E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51ac256acpue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1_INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

MCF51AC256 Family Configurations

1.5 Pinouts and Packaging

Figure 2 shows the pinout of the 80-pin LQFP.

Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP

Figure 4 shows the pinout of the 44-pin LQFP.

MCF51AC256 Family Configurations

Pir	n Num	ber	Low	est < Prio	ority> Hi	ighest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
8	8	6	PTF4	RGPIO12	FTM2CH0	
9	9	—	PTC6	FTM2FLT		
10	10	—	PTF7	RGPIO15		
11	11	7	PTF5	RGPIO13	FTM2CH1	
12	12	—	PTF6	RGPIO14	FTM1FLT	
13	_	—	PTJ0	PST0		
14		—	PTJ1	PST1		
15		—	PTJ2	PST2		
16	_	_	PTJ3	PST3		
17	13	8	PTE0	RGPIO0	TxD1	
18	14	9	PTE1	RGPIO1	RxD1	
19	15	10	PTE2	RGPIO2	FTM1CH0	
20	16	11	PTE3	RGPIO3	FTM1CH1	
21	17	12	PTE4	RGPIO4	SS1	
22	18	13	PTE5	RGPIO5	MISO1	
23	19	14	PTE6	RGPIO6	MOSI1	
24	20	15	PTE7	RGPIO7	SPSCK1	
25	21	16	V _{SS}			
26	22	17	V _{DD}			
27		_	PTJ4	DDATA0		
28	_	—	PTJ5	DDATA1		
29	_	—	PTJ6	DDATA2		
30	_	—	PTJ7	DDATA3		
31	23	18	PTG0	KBI1P0		
32	24	19	PTG1	KBI1P1		
33	25	20	PTG2	KBI1P2		
34	26	21	PTA0	TxCAN ²		
35	27	22	PTA1	RxCAN ³		
36	28	-	PTA2			
37	29		PTA3	ACMP2O		
38	30		PTA4	ACMP2-		
39	31		PTA5	ACMP2+		
40	32		PTA6	AD1P16		
41	33		PTA7	AD1P17		
42		-	PTH0	FTM2CH2	AD1P20	
43			PTH1	FTM2CH3	PSTCLK0	AD1P21
44	_	—	PTH2	FTM2CH4	PSTCLK1	AD1P22
45			PTH3	FTM2CH5	BKPT	AD1P23
46	34	23	PTB0	TPM3CH0	AD1P0	
47	35	24	PTB1	TPM3CH1	AD1P1	
48	36	25	PTB2	AD1P2		

Table 4. Pin Availability by Package Pin-Count (continued)

MCF51AC256 Family Configurations

Pin Number			Low	est < Pric	ority>H	ighest
80 64 44		44	Port Pin	Alt 1	Alt 2	Alt 3
49	37	26	PTB3	AD1P3		
50	38		PTB4	AD1P4		
51	39		PTB5	AD1P5		
52	40		PTB6	AD1P6		
53	41		PTB7	AD1P7		
54	42	27	PTD0	AD1P8	ACMP1+	
55	43	28	PTD1	AD1P9	ACMP1-	
56	44	29	V _{DDA}			
57	45	30	V _{SSA}			
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10
59	47	32	PTD3	KBI1P6	AD1P11	
60	48	33	PTG3	KBI1P3	AD1P18	
61	49	—	PTG4	KBI1P4	AD1P19	
62	50		PTD4	FTM2CLK	AD1P12	
63	51	—	PTD5	AD1P13		
64	52	—	PTD6	FTM1CLK	AD1P14	
65	53	—	PTD7	KBI1P7	AD1P15	
66	54	34	V _{REFH}			
67	55	35	V _{REFL}			
68	56	36	BKGD	MS		
69	57	37	PTG5	XTAL		
70	58	38	PTG6	EXTAL		
71	59	39	V _{SS}			
72	_	—	V _{DD}			
73	60	40	PTC0	SCL1		
74	61	41	PTC1	SDA1		
75	—	—	PTH4	SPCK2		
76	_	—	PTH5	MOSI2		
77	_	—	PTH6	MISO2		
78	62	42	PTC2	MCLK		
79	63	43	PTC3	TxD2		
80	64	44	PTC5	RxD2		

Table 4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

 2 TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Maximum junction temperature		Т _Ј	150	°C
Thermal resistance 1,2,3,4				
80-pin LQFP				
	1s		51	
	2s2p		38	
64-pin LQFP				
	1s		59	
	2s2p	θ_{JA}	41	°C/W
64-pin QFP				
			50	
	1s		36	
	2s2p			
44-pin LQFP				
	1s		67	
	2s2p		45	

Table 7. Thermal Characteristics

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulse per pin	—	3	
Charge device	Series resistance	R1	0	Ω
model	Storage capacitance	С	0	pF
	Number of pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	_	7.5	V

Table 8. ESD and Latch-up Test Conditions

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500		V
3	Latch-up current at $T_A = 85 \ ^{\circ}C$	ILAT	±100	_	mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typical ¹	Мах	Unit
1	—	Operating voltage		2.7		5.5	V
2		Output high voltage — Low drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = -4 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = -2 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{nod}} = -2 \text{ mA}$		V _{DD} – 1.5 V _{DD} – 1.5 V _{DD} – 0.8			
	Р	$3 \text{ V}, \text{ I}_{\text{Load}} = -1 \text{ mA}$ Output high voltage — High drive (PTxDSn = 1)	V _{OH}	V _{DD} – 0.8			v
		5 V, I _{Load} = -15 mA 3 V, I _{Load} = -8 mA		V _{DD} – 1.5 V _{DD} – 1.5	_	—	
		5 V, $I_{Load} = -8 \text{ mA}$ 3 V, $I_{Load} = -4 \text{ mA}$		V _{DD} – 0.8 V _{DD} – 0.8	—	_	

Table 10. DC Characteristics

Figure 6. Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 3 V (High Drive, PTxDSn = 1)

Figure 7. Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 5 V (Low Drive, PTxDSn = 0)

Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit	
E	6	Wait mode supply ³ current measured at	at 🛛		1.3	2	m (
5		(CPU clock = 2 MHz, f _{Bus} = 1 MHz)		3	1.29	2	ША	
6	C	Wait mode supply ³ current measured at	\A/I	5	5.11	8	m۸	
0	U	(CPU clock = 16 MHz, t _{Bus} = 8 MHz)	VV DD	3	5.1	8		
7	C	Wait mode supply ³ current measured at		5	15.24	25	mΔ	
/	Ŭ	(CPU clock = 50 MHz, t _{Bus} = 25 MHz)		3	15.2	25	ША	
8	Stop2 mode supply current		521	5	1.40	2.5 2.5 200	μA	
0	0	–40 °C 25 °C 120 °C		3	1.16	2.5 2.5 200	μΑ	
9 C		Stop3 mode supply current -40 °C 25 °C 120 °C	S3L	5	1.60	2.5 2.5 220	μA	
5		–40 °C 25 °C 120 °C		3	1.35	2.5 2.5 220	μA	
10	С	BTI adder to stop2 or stop3 3 25 °C	S23lppp=	5	300		nA	
				3	300		nA	
11	С	Adder to stop3 for oscillator enabled ⁴ (ERCLKEN =1 and EREFSTEN = 1)	S3I _{DDOSC}	5, 3	5		μA	

Table 11.	Supply Current	Characteristics	(continued)
-----------	----------------	-----------------	-------------

¹ Typicals are measured at 25 °C.

² Values given here are preliminary estimates prior to completing characterization.

³ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.

⁴ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

2.8 ADC Characteristics

|--|

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	D		Absolute	V _{DDA}	2.7		5.5	V	
1	D	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
2	D	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	
3	D	Reference voltage high		V _{REFH}	2.7	V _{DDA}	V _{DDA}	v	
4	D	Reference voltage low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	v	
5	D	Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
6	с	Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
7	С	Input resistance		R _{ADIN}	_	3	5	kΩ	
	с		12-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz		_		2 5		
8	С	Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}		_	5 10	kΩ	External to MCU
	с		8-bit mode (all valid f _{ADCK})		_	_	10		
0	D	ADC conversion	High speed (ADLPC = 0)	function	0.4	_	8.0	MH7	
3	D	clock frequency	Low power (ADLPC = 1)	ADCK	0.4	_	4.0		

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	Т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μA	
2	T	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}		218		μA	
З	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}		327		μA	
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}		0.582	1	mA	
5	Т	Supply current	Stop, reset, module off	I _{DDA}		0.011	1	μA	
6	Б	P ADC asynchronous clock source	High speed (ADLPC = 0)	f _{adack}	2	3.3	5	MLI-	t _{ADACK} =
	Г		Low power (ADLPC = 1)		1.25	2	3.3	MHZ	1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
	_	Conversion	Short sample (ADLSMP = 0)		_	20	_	ADCK	See
7	Р	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}		40	_	cycles	Table 10 for
0	-	Completing	Short sample (ADLSMP = 0)		_	3.5		ADCK	conversion time
8		Sample time	Long sample (ADLSMP = 1)	IADS		23.5		cycles	variances
	Т	Total	12-bit mode		_	±3.0			Includes
9	Р	unadjusted	10-bit mode	E _{TUE}	_	±1	±2.5	LSB ²	quantizatio
	т	error	8-bit mode		_	±0.5	±1.0		n
	Т		12-bit mode		_	±1.75	—		
10	Р	Differential	10-bit mode ³	DNL	_	±0.5	±1.0	LSB ²	
	Т		8-bit mode ³		_	±0.3	±0.5		
	Т		12-bit mode	INL	—	±1.5	—	LSB ²	
11	Т	Integral non-linearity	10-bit mode		_	±0.5	±1.0		
	Т		8-bit mode		_	±0.3	±0.5		
	Т	Zero-scale error	12-bit mode	E _{ZS}	—	±1.5	—		V _{ADIN} = V _{SSA}
12	Р		10-bit mode		—	±0.5	±1.5	LSB ²	
	Т		8-bit mode		_	±0.5	±0.5		00/1
	Т		12-bit mode	E _{FS}	—	±1	—	LSB ²	V _{ADIN} = V _{DDA}
13	Р	Full-scale error	10-bit mode		—	±0.5	±1		
	Т		8-bit mode		_	±0.5	±0.5		
			12-bit mode		—	-1 to 0	—		
14	D	Quantization error	10-bit mode	EQ	_	—	±0.5	LSB ²	
			8-bit mode		_	—	±0.5		
			12-bit mode		—	±1	—		Pad
15	D	Input leakage error	10-bit mode	E _{IL}	_	±0.2	±2.5	LSB ²	leakage ⁴ *
			8-bit mode		_	±0.1	±1		R _{AS}
16	D	Temp sensor voltage	25°C	V _{TEMP25}	_	1.396	_	V	
17		Temp sensor	–40 °C–25 °C	~	—	3.266	—	mV/oc	
17	D	slope	25 °C–85 °C	m	_	3.638	—	mV/°C	

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{\text{N}}$.

³ Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Мах	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1	 	38.4 5 16 16 8	kHz MHz MHz MHz MHz
2	—	Load capacitors	C_1 C_2	Se manufa	e crystal o acturer's ree	r resonato commenda	r ation.
3		Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F		10 1		MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	Т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	t CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO		200 400 5 15		ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

Table 16. MCG Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
18	D	Lock exit frequency tolerance ⁸	D _{unl}	±4.47	_	±5.97	%
19	D	Lock time — FLL	t _{fll_lock}	_	-	t _{fII_acquire+} 1075(1/ ^f int_t)	S
20	D	Lock time — PLL	t _{pll_lock}	_	_	t _{pll_acquire+} 1075(1/ ^f pll_ref)	S
21	D	Loss of external clock minimum frequency — RANGE = 0	f _{loc_low}	$(3/5) \times f_{int}$		_	kHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.

³ This specification applies when the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ This specification applies when the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁵ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

⁶ 625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge and the sample point of a bit using 8 time quanta per bit.

⁷ Below D_{lock} minimum, the MCG enters lock. Above D_{lock} maximum, the MCG will not enter lock. But if the MCG is already in lock, then the MCG may stay in lock.

⁸ Below D_{unl} minimum, the MCG will not exit lock if already in lock. Above D_{unl} maximum, the MCG is guaranteed to exit lock.

2.11 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1		External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	_	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 1	8. TP	M/FTM	Input	Timing
---------	-------	-------	-------	--------

Figure 13. Timer External Clock

Figure 14. Timer Input Capture Pulse

2.11.3 MSCAN

Table 19. MSCAN Wake-Up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Мах	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	—	—	2	μS
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	—	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)

NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI Master Timing (CPHA =1)

1. Not defined but normally MSB of character just received

Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see Chapter 4, "Memory."

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	_	Supply voltage for program/erase	V _{prog/erase}	2.7	—	5.5	V
2	—	Supply voltage for read operation	V _{Read}	2.7	—	5.5	V
3	—	Internal FCLK frequency ²	f _{FCLK}	150	—	200	kHz
4	_	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μS
5	_	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	—	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	—	Page erase time ³	t _{Page}	4000			t _{Fcyc}
8	_	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	с	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to 105 °C T = 25 °C	_	10,000 —	 100,000	_	cycles
10	С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 21. Flash Characteristics

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ⁴ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.