

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
	Obsolete
Product Status	
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I²C, SCI, SPI
Peripherals	LVD, PWM, WDT
Number of I/O	69
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51ac256bclke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. MCF51AC256 Series Device Comparison (continued)

Feature	MCF51	AC256A	MC	F51AC2	56B	MCF51	AC128A	МС	F51AC12	:8C
reature	80-pin	64-pin	80-pin	64-pin	44-pin	80-pin	64-pin	80-pin	64-pin	44-pin
TPM3 (timer pulse-width modulator) channels						2				
VBUS (debug visibility bus)	Yes	No	Yes	N	lo	Yes	No	Yes	N	0

¹ The members of MCF51AC128A with CAN support have 32 KB RAM. The other members have 16 KB RAM.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51AC256 series pins and modules.

 $^{^{2}\,}$ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.

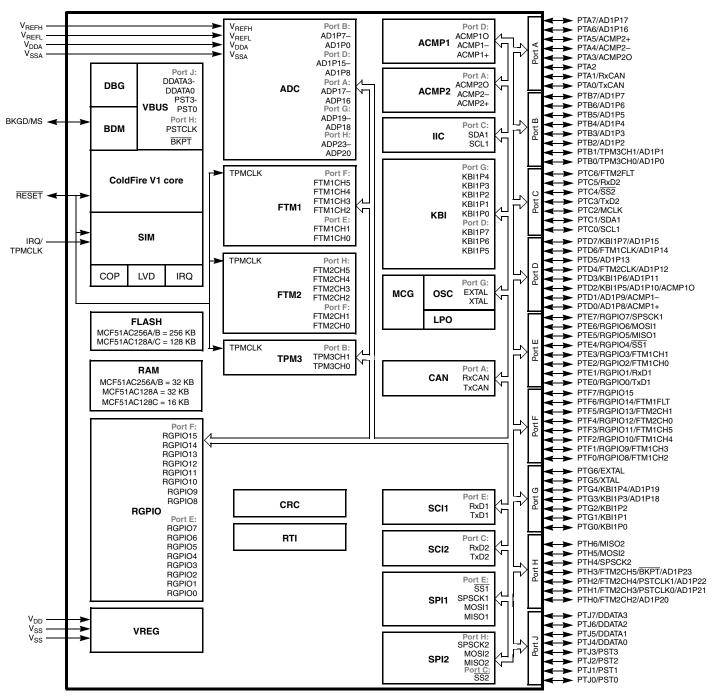


Figure 1. MCF51AC256 Series Block Diagram

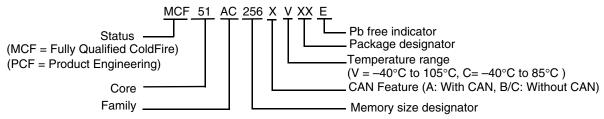
1.3 Features

Table 2 describes the functional units of the MCF51AC256 series.

Table 2. MCF51AC256 Series Functional Units

Functional Unit	Function
CF1 Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
COP (computer operating properly)	Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provides a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
ACMP1, ACMP2 (analog comparators)	Compares two analog inputs
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
KBI (keyboard interrupt)	Provides pin interrupt capabilities
MCG (multipurpose clock generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL
LPO (low-power oscillator)	Provides a second clock source for COP and RTI.
CAN (controller area network)	Supports standard CAN communications protocol
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1 (8-bit serial peripheral interfaces)	Provides 8-bit 4-pin synchronous serial interface
SPI2 (16-bit serial peripheral interfaces)	Provides 16-bit 4-pin synchronous serial interface with FIFO

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7


1.3.1 Feature List

- 32-bit Version 1 ColdFire® central processor unit (CPU)
 - Up to 50.33 MHz at 2.7 V 5.5 V
 - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash)
 - Implements instruction set revision C (ISA_C)
- On-chip memory
 - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature
 - Up to 32 KB static random access memory (SRAM)
 - Security circuitry to prevent unauthorized access to SRAM and flash contents
- Power-Saving Modes
 - Three low-power stop plus wait modes
 - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode
- System protection features
 - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock
 - Low-voltage detection with reset or interrupt
 - Illegal opcode and illegal address detection with programmable reset or exception response
 - Flash block protection
- · Debug support
 - Single-wire background debug interface
 - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger
 - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes
 - Support for real-time program (and optional partial data) trace using the debug visibility bus
- V1 ColdFire interrupt controller (CF1 INTC)
 - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
 - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority
 - Unique vector number for each interrupt source
 - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Multipurpose clock generator (MCG)
 - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - LPO clock as an optional independent clock source for COP and RTI
 - FLL/PLL controlled by internal or external reference

- Double-buffered transmit and receive
- Serial clock phase and polarity options
- Slave select output
- Selectable MSB-first or LSB-first shifting
- 16-bit and FIFO operations in SPI2
- Input/Output
 - 69 GPIOs
 - 8 keyboard interrupt pins with selectable polarity
 - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins
 - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

1.4 Part Numbers

Table 3. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (Kbytes)	Package	Temperature
MCF51AC256AVFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256BVFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	–40°C to 105°C
MCF51AC256AVLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 105°C
MCF51AC256BVLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	-40°C to 105°C
MCF51AC256AVPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	-40°C to 105°C
MCF51AC256BVPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	-40°C to 105°C
MCF51AC128AVFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	-40°C to 105°C
MCF51AC128CVFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	-40°C to 105°C
MCF51AC128AVLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 105°C
MCF51AC128CVLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	-40°C to 105°C
MCF51AC128AVPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	-40°C to 105°C
MCF51AC128CVPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	-40°C to 105°C
MCF51AC256ACFUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 QFP	–40°C to 85°C
MCF51AC256BCFUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 QFP	-40°C to 85°C
MCF51AC256ACLKE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	80 LQFP	–40°C to 85°C
MCF51AC256BCLKE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	80 LQFP	-40°C to 85°C

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

Table 3. Orderable Part Number Summary

MCF51AC256ACPUE	MCF51AC256 ColdFire Microcontroller with CAN	256 / 32	64 LQFP	-40°C to 85°C
MCF51AC256BCPUE	MCF51AC256 ColdFire Microcontroller without CAN	256 / 32	64 LQFP	–40°C to 85°C
MCF51AC256BCFGE	MCF51AC256 ColdFire Microcontroller without CAN	256/32	44 LQFP	-40°C to 85°C
MCF51AC128ACFUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 QFP	–40°C to 85°C
MCF51AC128CCFUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 QFP	–40°C to 85°C
MCF51AC128ACLKE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	80 LQFP	–40°C to 85°C
MCF51AC128CCLKE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	80 LQFP	-40°C to 85°CC
MCF51AC128ACPUE	MCF51AC128 ColdFire Microcontroller with CAN	128 / 32	64 LQFP	–40°C to 85°C
MCF51AC128CCPUE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	64 LQFP	–40°C to 85°C
MCF51AC128CCFGE	MCF51AC128 ColdFire Microcontroller without CAN	128 / 16	44 LQFP	–40°C to 85°C

1.5 Pinouts and Packaging

Figure 2 shows the pinout of the 80-pin LQFP.

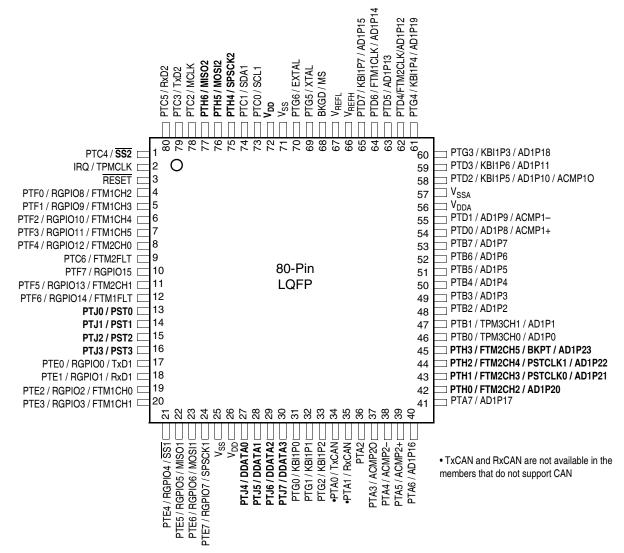


Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

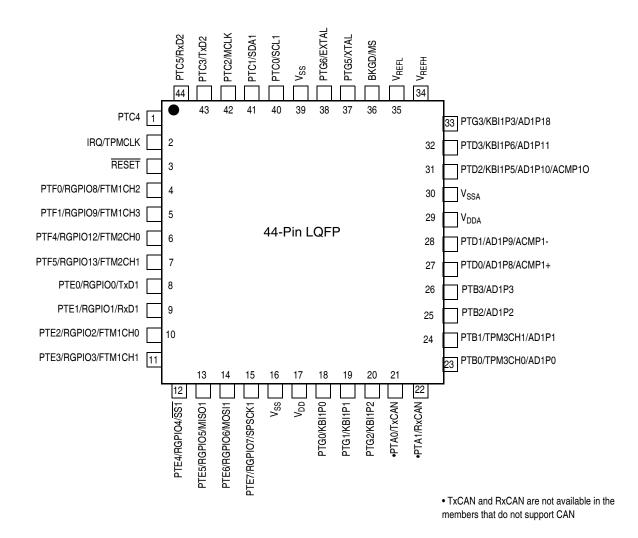


Figure 4. MCF51AC256 Series ColdFire Microcontroller 44-Pin LQFP

Table 4 shows the package pin assignments.

Table 4. Pin Availability by Package Pin-Count

Pin Number			Lowe	est < Pric	ority> Hi	ighest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
1	1	1	PTC4	SS2		
2	2	2	IRQ	TPMCLK ¹		
3	3	3	RESET			
4	4	4	PTF0	RGPIO8	FTM1CH2	
5	5	5	PTF1	RGPIO9	FTM1CH3	
6	6		PTF2	RGPIO10	FTM1CH4	
7	7	_	PTF3	RGPIO11	FTM1CH5	

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

Table 4. Pin Availability by Package Pin-Count (continued)

Pir	n Num	ber	Low	est < Pric	ority> Hi	ighest
80	64	44	Port Pin	Alt 1	Alt 2	Alt 3
49	37	26	PTB3	AD1P3		
50	38	_	PTB4	AD1P4		
51	39	_	PTB5	AD1P5		
52	40	_	PTB6	AD1P6		
53	41	_	PTB7	AD1P7		
54	42	27	PTD0	AD1P8	ACMP1+	
55	43	28	PTD1	AD1P9	ACMP1-	
56	44	29	V_{DDA}			
57	45	30	V_{SSA}			
58	46	31	PTD2	KBI1P5	AD1P10	ACMP10
59	47	32	PTD3	KBI1P6	AD1P11	
60	48	33	PTG3	KBI1P3	AD1P18	
61	49	_	PTG4	KBI1P4	AD1P19	
62	50	_	PTD4	FTM2CLK	AD1P12	
63	51	_	PTD5	AD1P13		
64	52	_	PTD6	FTM1CLK	AD1P14	
65	53	_	PTD7	KBI1P7	AD1P15	
66	54	34	V_{REFH}			
67	55	35	V_{REFL}			
68	56	36	BKGD	MS		
69	57	37	PTG5	XTAL		
70	58	38	PTG6	EXTAL		
71	59	39	V_{SS}			
72	_	_	V_{DD}			
73	60	40	PTC0	SCL1		
74	61	41	PTC1	SDA1		
75			PTH4	SPCK2		
76			PTH5	MOSI2		
77			PTH6	MISO2		
78	62	42	PTC2	MCLK		
79	63	43	PTC3	TxD2		
80	64	44	PTC5	RxD2	_	

TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

² TxCAN is available in the member that supports CAN.

³ RxCAN is available in the member that supports CAN.

Table 6. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to 5.8	٧
Input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 7. Thermal Characteristics

Rating		Symbol	Value	Unit
Operating temperature range (packaged)		T _A	-40 to 105	°C
Maximum junction temperature		TJ	150	°C
Thermal resistance 1,2,3,4				
80-pin LQFP	1s		51	
64-pin LQFP	2s2p		38 59	
64-pin QFP	2s2p	$\theta_{\sf JA}$	41 50	°C/W
44 pin LOED	1s 2s2p		36	
44-pin LQFP	1s 2s2p		67 45	

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

 $^{^{2}}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

Table 10. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
		DC injection current ^{5 6 7 8} (single pin limit) V _{IN} >V _{DD} V _{IN} <v<sub>SS</v<sub>		0 0	_	2 -0.2	mA
22		DC injection current (Total MCU limit, includes sum of all stressed pins) $ \frac{V_{IN}>V_{DD}}{V_{IN}< V_{SS}} $	I _{IC}	0 0	I	25 -5	mA

Typical values are based on characterization data at 25°C unless otherwise stated.

- $^{6}\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} .
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- 8 The $\overline{\text{RESET}}$ pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} .

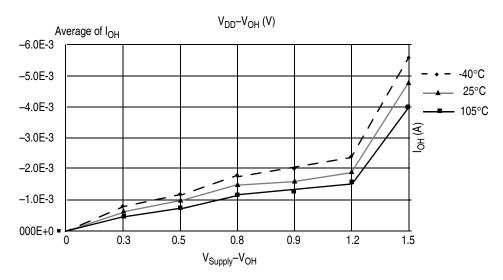


Figure 5. Typical I_{OH} vs. V_{DD}-V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0)

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

 $^{^{3}}$ Measured with $V_{In} = V_{SS}$.

⁴ Measured with $V_{In} = V_{DD}$.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

2.6 Supply Current Characteristics

Table 11. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit	
			2 MHz		5	2.27	_	
		-	Z IVIMZ		3.3	2.24		
			4 MHz		5	3.67	_	
4	1 T	Run supply current measured at	4 IVITIZ		3.3	3.64	_	
ı	'	FEI mode, all modules off, system clock at:	8 MHz		5	6.55		
			O IVITIZ		3.3	6.54		
			16 MHz		5	11.90	_	
			TO IVII IZ		3.3	11.85		
	2 T Run supply current measured at FEI mode, all modules on, system clock at:		2 MHz		5	3.28	_	
			Z IVII IZ		3.3	3.26		
		4 MHz		5	4.33			
2			4 IVITZ		3.3	4.32		
۷		i Li mode, all modules on,	8 MHz		5	8.17		
			O IVITZ		3.3	8.05		
			16 MHz		5	14.8	_	
				TO IVII IZ	RI _{DD}	3.3	14.74	
			2 M⊔-		5	3.28		IIIA
			2 MHz	ک ۱۷۱۱ اک		3.3	3.26	
		Dura accomply accompany was a accompany of	4 MHz		5	4.69		
3	Т	Run supply current measured at FBE mode, all modules off	4 IVITZ		3.3	4.67		
		(RANGE = 1, HGO = 0), system	8 MHz		5	7.48	_	
		clock at:	O IVII IZ		3.3	7.46	_	
			16 MHz		5	13.10	_	
			TO IVII IZ		3.3	13.07	_	
			2 MHz		5	3.64	_	
			Z IVII 1Z		3.3	3.63		1
		D	4 MHz		5	5.38	_	
4	Т	Run supply current measured at FBE mode, all modules on	₩ IVII IZ		3.3	5.35	_	
		(RANGE = 1, HGO = 0), system	8 MHz		5	8.65	_	
		clock at:	O IVITZ		3.3	8.64	_	
			16 MHz		5	15.55	_	
			TO IVII IZ		3.3	15.40		

Table 11. Supply Current Characteristics (continued)

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
5	С	Wait mode supply ³ current measured at		5	1.3	2	- mA
3		(CPU clock = 2 MHz, f _{Bus} = 1 MHz)		3	1.29	2	ША
6	C	Wait mode supply ³ current measured at	WI _{DD}	5	5.11	8	mA
		(CPU clock = 16 MHz, f _{Bus} = 8 MHz)	טטיייי	3	5.1	8	1117 (
7	С	Wait mode supply ³ current measured at		5	15.24	25	mA
,		(CPU clock = 50 MHz, f _{Bus} = 25 MHz)		3	15.2	25	1117
8	С	Stop2 mode supply current -40 °C 25 °C 120 °C	S2I _{DD}	5	1.40	2.5 2.5 200	μА
Ü		-40 °C 25 °C 120 °C	OZI _{DD}	3	1.16	2.5 2.5 200	μА
9	С	Stop3 mode supply current -40 °C 25 °C 120 °C	S3I _{DD}	5	1.60	2.5 2.5 220	μА
		-40 °C 25 °C 120 °C	· DD	3	1.35	2.5 2.5 220	μΑ
10	С	RTI adder to stop2 or stop3 ³ , 25 °C	S23I _{DDRTI}	5	300		nA
		1111 44401 to stope of stope , 20	OZOIDDRTI	3	300		nA
11	С	Adder to stop3 for oscillator enabled ⁴ (ERCLKEN =1 and EREFSTEN = 1)	S3I _{DDOSC}	5, 3	5		μА

¹ Typicals are measured at 25 °C.

² Values given here are preliminary estimates prior to completing characterization.

Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode

⁴ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

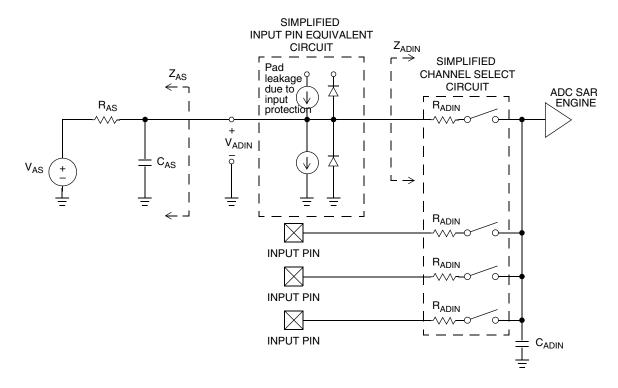


Figure 10. ADC Input Impedance Equivalency Diagram

Table 14. 5 Volt 12-bit ADC Characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

	Table : II o Tell 12 bit 715 o Characteriotics (TREFT - TDDA, TREFT - TSSA)									
Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment	
1	Т	Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		I _{DDA}	_	133	_	μΑ		
2	Т	Supply current ADLPC = 1 ADLSM = 0 ADCO = 1		I _{DDA}	_	218	_	μΑ		
3	Т	Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		I _{DDA}	_	327	_	μА		
4	D	Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1		I _{DDA}	_	0.582	1	mA		
5	Т	Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μΑ		
0	Р	ADC	High speed (ADLPC = 0)	f _{ADACK}		2	3.3	5	NAL 1-	t _{ADACK} =
6		asynchronous clock source			1.25	2	3.3	MHz	1/f _{ADACK}	

Table 14. 5 Volt 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
-		Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20		ADCK cycles	See Table 10 for conversion time variances
7	Р		Long sample (ADLSMP = 1)		_	40	_		
0	8 T	Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5		ADCK cycles	
8	ı		Long sample (ADLSMP = 1)		_	23.5	_		
	Т	Total unadjusted error	12-bit mode	E _{TUE}	_	±3.0	_	LSB ²	Includes quantizatio n
9	Р		10-bit mode		_	±1	±2.5		
	Т		8-bit mode		_	±0.5	±1.0		
	Т		12-bit mode		_	±1.75	_	LSB ²	
10	Р	Differential non-linearity	10-bit mode ³	DNL	_	±0.5	±1.0		
	Т		8-bit mode ³		_	±0.3	±0.5		
	Т		12-bit mode	INL	_	±1.5	_	LSB ²	
11	Т	Integral non-linearity	10-bit mode		_	±0.5	±1.0		
	Т		8-bit mode		_	±0.3	±0.5		
	Т	Zero-scale error	12-bit mode	E _{ZS}	_	±1.5	_	LSB ²	V _{ADIN} = V _{SSA}
12	Р		10-bit mode		_	±0.5	±1.5		
	Т		8-bit mode		_	±0.5	±0.5		
	Т	Full-scale error	12-bit mode	E _{FS}	_	±1	_	LSB ²	V _{ADIN} = V _{DDA}
13	Р		10-bit mode		_	±0.5	±1		
	Т		8-bit mode		_	±0.5	±0.5		
	D	Quantization error	12-bit mode	EQ	_	-1 to 0	_	LSB ²	
14			10-bit mode		_	_	±0.5		
			8-bit mode		_	_	±0.5		
	D	Input leakage error	12-bit mode		_	±1	_	LSB ²	Pad
15			10-bit mode	E _{IL}	_	±0.2	±2.5		leakage ⁴ *
			8-bit mode		— ±0.1	±1	1	R _{AS}	
16	D	Temp sensor voltage	25°C	V _{TEMP25}	_	1.396	_	V	
17	Ь	Temp sensor	–40 °C–25 °C	- m	_	3.266	266 —	mV/°C	
17	D	slope	25 °C–85 °C		_	3.638	_		

Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$.

- Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes
- Based on input pad leakage current. Refer to pad electricals.

External Oscillator (XOSC) Characteristics 2.9

Table 15. Oscillator Electrical Specifications (Temperature Range = -40 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1) PEE or PBE mode ³ High range (RANGE = 1, HGO = 1) BLPE mode High range (RANGE = 1, HGO = 0) BLPE mode	f _{lo} f _{hi-fil} f _{hi-pll} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 16 8	kHz MHz MHz MHz MHz
2	—	Load capacitors	C ₁ C ₂		e crystal o acturer's re		
3	_	Feedback resistor Low range (32 kHz to 38.4 kHz) High range (1 MHz to 16 MHz)	R _F		10 1		МΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0	 0 10 20	kΩ
5	Т	Crystal start-up time ⁴ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁵ High range, high gain (RANGE = 1, HGO = 1) ⁵	CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO	_ _ _ _	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² PEE or PBE mode ³ BLPE mode	f _{extal}	0.03125 1 0	_ _ _	5 16 40	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

Freescale Semiconductor 31

MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz

⁴ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁵ 4 MHz crystal

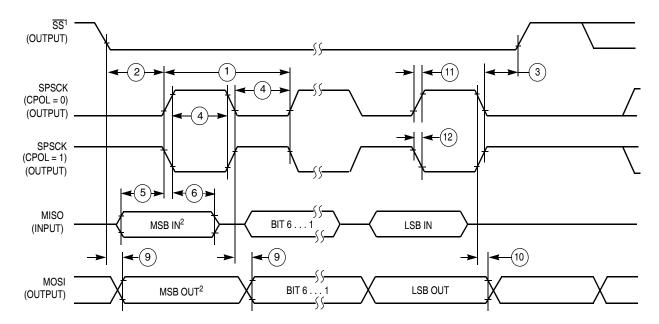
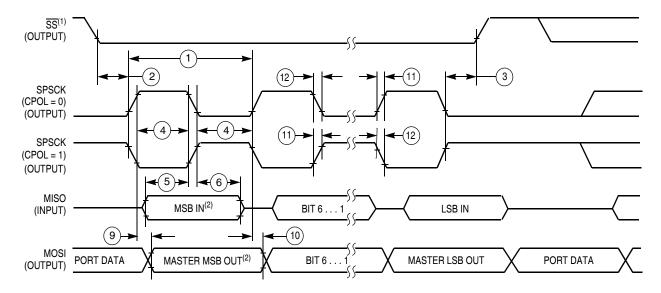

2.12 SPI Characteristics

Table 20 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.

Table 20. SPI Timing

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns
10	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
11	D	Rise time Input Output	t _{RI} t _{RO}	_	t _{cyc} – 25 25	ns ns
12	D	Fall time Input Output	t _{FI}	_	t _{cyc} – 25 25	ns ns



NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)

NOTES:

- 1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI Master Timing (CPHA =1)

4 Revision History

Table 23. Revision History

Revision	Description			
1	Initial published			
2	Updated ADC channels, Item 1, 4-5 on Table 2.10			
3	Completed all the TBDs. Changed RTC to RTI in Figure 1. Corrected the block diagram. Changed V_{DDAD} to V_{DDA} , V_{SSAD} to V_{SSA} . Added charge device model data and removed machine data in Table 8. Updated the specifications of V_{LVDH} , V_{LVDL} , V_{LVWH} and V_{LVWL} in Table 10. Updated $S2I_{DD}$, $S3I_{DD}$ in Table 11. Added C column in Table 14. Updated f_{dco_DMX32} in Table 16.			
4	Corrected the expansion of SPI to serial peripheral interface.			
5	Updated V _{LVDL} in the Table 10. Updated RI _{DD} in the Table 11.			
6	Updated V _{LVDH} , V _{LVDL} , V _{LVWH} and V _{LVWL} in the Table 10. Added LPO on the Figure 1 and LPO features in the Section 1.3, "Features."			
7	Added 44-pin LQFP package information for AC256 and AC128.			

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2010. All rights reserved.

MCF51AC256 Rev.7 9/2011