouts and Packaging

Figure 2 shows the pinout of the 80-pin LQFP.

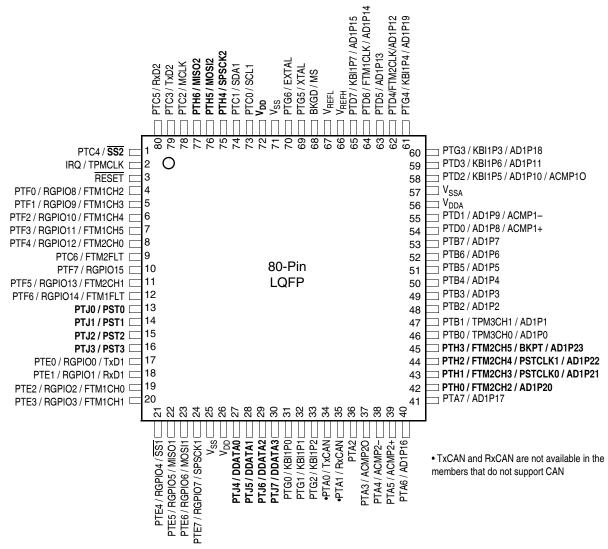


Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

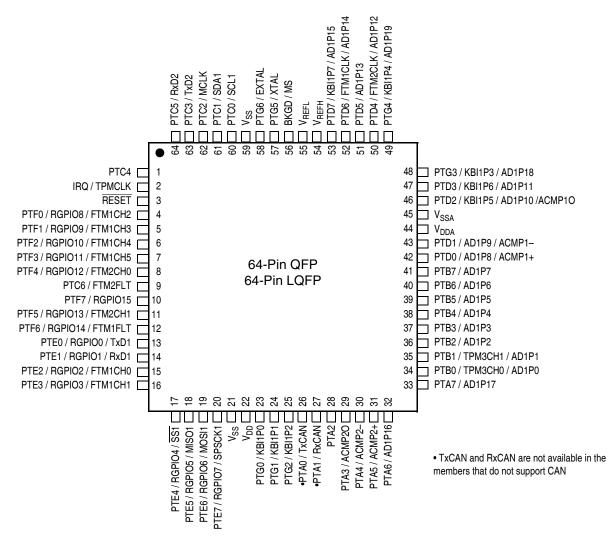


Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP

Figure 4 shows the pinout of the 44-pin LQFP.

Pir	n Num	ber	Low	est < Prio	ority> Hi	ghest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
8	8	6	PTF4	RGPIO12	FTM2CH0	
9	9	—	PTC6	FTM2FLT		
10	10	_	PTF7	RGPIO15		
11	11	7	PTF5	RGPIO13	FTM2CH1	
12	12	—	PTF6	RGPIO14	FTM1FLT	
13	_	—	PTJ0	PST0		
14		_	PTJ1	PST1		
15	_	_	PTJ2	PST2		
16	_	_	PTJ3	PST3		
17	13	8	PTE0	RGPIO0	TxD1	
18	14	9	PTE1	RGPIO1	RxD1	
19	15	10	PTE2	RGPIO2	FTM1CH0	
20	16	11	PTE3	RGPIO3	FTM1CH1	
21	17	12	PTE4	RGPIO4	SS1	
22	18	13	PTE5	RGPIO5	MISO1	
23	19	14	PTE6	RGPIO6	MOSI1	
24	20	15	PTE7	RGPIO7	SPSCK1	
25	21	16	V _{SS}			
26	22	17	V _{DD}			
27	_	_	PTJ4	DDATA0		
28	_	—	PTJ5	DDATA1		
29	—	—	PTJ6	DDATA2		
30	—	—	PTJ7	DDATA3		
31	23	18	PTG0	KBI1P0		
32	24	19	PTG1	KBI1P1		
33	25	20	PTG2	KBI1P2		
34	26	21	PTA0	TxCAN ²		
35	27	22	PTA1	RxCAN ³		
36	28	-	PTA2			
37	29		PTA3	ACMP2O		
38	30		PTA4	ACMP2-		
39	31		PTA5	ACMP2+		
40	32	—	PTA6	AD1P16		
41	33	—	PTA7	AD1P17		
42			PTH0	FTM2CH2	AD1P20	
43	—	—	PTH1	FTM2CH3	PSTCLK0	AD1P21
44	—	—	PTH2	FTM2CH4	PSTCLK1	AD1P22
45	—	—	PTH3	FTM2CH5	BKPT	AD1P23
46	34	23	PTB0	TPM3CH0	AD1P0	
47	35	24	PTB1	TPM3CH1	AD1P1	
48	36	25	PTB2	AD1P2		

Table 4. Pin Availability by Package Pin-Count (continued)

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
3	Р	Output low voltage — Low Drive (PTxDSn = 0) 5 V, I_{Load} = 4 mA 3 V, I_{Load} = 2 mA 5 V, I_{Load} = 2 mA 3 V, I_{Load} = 1 mA		_	_	1.5 1.5 0.8 0.8	V
		Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 15 mA 3 V, I _{Load} = 8 mA 5 V, I _{Load} = 8 mA 3 V, I _{Load} = 4 mA		_		1.5 1.5 0.8 0.8	
4	С	Output high current — Max total I _{OH} for all ports 5V 3V		_	_	100 60	mA
5	С	Output low current — Max total I _{OL} for all ports 5 V 3 V		_	_	100 60	mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	—	—	V
7	Ρ	Input low voltage; all digital inputs	V _{IL}	—	—	$0.35 \times V_{DD}$	V
8	D	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$	_	—	mV
9	Ρ	Input leakage current; input only pins ²	ll _{In} l	—	0.1	1	μA
10	Ρ	High impedance (off-state) leakage current ²	I _{OZ}	—	0.1	1	μA
11	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input capacitance; all non-supply pins	C _{In}	—	—	8	pF
14	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
15	D	POR rearm time	t _{POR}	10	—	—	μS
16	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising		4.2 4.27	4.35 4.4	4.5 4.6	V
17	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVDL}	2.48 2.5	2.68 2.7	2.7 2.72	V
18	Ρ	Low-voltage warning threshold — high range V _{DD} falling V _{DD} rising		4.2 4.27	4.4 4.45	4.5 4.6	V
19	Ρ	Low-voltage warning threshold low range V _{DD} falling V _{DD} rising		2.48 2.5	2.68 2.7	2.7 2.72	V
20	Т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V		_	100 60	_	mV
21	D	RAM retention voltage	V _{RAM}	—	0.6	1.0	V

Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
		DC injection current ^{5 6 7 8} (single pin limit) $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$		0 0	_	2 0.2	mA
22		DC injection current (Total MCU limit, includes sum of all stressed pins) V _{IN} >V _{DD} V _{IN} <v<sub>SS</v<sub>	I _{IC}	0 0	_	25 -5	mA

Table 10. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

³ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 6 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ The RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

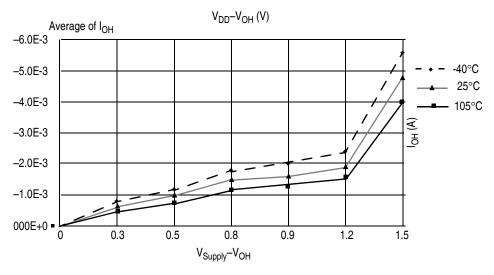


Figure 5. Typical I_{OH} vs. V_{DD}-V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0)

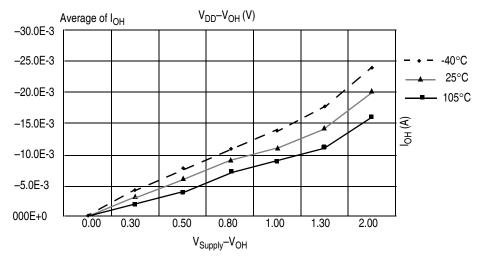


Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

Figure 9. Typical Run I_{DD} vs. System Clock Freq. for FEI and FBE Modes

2.7 Analog Comparator (ACMP) Electricals

Table 12. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1		Supply voltage	V _{DD}	2.7		5.5	V
2	Т	Supply current (active)	I _{DDAC}	—	20	35	μA
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}	_	20	40	mV
5	D	Analog comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	_	_	1.0	μΑ
7	D	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μS
8	Ρ	Bandgap voltage reference factory trimmed at V_{DD} = 5.3248 V, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V



2.8 ADC Characteristics

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment	
	D		Absolute	V _{DDA}	2.7		5.5	V		
1	D	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV		
2	D	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV		
3	D	Reference voltage high		V _{REFH}	2.7	V _{DDA}	V _{DDA}	v		
4	D	Reference voltage low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	v		
5	D	Input voltage		V _{ADIN}	V _{REFL}	_	V_{REFH}	V		
6	С	Input capacitance		C _{ADIN}	_	4.5	5.5	pF		
7	С	Input resistance		R _{ADIN}	_	3	5	kΩ		
	С		12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_		2 5			
8	С	Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_		5 10	kΩ	External to MCU	
	С		8-bit mode (all valid f _{ADCK})		_	_	10			
9	D	ADC conversion	High speed (ADLPC = 0)	f	0.4	_	8.0	MHz		
5	D	clock	clock frequency	Low power (ADLPC = 1)	f _{adck}	0.4	_	4.0		

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

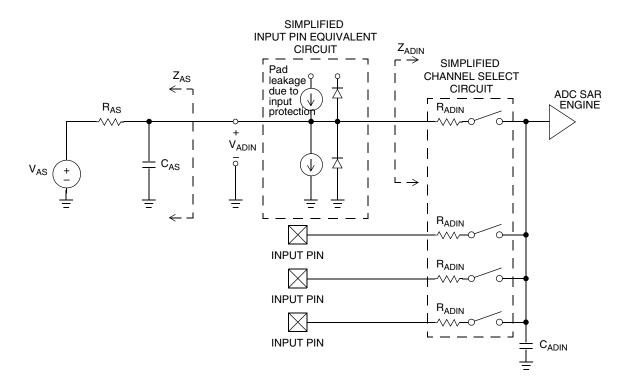
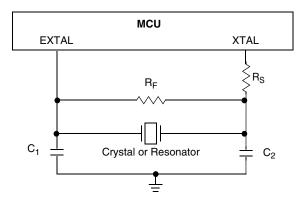



Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μA	
2	т	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}	_	218	_	μA	
3	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	327		μA	
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.582	1	mA	
5	Т	Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA	
		ADC	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5		t _{ADACK} =
6	P	asynchronous clock source	Low power (ADLPC = 1)		1.25	2	3.3	MHz	1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

2.10 MCG Specifications

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequence V _{DD} = 5 V and temperature		f _{int_ft}	_	32.768	_	kHz
2	С	Average internal reference	frequency — untrimmed	f _{int_ut}	31.25	—	39.0625	kHz
3	Т	Internal reference startup ti	t _{irefst}	_	60	100	μs	
	С		Low range (DRS=00)		16	—	20	
4	С	DCO output frequency range — untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	—	40	MHz
	С	ango antininoa	High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		_	16.82	_	
5	Ρ	reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	_	33.69	_	MHz
	Ρ	and DMX32 = 1	High range (DRS=10)		_	50.48	_	
6	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed D voltage and temperature	CO output frequency over	Δf_{dco_t}		0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed D fixed voltage and temperat		Δf_{dco_t}		±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	_	—	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	_	—	1	ms
12	D	Long term jitter of DCO output clock (averaged over 2ms interval) 5		C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	—	55.0	MHz
16	D	Jitter of PLL output clock m	easured over 625 ns ⁶	f _{pll_jitter_625ns}	_	0.566 ⁶	—	%f _{pll}
17	D	Lock entry frequency tolera	ince ⁷	D _{lock}	±1.49	—	±2.98	%

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	—	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 18	. TPM/FTM	Input	Timing
----------	-----------	-------	--------

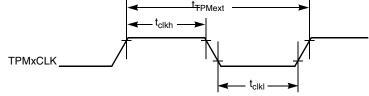


Figure 13. Timer External Clock

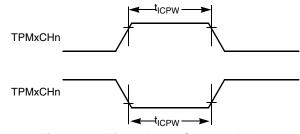


Figure 14. Timer Input Capture Pulse

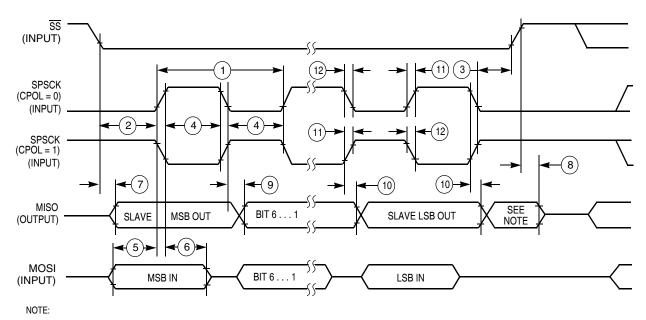

2.11.3 MSCAN

Table 19. MSCAN Wake-Up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	_	—	2	μs
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	—	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

1. Not defined but normally MSB of character just received

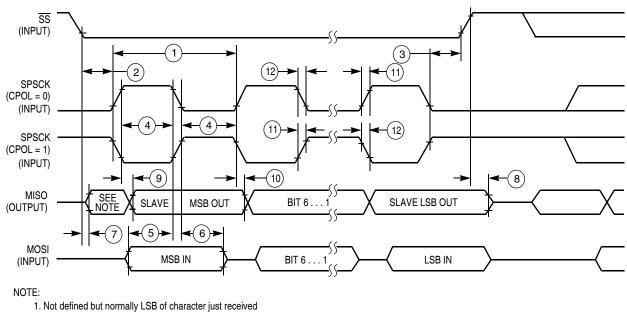


Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see Chapter 4, "Memory."

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	—	Supply voltage for program/erase	V _{prog/erase}	2.7	—	5.5	V
2		Supply voltage for read operation	V _{Read}	2.7	—	5.5	V
3	—	Internal FCLK frequency ²	f _{FCLK}	150	—	200	kHz
4	—	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μs
5	—	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6		Byte program time (burst mode) ²	t _{Burst}	4		t _{Fcyc}	
7	—	Page erase time ³	t _{Page}	4000		t _{Fcyc}	
8	—	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	с	Program/erase endurance ⁴ T_L to $T_H = -40 \text{ °C}$ to 105 °C T = 25 °C	_	10,000	 100,000		cycles
10	С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 21. Flash Characteristics

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.