E·XFL

NXP USA Inc. - PCF51AC256BCFUE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	54
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51ac256bcfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Device Comparison

The MCF51AC256 series is summarized in Table 1.

Table 1. MCF51AC256 Series Device Comparison

Fasture	MCF51	AC256A	MCF51AC256B			MCF51	AC128A	МС	F51AC12	28C
Feature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
Flash memory size (Kbytes)			256				I	128	I	
RAM size (Kbytes)			32					32 or 16 ¹		
V1 ColdFire core with BDM (background debug module)					١	⁄es				
ACMP1 (analog comparator)					١	⁄es				
ACMP2 (analog comparator)	Ye	es	Ye	es	No		Y	es		No
ADC (analog-to-digital converter) channels (12-bit)	24	20	24	20	9	24	20	24	20	9
CAN (controller area network)	Ye	es		No		Ye	es		No	
COP (computer operating properly)					١	/es				
CRC (cyclic redundancy check)					١	⁄es				
RTI					١	⁄es				
DBG (debug)					١	⁄es				
IIC1 (inter-integrated circuit)					У	⁄es				
IRQ (interrupt request input)					١	⁄es				
INTC (interrupt controller)					١	⁄es				
KBI (keyboard interrupts)					١	⁄es				
LVD (low-voltage detector)					١	⁄es				
MCG (multipurpose clock generator)					١	⁄es				
OSC (crystal oscillator)					١	⁄es				
Port I/O ²	69	54	69	54	36	69	54	69	54	36
RGPIO (rapid general-purpose I/O)		1	6		12		1	6		12
SCI1, SCI2 (serial communications interfaces)					١	⁄es				
SPI1 (serial peripheral interface)					١	⁄es				
SPI2 (serial peripheral interface)	Yes	No	Yes No		lo	Yes	No	Yes	N	0
FTM1 (flexible timer module) channels		(6		4		(6	-	4
FTM2 channels	6	2	6	2	2	6	2	6	2	2

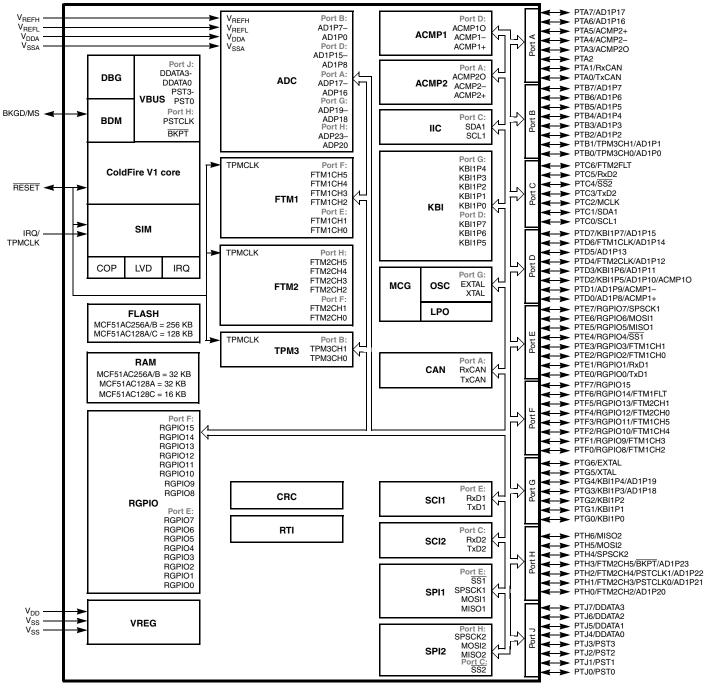


Figure 1. MCF51AC256 Series Block Diagram

- Inter-integrated circuit (IIC)
 - Compatible with IIC bus standard
 - Multi-master operation
 - Software programmable for one of 64 different serial clock frequencies
 - Interrupt driven byte-by-byte data transfer
 - Arbitration lost interrupt with automatic mode switching from master to slave
 - Calling address identification interrupt
 - Bus busy detection
 - 10-bit address extension
- Controller area network (CAN)
 - Implementation of the CAN protocol Version 2.0A/B
 - Standard and extended data frames
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbps
 - Support for remote frames
 - Five receive buffers with FIFO storage scheme
 - Three transmit buffers with internal prioritization using a "local priority" concept
 - Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters
 - Programmable wakeup functionality with integrated low-pass filter
 - Programmable loopback mode supports self-test operation
 - Programmable listen-only mode for monitoring of CAN bus
 - Programmable bus-off recovery functionality
 - Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off)
 - Internal timer for time-stamping of received and transmitted messages
- Serial communications interfaces (SCI)
 - Full-duplex, standard non-return-to-zero (NRZ) format
 - Double-buffered transmitter and receiver with separate enables
 - Programmable baud rates (13-bit modulo divider)
 - Interrupt-driven or polled operation
 - Hardware parity generation and checking
 - Programmable 8-bit or 9-bit character length
 - Receiver wakeup by idle-line or address-mark
 - Optional 13-bit break character generation / 11-bit break character detection
 - Selectable transmitter output polarity
- Serial peripheral interfaces (SPI)
 - Master or slave mode operation
 - Full-duplex or single-wire bidirectional option
 - Programmable transmit bit rate

- Double-buffered transmit and receive
- Serial clock phase and polarity options
- Slave select output
- Selectable MSB-first or LSB-first shifting
- 16-bit and FIFO operations in SPI2
- Input/Output
 - 69 GPIOs
 - 8 keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins
 - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

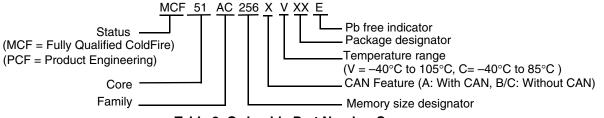


 Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51AC256AVFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256BVFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256AVLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256BVLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256AVPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC256BVPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 105°C
MCF51AC128AVFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 105°C
MCF51AC128CVFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 105°C
MCF51AC128AVLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 105°C
MCF51AC128CVLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	–40°C to 105°C
MCF51AC128AVPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 105°C
MCF51AC128CVPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 105°C
MCF51AC256ACFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256BCFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256ACLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 85°C
MCF51AC256BCLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	–40°C to 85°C

Pir	n Num	ber	Low	est < Pric	ority> Highest			
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3		
49	37	26	PTB3	AD1P3				
50	38		PTB4	AD1P4				
51	39	—	PTB5	AD1P5				
52	40	—	PTB6	AD1P6				
53	41	—	PTB7	AD1P7				
54	42	27	PTD0	AD1P8	ACMP1+			
55	43	28	PTD1	AD1P9	ACMP1-			
56	44	29	V _{DDA}					
57	45	30	V _{SSA}					
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10		
59	47	32	PTD3	KBI1P6	AD1P11			
60	48	33	PTG3	KBI1P3	AD1P18			
61	49	—	PTG4	KBI1P4	AD1P19			
62	50		PTD4	FTM2CLK	AD1P12			
63	51	—	PTD5	AD1P13				
64	52	—	PTD6	FTM1CLK	AD1P14			
65	53	—	PTD7	KBI1P7	AD1P15			
66	54	34	V _{REFH}					
67	55	35	V _{REFL}					
68	56	36	BKGD	MS				
69	57	37	PTG5	XTAL				
70	58	38	PTG6	EXTAL				
71	59	39	V _{SS}					
72	_	—	V _{DD}					
73	60	40	PTC0	SCL1				
74	61	41	PTC1	SDA1				
75	—	—	PTH4	SPCK2				
76	_	—	PTH5	MOSI2				
77	—	—	PTH6	MISO2				
78	62	42	PTC2	MCLK				
79	63	43	PTC3	TxD2				
80	64	44	PTC5	RxD2				

Table 4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

 2 TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the

applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulse per pin	—	3	
Charge device	Series resistance	R1	0	Ω
model	Storage capacitance	С	0	pF
	Number of pulse per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	_	7.5	V

Table 8. ESD and Latch-up Test Conditions

Table 9. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	—	V
3	Latch-up current at $T_A = 85 \ ^\circ C$	I _{LAT}	±100		mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	—	Operating voltage		2.7		5.5	V
2	Р	Output high voltage — Low drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = -4 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -2 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = -2 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -1 \text{ mA}$ Output high voltage — High drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{Load} = -15 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -8 \text{ mA}$	V _{OH}	$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$ $V_{DD} - 1.5$ $V_{DD} - 1.5$			v
		$5 \text{ V}, I_{\text{Load}} = -8 \text{ mA}$ $5 \text{ V}, I_{\text{Load}} = -8 \text{ mA}$ $3 \text{ V}, I_{\text{Load}} = -4 \text{ mA}$		V _{DD} – 0.8 V _{DD} – 0.8	—	—	

Table 10. DC Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
		DC injection current ^{5 6 7 8} (single pin limit) $$V_{IN}\!>\!V_{DD}$ \\ $V_{IN}\!<\!V_{SS}$$		0 0	_	2 0.2	mA
22		DC injection current (Total MCU limit, includes sum of all stressed pins) V _{IN} >V _{DD} V _{IN} <v<sub>SS</v<sub>	I _{IC}	0 0	_	25 -5	mA

Table 10. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

³ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

 6 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁸ The RESET pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

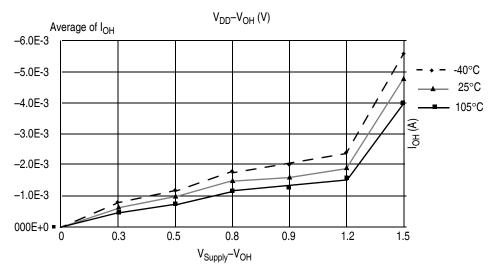


Figure 5. Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0)

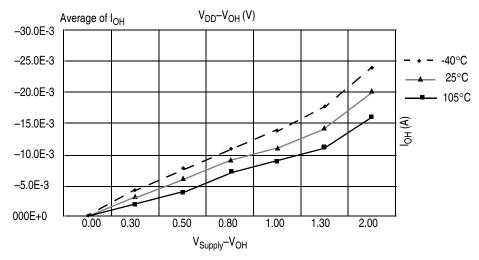


Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1)

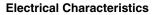


Figure 9. Typical Run I_{DD} vs. System Clock Freq. for FEI and FBE Modes

2.7 Analog Comparator (ACMP) Electricals

Table 12. Analog Comparator Electrical Specifications

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1		Supply voltage	V _{DD}	2.7		5.5	V
2	Т	Supply current (active)	I _{DDAC}	—	20	35	μA
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	D	Analog input offset voltage	V _{AIO}	—	20	40	mV
5	D	Analog comparator hysteresis	V _H	3.0	6.0	20.0	mV
6	D	Analog input leakage current	I _{ALKG}	_	_	1.0	μA
7	D	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μs
8	Ρ	Bandgap voltage reference factory trimmed at V_{DD} = 5.3248 V, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V

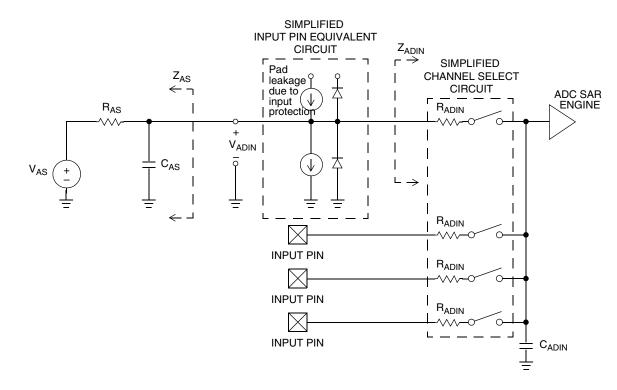


Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μA	
2	т	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}	_	218	_	μA	
3	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	327		μA	
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.582	1	mA	
5	Т	Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA	
		ADC	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5		t _{ADACK} =
6	P	asynchronous clock source	Low power (ADLPC = 1)		1.25	2	3.3	MHz	1/f _{ADACK}

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment			
	_	Conversion	Short sample (ADLSMP = 0)		_	20	_	ADCK	See			
7	Р	time (including sample time)	Long sample (ADLSMP = 1)	t _{ADC}	_	40	_	cycles	Table 10 for			
	Ŧ		Short sample (ADLSMP = 0)		_	3.5	_	ADCK	conversion time			
8	Т	Sample time	Long sample (ADLSMP = 1)	t _{ADS}	_	23.5	_	cycles	variances			
	Т	Total	12-bit mode		_	±3.0	_		Includes			
9	Р	unadjusted	10-bit mode	E _{TUE}		±1	±2.5	LSB ²	quantizatio			
	Т	error	8-bit mode		_	±0.5	±1.0		n			
	Т		12-bit mode			±1.75						
10	Р	Differential non-linearity	10-bit mode ³	DNL		±0.5	±1.0	LSB ²				
	Т		8-bit mode ³			±0.3	±0.5	1				
	Т		12-bit mode			±1.5						
11	Т	Integral non-linearity	10-bit mode	INL		±0.5	±1.0	LSB ²				
	Т		8-bit mode			±0.3	±0.5					
	Т		12-bit mode			±1.5						
12	Р	Zero-scale error	10-bit mode	E _{ZS}		±0.5	±1.5	LSB ²	V _{ADIN} = V _{SSA}			
	Т		8-bit mode			±0.5	±0.5			334		
	Т		12-bit mode			±1						
13	Ρ	Full-scale error	10-bit mode	E _{FS}		±0.5	±1	LSB ²	V _{ADIN} = V _{DDA}			
	Т		8-bit mode			±0.5	±0.5		DDA			
			12-bit mode		_	-1 to 0	_					
14	D	Quantization error	10-bit mode	EQ	_	—	±0.5	LSB ²				
			8-bit mode			—	±0.5					
			12-bit mode			±1			Pad			
15	D	Input leakage error	10-bit mode	EIL		±0.2	±2.5	LSB ²	leakage ⁴ *			
			8-bit mode			±0.1	±1		R _{AS}			
16	D	Temp sensor voltage	25°C	V _{TEMP25}	_	1.396	_	V				
17	D	Temp sensor	–40 °C–25 °C	~	—	3.266	—	mV/°C				
17	ע ו	slope	25 °C–85 °C	m		3.638						

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^{\text{N}}$.

³ Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes

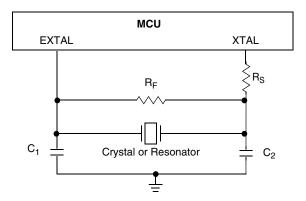
⁴ Based on input pad leakage current. Refer to pad electricals.

2.9 External Oscillator (XOSC) Characteristics

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Мах	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fll} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz MHz
2		Load capacitors	C ₁ C ₂		e crystal o acturer's ree		
3		Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F		10 1		MΩ
4		Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	t CSTL-LP ÇSTL-HGO CSTH-LP t CSTH-HGO		200 400 5 15	 	ms
6	т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0		5 16 40	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.


² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

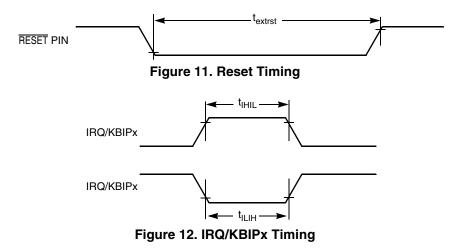
2.10 MCG Specifications

Table 16. MCG Frequency Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequency — factory trimmed at $V_{DD} = 5 V$ and temperature = 25 °C		f _{int_ft}	_	32.768	_	kHz
2	С	Average internal reference	frequency — untrimmed	f _{int_ut}	31.25	—	39.0625	kHz
3	Т	Internal reference startup ti	me	t _{irefst}	_	60	100	μs
	С		Low range (DRS=00)		16	—	20	
4	С	DCO output frequency range — untrimmed ²	Mid range (DRS=01)	f _{dco_ut}	32	—	40	MHz
	С	ango antininoa	High range (DRS=10)		48	—	60	
	Ρ	DCO output frequency ²	Low range (DRS=00)		_	16.82	_	
5	Ρ	reference =32768Hz	Mid range (DRS=01)	f _{dco_DMX32}	_	33.69	_	MHz
	Ρ	and DMX32 = 1	High range (DRS=10)	S=10)	_	50.48	_	
6	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed DCO output frequency over voltage and temperature		Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed D fixed voltage and temperat		Δf_{dco_t}		±0.5	±1	%f _{dco}
10	D	FLL acquisition time ³		t _{fll_acquire}	_	—	1	ms
11	D	PLL acquisition time ⁴		t _{pll_acquire}	_	—	1	ms
12	D	Long term jitter of DCO output clock (averaged over 2ms interval) 5		C _{Jitter}	_	0.02	0.2	%f _{dco}
13	D	VCO operating frequency		f _{vco}	7.0	—	55.0	MHz
16	D	Jitter of PLL output clock m	easured over 625 ns ⁶	f _{pll_jitter_625ns}	_	0.566 ⁶	—	%f _{pll}
17	D	Lock entry frequency tolera	ince ⁷	D _{lock}	±1.49	—	±2.98	%

2.11.1 Control Timing

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	—	24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	800	—	1500	μs
3	D	External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	$66 imes t_{cyc}$	—	_	ns
5	D	Active background debug mode latch setup time	t _{MSSU}	500	—	_	ns
6	D	Active background debug mode latch hold time	t _{MSH}	100	—	_	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	D	Port rise and fall time $(load = 50 \text{ pF})^4$ Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive Slew rate control disabled (PTxSE = 0), Low Drive Slew rate control enabled (PTxSE = 1), Low Drive	t _{Rise} , t _{Fall}	 	11 35 40 75	_	ns


Table 17. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 $\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

2.11.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1	_	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	—	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{ciki}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 18	. TPM/FTM	Input Timing
----------	-----------	--------------

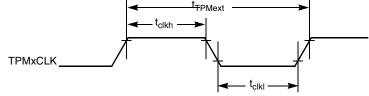


Figure 13. Timer External Clock

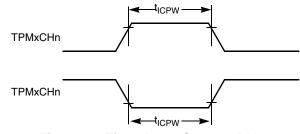


Figure 14. Timer Input Capture Pulse

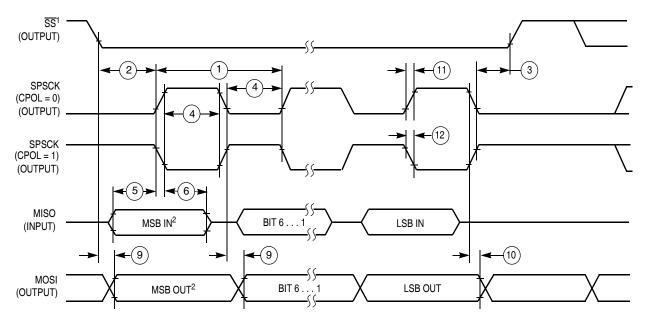
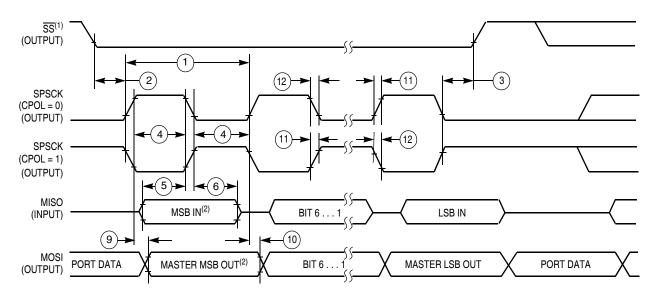

2.11.3 MSCAN

Table 19. MSCAN Wake-Up Pulse Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	D	MSCAN wake-up dominant pulse filtered	t _{WUP}	_	—	2	μs
2	D	MSCAN wake-up dominant pulse pass	t _{WUP}	5	—	5	μS

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.



NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)

NOTES:

1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI Master Timing (CPHA =1)

Mechanical Outline Drawings

3 Mechanical Outline Drawings

Table 22 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MCF51AC256 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 22, or
- Open a browser to the FreescaleÆ website (http://www.freescale.com), and enter the appropriate document number (from Table 22) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Document No.
80	LQFP	98ARL10530D
64	LQFP	98ASS23234W
64	QFP	98ASB42844B
44	LQFP	98ASS23225W

Table 22. Package Information

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008-2010. All rights reserved.

MCF51AC256 Rev.7 9/2011